1
|
Cruz JMFDL, de Farias OR, Araújo BCL, Rivera AV, de Souza CR, de Souza JT. A New Root and Trunk Rot Disease of Grapevine Plantlets Caused by Fusarium in Four Species Complexes. J Fungi (Basel) 2025; 11:230. [PMID: 40137267 PMCID: PMC11942937 DOI: 10.3390/jof11030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Grapevines are propagated by grafting, but the rootstocks used in commercial plantations are susceptible to several diseases. In this study, we focused on a novel root and trunk rot disease of grapevine plantlets that show symptoms during cold storage, before field establishment. Our objectives were to study the aetiology, symptomatology, plant resistance responses, and mode of action of the pathogen that was initially identified as Fusarium. The characterisation of this pathosystem was performed by isolation, pathogenicity assays, genetic diversity studies with BOX-PCR, and identification by sequencing a fragment of the tef1 gene. Scanning electron microscopy and X-ray spectroscopy were used to study the mode of action and plant resistance responses. The results showed that 12 species of Fusarium, initially isolated from both healthy and diseased plantlets, and classified into 4 species complexes, were pathogenic to grapevines. Comparative analyses between diseased and healthy roots showed typical resistance responses in diseased plantlets, including tyloses formation, translocation of Ca, and accumulation of Si. Field experiments confirmed that 100% of the diseased plantlets died within 90 days of transplantation. This study contributes to a better understanding of root and trunk rot disease under cold storage and provides insights for the development of management strategies.
Collapse
Affiliation(s)
| | - Otília Ricardo de Farias
- Department of Plant Pathology, Federal University of Lavras, Lavras 37200-900, MG, Brazil; (J.M.F.d.L.C.); (O.R.d.F.); (B.C.L.A.)
| | - Brunno Cassiano Lemos Araújo
- Department of Plant Pathology, Federal University of Lavras, Lavras 37200-900, MG, Brazil; (J.M.F.d.L.C.); (O.R.d.F.); (B.C.L.A.)
| | - Alejandra Valencia Rivera
- Faculty of Agricultural Sciences, Jaime Isaza Cadavid Colombian Polytechnic, Medellín 050022, ANT, Colombia;
| | - Cláudia Rita de Souza
- Technological Centre of Grape and Wine Research, Agricultural Research Agency of the State of Minas Gerais, Caldas 37780-000, MG, Brazil;
| | - Jorge Teodoro de Souza
- Department of Plant Pathology, Federal University of Lavras, Lavras 37200-900, MG, Brazil; (J.M.F.d.L.C.); (O.R.d.F.); (B.C.L.A.)
| |
Collapse
|
2
|
Komissarov EN, Diabankana RGC, Abdeeva I, Afordoanyi DM, Gudkov SV, Dvorianinova EM, Bruskin SA, Dmitriev AA, Validov SZ. Genomic Differences Between Two Fusarium oxysporum Formae Speciales Causing Root Rot in Cucumber. J Fungi (Basel) 2025; 11:140. [PMID: 39997434 PMCID: PMC11856433 DOI: 10.3390/jof11020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
The host specificity of Fusarium oxysporum (Fox) formae speciales has been reported to be linked to effector proteins known as Secreted in Xylem (SIX). These genes are associated with the non-autonomous mobile element miniature impala (mimp), normally distributed on the accessory chromosomes. The pattern of mimp associated with effector genes has been used to predict candidate effector profiles which characterize Fox formae speciales. In this study, we demonstrate the pathogenicity of strains Fusarium oxysporum f.sp. radicis-lycopersici (Forl) ZUM2407 and Fusarium oxysporum f.sp. radicis-cucumerinum (Forc) V03-2g in a common host plant (cucumber) and compare their genomes. The Forl ZUM2407 genome lacks SIX genes and their homologs, in contrast to Forc V03-2g. We predicted the total number of mimp elements in the genome of Forl ZUM2407 to be three-fold less than that of Forc V03-2g (10 and 36 copies, respectively). The mimp distribution pattern in Forl ZUM2407 was completely different from that present in Forc V03-2g. Candidate effector profile analysis did not predict that Forl ZUM2407 was able to infect cucumber plants like Forc V03-2g. Therefore, we assume that Forl ZUM2407 has a different type of genome organization associated with pathogenicity, whose effector profile cannot be described using the mimp-based approach.
Collapse
Affiliation(s)
- Ernest Nailevich Komissarov
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia; (D.M.A.); (S.Z.V.)
| | - Roderic Gilles Claret Diabankana
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia; (D.M.A.); (S.Z.V.)
| | - Inna Abdeeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (I.A.); (S.A.B.)
| | - Daniel Mawuena Afordoanyi
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia; (D.M.A.); (S.Z.V.)
| | - Sergey Vladimirovich Gudkov
- Prokhorov General Physics Institute of Russian Academy of Sciences, 119991 Moscow, Russia;
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | | | | | | | - Shamil Zavdatovich Validov
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia; (D.M.A.); (S.Z.V.)
| |
Collapse
|
3
|
Wang S, Chen K, Guo J, Zhang P, Li Y, Xu Z, Cui L, Qiang Y. Identification of Pathogen Causing Bulb Rot in Fritillaria taipaiensis P. Y. Li and Establishment of Detection Methods. PLANTS (BASEL, SWITZERLAND) 2024; 13:2236. [PMID: 39204672 PMCID: PMC11360731 DOI: 10.3390/plants13162236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Fritillaria taipaiensis P. Y. Li (F. taipaiensis) is a traditional Chinese herbal medicine that has been used for over two millennia to treat cough and expectoration. However, the increasing cultivation of F. taipaiensis has led to the spread of bulb rot diseases. In this study, pathogens were isolated from rotten F. taipaiensis bulbs. Through molecular identification, pathogenicity testing, morphological assessment, and microscopy, Fusarium solani was identified as the pathogen causing bulb rot in F. taipaiensis. The colonization of F. solani in the bulbs was investigated through microscopic observation. The rapid and accurate detection of this pathogen will contribute to better disease monitoring and control. Loop-mediated isothermal amplification (LAMP) and qPCR methods were established to quickly and specifically identify this pathogen. These results provide valuable insights for further research on the prediction, rapid detection, and effective prevention and control of bulb rot in F. taipaiensis.
Collapse
Affiliation(s)
- Shijie Wang
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (S.W.); (J.G.); (P.Z.); (Y.L.); (Z.X.)
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Keke Chen
- School of Biological and Environmental Engineering, Xi’an University, Xi’an 710065, China;
| | - Jiaqi Guo
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (S.W.); (J.G.); (P.Z.); (Y.L.); (Z.X.)
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Panwang Zhang
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (S.W.); (J.G.); (P.Z.); (Y.L.); (Z.X.)
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Yuchen Li
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (S.W.); (J.G.); (P.Z.); (Y.L.); (Z.X.)
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Zhenghao Xu
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (S.W.); (J.G.); (P.Z.); (Y.L.); (Z.X.)
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Langjun Cui
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (S.W.); (J.G.); (P.Z.); (Y.L.); (Z.X.)
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Yi Qiang
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (S.W.); (J.G.); (P.Z.); (Y.L.); (Z.X.)
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
4
|
Sakane K, Ueno T, Shigyo M, Sasaki K, Ito SI. Pathogenicity Differentiation of Fusarium spp. Causing Fusarium Basal Rot and Wilt Disease in Allium spp. Pathogens 2024; 13:591. [PMID: 39057818 PMCID: PMC11279435 DOI: 10.3390/pathogens13070591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Here, 12 Fusarium strains, previously described as F. oxysporum f. sp. cepae (Foc), were examined via multi-locus sequencing of calmodulin (cmdA), RNA polymerase II second largest subunit (rpb2), and translation elongation factor 1-alpha (tef1), to verify the taxonomic position of Foc in the newly established epitype of F. oxysporum. The strains in this study were divided into two clades: F. nirenbergiae and Fusarium sp. To further determine the host specifications of the strains, inoculation tests were performed on onion bulbs and Welsh onion seedlings as potential hosts. Four strains (AC145, AP117, Ru-13, and TA) isolated from diseased onions commonly possessed the secreted in xylem (SIX)-3, 5, 7, 9, 10, 12, and 14 genes and were pathogenic and highly aggressive to onion bulbs, whereas all strains except for one strain (AF97) caused significant inhibition of Welsh onion growth. The inoculation test also revealed that the strains harboring the SIX9 gene were highly aggressive to both onion and Welsh onion and the gene was expressed during infection of both onions and Welsh onions, suggesting the important role of the SIX9 gene in pathogenicity. This study provides insights into the evolutionary pathogenicity differentiation of Fusarium strains causing Fusarium basal rot and wilt diseases in Allium species.
Collapse
Affiliation(s)
- Kosei Sakane
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan;
| | - Takashi Ueno
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; (T.U.); (M.S.)
| | - Masayoshi Shigyo
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; (T.U.); (M.S.)
| | - Kazunori Sasaki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; (T.U.); (M.S.)
- Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Shin-ichi Ito
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; (T.U.); (M.S.)
- Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
5
|
Dilla-Ermita CJ, Goldman P, Anchieta A, Feldmann MJ, Pincot DDA, Famula RA, Vachev M, Cole GS, Knapp SJ, Klosterman SJ, Henry PM. Secreted in Xylem 6 ( SIX6) Mediates Fusarium oxysporum f. sp. fragariae Race 1 Avirulence on FW1-Resistant Strawberry Cultivars. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:530-541. [PMID: 38552146 DOI: 10.1094/mpmi-02-24-0012-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Fusarium oxysporum f. sp. fragariae (Fof) race 1 is avirulent on cultivars with the dominant resistance gene FW1, while Fof race 2 is virulent on FW1-resistant cultivars. We hypothesized there was a gene-for-gene interaction between a gene at the FW1 locus and an avirulence gene (AvrFW1) in Fof race 1. To identify a candidate AvrFW1, we compared genomes of 24 Fof race 1 and three Fof race 2 isolates. We found one candidate gene that was present in race 1, was absent in race 2, was highly expressed in planta, and was homologous to a known effector, secreted in xylem 6 (SIX6). We knocked out SIX6 in two Fof race 1 isolates by homologous recombination. All SIX6 knockout transformants (ΔSIX6) gained virulence on FW1/fw1 cultivars, whereas ectopic transformants and the wildtype isolates remained avirulent. ΔSIX6 isolates were quantitatively less virulent on FW1/fw1 cultivars Fronteras and San Andreas than fw1/fw1 cultivars. Seedlings from an FW1/fw1 × fw1/fw1 population were genotyped for FW1 and tested for susceptibility to a SIX6 knockout isolate. Results suggested that additional minor-effect quantitative resistance genes could be present at the FW1 locus. This work demonstrates that SIX6 acts as an avirulence factor interacting with a resistance gene at the FW1 locus. The identification of AvrFW1 enables surveillance for Fof race 2 and provides insight into the mechanisms of FW1-mediated resistance. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Christine Jade Dilla-Ermita
- Crop Improvement and Protection Research, USDA-ARS, 1636 E. Alisal St., Salinas, CA 93905
- Department of Plant Sciences, University of California Davis, One Shields Ave., Davis, CA 95616
| | - Polly Goldman
- Crop Improvement and Protection Research, USDA-ARS, 1636 E. Alisal St., Salinas, CA 93905
| | - Amy Anchieta
- Crop Improvement and Protection Research, USDA-ARS, 1636 E. Alisal St., Salinas, CA 93905
| | - Mitchell J Feldmann
- Department of Plant Sciences, University of California Davis, One Shields Ave., Davis, CA 95616
| | - Dominique D A Pincot
- Department of Plant Sciences, University of California Davis, One Shields Ave., Davis, CA 95616
| | - Randi A Famula
- Department of Plant Sciences, University of California Davis, One Shields Ave., Davis, CA 95616
| | - Mishi Vachev
- Department of Plant Sciences, University of California Davis, One Shields Ave., Davis, CA 95616
| | - Glenn S Cole
- Department of Plant Sciences, University of California Davis, One Shields Ave., Davis, CA 95616
| | - Steven J Knapp
- Department of Plant Sciences, University of California Davis, One Shields Ave., Davis, CA 95616
| | - Steven J Klosterman
- Crop Improvement and Protection Research, USDA-ARS, 1636 E. Alisal St., Salinas, CA 93905
| | - Peter M Henry
- Crop Improvement and Protection Research, USDA-ARS, 1636 E. Alisal St., Salinas, CA 93905
| |
Collapse
|
6
|
Petrović K, Orzali L, Krsmanović S, Valente MT, Tolimir M, Pavlov J, Riccioni L. Genetic Diversity and Pathogenicity of the Fusarium Species Complex on Soybean in Serbia. PLANT DISEASE 2024; 108:1851-1860. [PMID: 38311795 DOI: 10.1094/pdis-11-23-2450-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Using morphological and cultural characteristics for identification, 36 Fusarium isolates were recovered from diseased roots, stems, and seeds of soybean from several localities throughout Vojvodina Province, Serbia. Based on molecular characterization, 12 Fusarium species were identified: F. acuminatum, F. avenaceum, F. commune, F. equiseti, F. graminearum, F. incarnatum, F. oxysporum, F. proliferatum, F. solani, F. sporotrichioides, F. subglutinans, and F. tricinctum. The elongation factor 1-α-based phylogeny grouped the isolates into 12 well-supported clades, but polymorphisms among sequences in some clades suggested the use of the species complex concept: (i) F. incarnatum-equiseti species complex (FIESC)-F. incarnatum and F. equiseti; (ii) F. oxysporum species complex (FOSC)-F. oxysporum; (iii) F. solani species complex (FSSC)-F. solani; and (iv) F. acuminatum/F. avenaceum/F. tricinctum species complex (FAATSC)-F. acuminatum, F. avenaceum, and F. tricinctum. Pathogenicity tests showed that the most aggressive species causing soybean seed rot were F. sporotrichioides, F. graminearum, FIESC, and F. avenaceum. Furthermore, F. subglutinans, FSSC, and F. proliferatum showed a high percentage of pathogenicity on soybean seeds (80 to 100%), whereas variability in pathogenicity occurred within isolates of F. tricinctum. FOSC, F. commune, and F. acuminatum had the lowest pathogenicity. To our knowledge, this is the first study of the characterization of Fusarium species on soybean in Serbia. This study provides valuable information about the composition of Fusarium species and pathogenicity that will be used in further research on soybean resistance to Fusarium-based diseases.
Collapse
Affiliation(s)
- Kristina Petrović
- Maize Research Institute "Zemun Polje", Belgrade 11185, Serbia
- BioSense Institute, University of Novi Sad, Novi Sad 21001, Serbia
| | - Laura Orzali
- Council for Agricultural Research and Economics (CREA), Research Center for Plant Protection and Certification (CREA-DC), 00156 Rome, Italy
| | | | - Maria Teresa Valente
- Council for Agricultural Research and Economics (CREA), Research Center for Plant Protection and Certification (CREA-DC), 00156 Rome, Italy
| | - Miodrag Tolimir
- Maize Research Institute "Zemun Polje", Belgrade 11185, Serbia
| | - Jovan Pavlov
- Maize Research Institute "Zemun Polje", Belgrade 11185, Serbia
| | - Luca Riccioni
- Council for Agricultural Research and Economics (CREA), Research Center for Plant Protection and Certification (CREA-DC), 00156 Rome, Italy (deceased)
| |
Collapse
|
7
|
Logachev A, Kanapin A, Rozhmina T, Stanin V, Bankin M, Samsonova A, Orlova E, Samsonova M. Pangenomics of flax fungal parasite Fusarium oxysporum f. sp. lini. FRONTIERS IN PLANT SCIENCE 2024; 15:1383914. [PMID: 38872883 PMCID: PMC11169931 DOI: 10.3389/fpls.2024.1383914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
To assess the genomic diversity of Fusarium oxysporum f. sp. lini strains and compile a comprehensive gene repertoire, we constructed a pangenome using 13 isolates from four different clonal lineages, each exhibiting distinct levels of virulence. Syntenic analyses of two selected genomes revealed significant chromosomal rearrangements unique to each genome. A comprehensive examination of both core and accessory pangenome content and diversity points at an open genome state. Additionally, Gene Ontology (GO) enrichment analysis indicated that non-core pangenome genes are associated with pathogen recognition and immune signaling. Furthermore, the Folini pansecterome, encompassing secreted proteins critical for fungal pathogenicity, primarily consists of three functional classes: effector proteins, CAZYmes, and proteases. These three classes account for approximately 3.5% of the pangenome. Each functional class within the pansecterome was meticulously annotated and characterized with respect to pangenome category distribution, PFAM domain frequency, and strain virulence assessment. This analysis revealed that highly virulent isolates have specific types of PFAM domains that are exclusive to them. Upon examining the repertoire of SIX genes known for virulence in other formae speciales, it was found that all isolates had a similar gene content except for two, which lacked SIX genes entirely.
Collapse
Affiliation(s)
- Anton Logachev
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St.Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Alexander Kanapin
- Center for Computational Biology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Tatyana Rozhmina
- Flax Institute, Federal Research Center for Bast Fiber Crops, Torzhok, Russia
| | - Vladislav Stanin
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St.Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Mikhail Bankin
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St.Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Anastasia Samsonova
- Center for Computational Biology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Ekaterina Orlova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St.Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Maria Samsonova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St.Petersburg Polytechnic University, Saint Petersburg, Russia
| |
Collapse
|
8
|
Kaliapan K, Mazlin SNA, Chua KO, Rejab NA, Mohd-Yusuf Y. Secreted in Xylem (SIX) genes in Fusarium oxysporum f.sp. cubense (Foc) unravels the potential biomarkers for early detection of Fusarium wilt disease. Arch Microbiol 2024; 206:271. [PMID: 38767679 DOI: 10.1007/s00203-024-03996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Secreted in Xylem (SIX) are small effector proteins released by Fusarium oxysporum f.sp. cubense (Foc) into the plant's xylem sap disrupting the host's defence responses causing Fusarium wilt disease resulting in a significant decline in banana crop yields and economic losses. Notably, different races of Foc possess unique sets of SIX genes responsible for their virulence, however, these genes remain underutilized, despite their potential as biomarkers for early disease detection. Herein, we identified seven SIX genes i.e. SIX1, SIX2, SIX4, SIX6, SIX8a, SIX9a and SIX13 present in Foc Tropical Race 4 (FocTR4), while only SIX9b in Foc Race 1 (Foc1). Analysis of SIX gene expression in infected banana roots revealed differential patterns during infection providing valuable insights into host-pathogen interactions, virulence level, and early detection time points. Additionally, a comprehensive analysis of virulent Foc1_C2HIR and FocTR4_C1HIR isolates yielded informative genomic insights. Hence, these discoveries contribute to our comprehension of potential disease control targets in these plants, as well as enhancing plant diagnostics and breeding programs.
Collapse
Affiliation(s)
- Kausalyaa Kaliapan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siti Nur Akmar Mazlin
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kah Ooi Chua
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nur Ardiyana Rejab
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yusmin Mohd-Yusuf
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Glami Lemi Biotechnology Research Centre Universiti Malaya, 71650, Jelebu, Negeri Sembilan, Malaysia.
| |
Collapse
|
9
|
Gargouri Jbir T, Zitnick-Anderson K, Pasche JS, Kalil AK. Characterization of Fusarium oxysporum f. sp. pisi Associated with Root Rot of Field Pea in North Dakota and the Effects of Temperature on Aggressiveness. PLANT DISEASE 2024; 108:365-374. [PMID: 37578362 DOI: 10.1094/pdis-05-23-0908-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Fusarium root rot is an important disease of field pea (Pisum sativum var. sativum L.) that occurs everywhere pea is grown, causing yield loss of up to 75%. Fusarium root rot is caused by a complex of Fusarium species, most notably Fusarium solani in the Pacific Northwest of the United States and F. avenaceum in the northern Great Plains of the United States and Canada. F. oxysporum f. sp. pisi (Fop) was frequently isolated from peas exhibiting root rot symptoms in North Dakota during recent surveys. Fop causes wilt (races 1, 5, and 6) and near wilt (race 2) on pea. However, its contribution to pea root rot remains unclear. Fop race was determined for isolates from North Dakota pea root rot surveys. ND Fop isolates were evaluated for root rot pathogenicity and aggressiveness at standard and elevated temperatures. Results from greenhouse wilt assays indicated that all Fop races exist in North Dakota, with race 2 most prevalent among the 25 North Dakota isolates evaluated. Root rot evaluations conducted at 21/18°C and 25/19°C day/night temperatures demonstrated that most Fop isolates were as aggressive or more aggressive than F. solani and F. avenaceum under both temperature regimes. Aggressiveness of Fop isolates tended to increase at elevated assay temperatures. Results from these experiments indicate that Fop may be an important contributor to the root rot complex of field pea in North Dakota and should be considered in integrated pest management strategies, including pea breeding efforts to improve resistance to Fusarium root rot.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Taheni Gargouri Jbir
- Williston Research Extension Center, North Dakota State University, Williston, ND 58801
| | | | - Julie S Pasche
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| | - Audrey K Kalil
- Williston Research Extension Center, North Dakota State University, Williston, ND 58801
| |
Collapse
|
10
|
Khayi S, Armitage AD, Gaboun F, Meftah-kadmiri I, Lahlali R, Fokar M, Mentag R. Chromosome-scale assembly uncovers genomic compartmentation of Fusarium oxysporum f. sp. albedinis, the causal agent of Bayoud disease in date palm. Front Microbiol 2023; 14:1268051. [PMID: 37886058 PMCID: PMC10599148 DOI: 10.3389/fmicb.2023.1268051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Date palm (Phoenixdactylifera) is the most significant crop across North Africa and the Middle East. However, the crop faces a severe threat from Bayoud disease caused by the fungal pathogen Fusarium oxysporum f. sp. albedinis (FOA). FOA is a soil-borne fungus that infects the roots and vascular system of date palms, leading to widespread destruction of date palm plantations in North Africa over the last century. This is considered the most devastating pathogen of oasis agriculture in North Africa and responsible for loss of 13 million trees in Algeria and Morocco alone. In this study, we present a chromosome-scale high-quality genome assembly of the virulent isolate Foa 44, which provides valuable insights into understanding the genetic basis of Bayoud disease. The genome assembly consists of 11 chromosomes and 40 unplaced contigs, totalling 65,971,825 base pairs in size. It exhibits a GC ratio of 47.77% and a TE (transposable element) content of 17.30%. Through prediction and annotation, we identified 20,416 protein-coding genes. By combining gene and repeat densities analysis with alignment to Fusarium oxysporum f. sp. lycopersici (FOL) 4287 isolate genome sequence, we determined the core and lineage-specific compartments in Foa 44, shedding light on the genome structure of this pathogen. Furthermore, a phylogenomic analysis based on the 3,292 BUSCOs core genome revealed a distinct clade of FOA isolates within the Fusarium oxysporum species complex (FOSC). Notably, the genealogies of the five identified Secreted In Xylem (SIX) genes (1, 6, 9, 11 and 14) in FOA displayed a polyphyletic pattern, suggesting a horizontal inheritance of these effectors. These findings provide a valuable genomics toolbox for further research aimed at combatting the serious biotic constraints posed by FOA to date palm. This will pave the way for a deeper understanding of Bayoud disease and facilitate the development of effective diagnostic tools and control measures.
Collapse
Affiliation(s)
- Slimane Khayi
- Biotechnology Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research, Rabat, Morocco
| | - Andrew D. Armitage
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Greenwich, United Kingdom
| | - Fatima Gaboun
- Biotechnology Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research, Rabat, Morocco
| | - Issam Meftah-kadmiri
- Plant and Microbial Biotechnology Center, Moroccan Foundation of Advanced Science Innovation and Research MAScIR, Ben Guerir, Morocco
- Plant and Soil Microbiome Sub-Program, AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale D’Agriculture de Meknes, Meknès, Morocco
- Plant Pathology Laboratory, AgroBioSciences, College of Sustainable Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mohamed Fokar
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Rachid Mentag
- Biotechnology Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research, Rabat, Morocco
| |
Collapse
|
11
|
Chakrapani K, Chanu WT, Sinha B, Thangjam B, Hasan W, Devi KS, Chakma T, Phurailatpam S, Mishra LK, Singh GM, Khoyumthem P, Saini R. Deciphering growth abilities of fusarium oxysporum f. sp. pisi under variable temperature, pH and nitrogen. Front Microbiol 2023; 14:1228442. [PMID: 37601368 PMCID: PMC10435999 DOI: 10.3389/fmicb.2023.1228442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. pisi (Fop) is an important disease and major obstacle to pea production, causing huge losses to growers. The focus of this study was on isolation followed by morphological, molecular characterization and analyzing the growth of the casual agent under variable temperature, pH and Nitrogen levels. The morphological features of radial growth, sporulation, pigmentation and mycelial characterization were examined and the variability of all isolates was presented. Molecular characterization of the fungus by ITS rDNA sequencing revealed that all 13 isolates belong to Fusarium oxysporum species. Six isolates were tested for temperature, pH and nitrogen dosage optimization studies. Seven different temperatures, viz., 21, 23, 25, 27, 29, 31, 33°C and pH values, having 3, 4, 5, 6, 7, 8, and 9 pH, as well as nitrogen dosage levels of 0 g, 3 g, 5 g, 7 g, 9 g, 11 g, and 13 g were tested against all six isolates, respectively. The results showed that all isolates exhibited the highest growth at a temperature of 25°C and the optimal temperature range for growth of Fusarium oxysporum was 23-27°C. All isolates showed the highest growth at pH5. Change in the nitrogen doses of the base ended in formation of thick, dense, fluffy mycelium of the casual agent. Six isolates were used for combination studies with seven different levels of temperatures, pH levels and nitrogen dosages. The density plots revealed the variations in the growth of the isolates with changes in temperature, pH and nitrogen levels, which can lead to mutations or genetic changes in the pathogens that could potentially introduce new threats to pea cultivation.
Collapse
Affiliation(s)
- Kota Chakrapani
- Department of Plant Pathology, College of Agriculture, Central Agricultural University, Imphal, India
| | - W. Tampakleima Chanu
- Department of Plant Pathology, College of Agriculture, Central Agricultural University, Imphal, India
| | - Bireswar Sinha
- Department of Plant Pathology, College of Agriculture, Central Agricultural University, Imphal, India
| | - Bijeeta Thangjam
- Department of Plant Pathology, College of Agriculture, Central Agricultural University, Imphal, India
| | - Wajid Hasan
- KVK, Jahanabad, Bihar Agricultural University, Jahanabad, India
| | - Konjengbam Sarda Devi
- Department of Plant Pathology, College of Agriculture, Central Agricultural University, Imphal, India
| | - Tusi Chakma
- Department of Plant Pathology, College of Agriculture, Central Agricultural University, Imphal, India
| | - Sumitra Phurailatpam
- Department of Plant Pathology, College of Agriculture, Central Agricultural University, Imphal, India
| | - Lokesh Kumar Mishra
- Department of BPME, College of Agriculture, Central Agricultural University, Imphal, India
| | - Gopi Mohan Singh
- Department of Agricultural Statistics, College of Agriculture, Central Agricultural University, Imphal, India
| | - Pramesh Khoyumthem
- Department of Genetics and Plant Breeding, AICRP (Groundnut), College of Agriculture, Central Agricultural University, Imphal, India
| | - Rahul Saini
- Department of Entomology, College of Agriculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| |
Collapse
|
12
|
Qian H, Song L, Wang L, Wang B, Liang W. The secreted FoAPY1 peptidase promotes Fusarium oxysporum invasion. Front Microbiol 2022; 13:1040302. [PMID: 36338032 PMCID: PMC9626516 DOI: 10.3389/fmicb.2022.1040302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
The secretion of peptidases from several pathogens has been reported, but the biological function of these proteins in plant-pathogen interactions is poorly understood. Fusarium oxysporum, a soil-borne plant pathogenic fungus that causes Fusarium wilt in its host, can secrete proteins into host plant cells during the infection process to interfere with the host plant defense response and promote disease occurrence. In this study, we identified a peptidase, FoAPY1, that could be secreted from F. oxysporum depending on the N-terminal signal peptide of the protein. FoAPY1 belongs to the peptidase M28 family and exerts peptidase activity in vitro. Furthermore, the FoAYP1 gene knockout strain (∆FoAYP1) presented reduced virulence to tomato plants, but its mycelial growth and conidiation were unchanged. Moreover, FoAYP1 overexpression tomato seedlings exhibited enhanced susceptibility to F. oxysporum and Botrytis cinerea strains. These data demonstrated that FoAYP1 contributes to the virulence of F. oxysporum may through peptidase activity against host plant proteins.
Collapse
Affiliation(s)
- Hengwei Qian
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Limin Song
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Lulu Wang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Baoshan Wang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wenxing Liang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Wenxing Liang,
| |
Collapse
|
13
|
Sun X, Fang X, Wang D, Jones DA, Ma L. Transcriptome Analysis of Fusarium–Tomato Interaction Based on an Updated Genome Annotation of Fusarium oxysporum f. sp. lycopersici Identifies Novel Effector Candidates That Suppress or Induce Cell Death in Nicotiana benthamiana. J Fungi (Basel) 2022; 8:jof8070672. [PMID: 35887429 PMCID: PMC9316272 DOI: 10.3390/jof8070672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium oxysporum f. sp. lycopersici (Fol) causes vascular wilt disease in tomato. Upon colonization of the host, Fol secretes many small effector proteins into the xylem sap to facilitate infection. Besides known SIX (secreted in xylem) proteins, the identity of additional effectors that contribute to Fol pathogenicity remains largely unexplored. We performed a deep RNA-sequencing analysis of Fol race 2-infected tomato, used the sequence data to annotate a published genome assembly generated via PacBio SMRT sequencing of the Fol race 2 reference strain Fol4287, and analysed the resulting transcriptome to identify Fol effector candidates among the newly annotated genes. We examined the Fol-infection expression profiles of all 13 SIX genes present in Fol race 2 and identified 27 new candidate effector genes that were likewise significantly upregulated upon Fol infection. Using Agrobacterium-mediated transformation, we tested the ability of 22 of the new candidate effector genes to suppress or induce cell death in leaves of Nicotiana benthamiana. One effector candidate designated Fol-EC19, encoding a secreted guanyl-specific ribonuclease, was found to trigger cell death and two effector candidates designated Fol-EC14 and Fol-EC20, encoding a glucanase and a secreted trypsin, respectively, were identified that can suppress Bax-mediated cell death. Remarkably, Fol-EC14 and Fol-EC20 were also found to suppress I-2/Avr2- and I/Avr1-mediated cell death. Using the yeast secretion trap screening system, we showed that these three biologically-active effector candidates each contain a functional signal peptide for protein secretion. Our findings provide a basis for further understanding the virulence functions of Fol effectors.
Collapse
Affiliation(s)
- Xizhe Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (X.S.); (D.W.)
- Division of Plant Science, Research School of Biology, the Australian National University, Canberra 2601, Australia
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Science, Hebei Agricultural University, Baoding 071001, China
| | - Xiangling Fang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
| | - Dongmei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (X.S.); (D.W.)
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Science, Hebei Agricultural University, Baoding 071001, China
| | - David A. Jones
- Division of Plant Science, Research School of Biology, the Australian National University, Canberra 2601, Australia
- Correspondence: (D.A.J.); (L.M.)
| | - Lisong Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (X.S.); (D.W.)
- Division of Plant Science, Research School of Biology, the Australian National University, Canberra 2601, Australia
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China
- Correspondence: (D.A.J.); (L.M.)
| |
Collapse
|
14
|
Cyanobacteria: A Natural Source for Controlling Agricultural Plant Diseases Caused by Fungi and Oomycetes and Improving Plant Growth. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010058] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cyanobacteria, also called blue-green algae, are a group of prokaryotic microorganisms largely distributed in both terrestrial and aquatic environments. They produce a wide range of bioactive compounds that are mostly used in cosmetics, animal feed and human food, nutraceutical and pharmaceutical industries, and the production of biofuels. Nowadays, the research concerning the use of cyanobacteria in agriculture has pointed out their potential as biofertilizers and as a source of bioactive compounds, such as phycobiliproteins, for plant pathogen control and as inducers of plant systemic resistance. The use of alternative products in place of synthetic ones for plant disease control is also encouraged by European Directive 2009/128/EC. The present up-to-date review gives an overall view of the recent results on the use of cyanobacteria for both their bioprotective effect against fungal and oomycete phytopathogens and their plant biostimulant properties. We highlight the need for considering several factors for a proper and sustainable management of agricultural crops, ranging from the mechanisms by which cyanobacteria reduce plant diseases and modulate plant resistance to the enhancement of plant growth.
Collapse
|
15
|
Kotera S, Hishiike M, Saito H, Komatsu K, Arie T. Differentiation of the Pea Wilt Pathogen Fusarium oxysporum f. sp. pisi from Other Isolates of Fusarium Species by PCR. Microbes Environ 2022; 37:ME21061. [PMID: 34980803 PMCID: PMC8958301 DOI: 10.1264/jsme2.me21061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/05/2021] [Indexed: 12/02/2022] Open
Abstract
Pea wilt disease, caused by the soilborne and seedborne fungal pathogen Fusarium oxysporum f. sp. pisi (Fop), first appeared in Japan in 2002. We herein investigated the molecular characteristics of 16 Fop isolates sampled from multiple locations and at different times in Japan. The 16 isolates were divided into three clades in molecular phylogenic ana-lyses based on both the TEF1α gene and the rDNA-IGS region. All of the Fop isolates harbored a PDA1 gene, which encodes the cytochrome P450 pisatin demethylase (Pda1), and also carried one or both of the SIX6 and SIX13 genes, which encode secreted in xylem (Six) proteins. Other forms of F. oxysporum and other species of Fusarium did not carry these sets of genes. Based on these results, a PCR method was developed to identify Fop and differentiate it from other forms and non-pathogenic isolates of Fusarium spp. We also demonstrated that the PCR method effectively detected Fop in infected pea plants and infested soils.
Collapse
Affiliation(s)
- Shunsuke Kotera
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3–5–8 Saiwaicho, Fuchu, Tokyo, 183–8509, Japan
| | - Masashi Hishiike
- Wakayama Agricultural Experiment Station, Takao, Kishigawacho, Kinokawa, Wakayama, 640–0423, Japan
| | - Hiroki Saito
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT), 3–5–8 Saiwaicho, Fuchu, Tokyo, 183–8509, Japan
| | - Ken Komatsu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3–5–8 Saiwaicho, Fuchu, Tokyo, 183–8509, Japan
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT), 3–5–8 Saiwaicho, Fuchu, Tokyo, 183–8509, Japan
| | - Tsutomu Arie
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3–5–8 Saiwaicho, Fuchu, Tokyo, 183–8509, Japan
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT), 3–5–8 Saiwaicho, Fuchu, Tokyo, 183–8509, Japan
| |
Collapse
|
16
|
Raman T, Edwin Raj E, Muthukathan G, Loganathan M, Periyasamy P, Natesh M, Manivasakan P, Kotteeswaran S, Rajendran S, Subbaraya U. Comparative Whole-Genome Sequence Analyses of Fusarium Wilt Pathogen ( Foc R1, STR4 and TR4) Infecting Cavendish (AAA) Bananas in India, with a Special Emphasis on Pathogenicity Mechanisms. J Fungi (Basel) 2021; 7:jof7090717. [PMID: 34575755 PMCID: PMC8469521 DOI: 10.3390/jof7090717] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 02/05/2023] Open
Abstract
Fusarium wilt is caused by the fungus Fusarium oxysporum f. sp. cubense (Foc) and is the most serious disease affecting bananas (Musa spp.). The fungus is classified into Foc race 1 (R1), Foc race 2, and Foc race 4 based on host specificity. As the rate of spread and the ranges of the devastation of the Foc races exceed the centre of the banana’s origin, even in non-targeted cultivars, there is a possibility of variation in virulence-associated genes. Therefore, the present study investigates the genome assembly of Foc races that infect the Cavendish (AAA) banana group in India, specifically those of the vegetative compatibility group (VCG) 0124 (race 1), 0120 (subtropical race 4), and 01213/16 (tropical race 4). While comparing the general features of the genome sequences (e.g., RNAs, GO, SNPs, and InDels), the study also looked at transposable elements, phylogenetic relationships, and virulence-associated effector genes, and sought insights into race-specific molecular mechanisms of infection based on the presence of unique genes. The results of the analyses revealed variations in the organisation of genome assembly and virulence-associated genes, specifically secreted in xylem (SIX) genes, when compared to their respective reference genomes. The findings contributed to a better understanding of Indian Foc genomes, which will aid in the development of effective Fusarium wilt management techniques for various Foc VCGs in India and beyond.
Collapse
Affiliation(s)
- Thangavelu Raman
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
- Correspondence:
| | - Esack Edwin Raj
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
- Research and Development Division, MIRO Forestry SL Ltd., Mile 91, Tonkolili District, Northern Provenance P.O. Box GP20200, Sierra Leone
| | - Gopi Muthukathan
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| | - Murugan Loganathan
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| | - Pushpakanth Periyasamy
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| | - Marimuthu Natesh
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| | - Prabaharan Manivasakan
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| | - Sharmila Kotteeswaran
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| | - Sasikala Rajendran
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| | - Uma Subbaraya
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| |
Collapse
|