1
|
Ma Y, Wang H, Kang Y, Wen T. Small molecule metabolites drive plant rhizosphere microbial community assembly patterns. Front Microbiol 2025; 16:1503537. [PMID: 40008040 PMCID: PMC11854121 DOI: 10.3389/fmicb.2025.1503537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The assembly of rhizosphere microbial communities is essential for maintaining plant health, yet it is influenced by a wide range of biotic and abiotic factors. The key drivers shaping the composition of these communities, however, remain poorly understood. In this study, we analyzed 108 plant samples and evaluated root traits, plant growth characteristics, soil enzyme activities, rhizosphere metabolites, and soil chemical properties to identify the primary determinants of rhizosphere community assembly. Across 36 soil samples, we obtained 969,634 high-quality sequences, clustering into 6,284 ASVs predominantly classified into Proteobacteria (57.99%), Actinobacteria (30%), and Bacteroidetes (5.13%). Our findings revealed that rhizosphere metabolites accounted for more variance in microbial community composition compared to chemical properties (ANOVA, F = 1.53, p = 0.04), enzyme activities, or root traits (ANOVA, F = 1.04, p = 0.001). Seven small molecule metabolites, including glycerol, sorbitol, phytol, and alpha-ketoglutaric acid, were significantly correlated with βNTI, underscoring their role as critical drivers of microbial community assembly. The genus Rhizobium, significantly associated with βNTI (R = 0.25, p = 0.009), emerged as a keystone taxon shaping community structure. Soil culture experiments further validated that small molecule metabolites can modulate microbial community assembly. The ST treatment, enriched with these metabolites, produced 1,032,205 high-quality sequences and exhibited significant shifts in community composition (Adonis, p = 0.001, R = 0.463), with Rhizobium showing higher abundance compared to the control (CK). Variable selection (βNTI >2) drove phylogenetic turnover in ST, while stochastic processes (|βNTI| < 2) dominated in CK. This study provides quantitative insights into the role of rhizosphere metabolites in shaping microbial community assembly and highlights their potential for targeted modulation of rhizosphere microbiomes.
Collapse
Affiliation(s)
- Yanwei Ma
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Heqi Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yalong Kang
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, China
| | - Tao Wen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Coll NS, Moreno-Risueno M, Strader LC, Goodnight AV, Sozzani R. Advancing our understanding of root development: Technologies and insights from diverse studies. PLANT PHYSIOLOGY 2025; 197:kiae605. [PMID: 39688896 DOI: 10.1093/plphys/kiae605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/17/2024] [Indexed: 12/18/2024]
Abstract
Understanding root development is critical for enhancing plant growth and health, and advanced technologies are essential for unraveling the complexities of these processes. In this review, we highlight select technological innovations in the study of root development, with a focus on the transformative impact of single-cell gene expression analysis. We provide a high-level overview of recent advancements, illustrating how single-cell RNA sequencing (scRNA-seq) has become a pivotal tool in plant biology. scRNA-seq has revolutionized root biology by enabling detailed, cell-specific analysis of gene expression. This has allowed researchers to create comprehensive root atlases, predict cell development, and map gene regulatory networks (GRNs) with unprecedented precision. Complementary technologies, such as multimodal profiling and bioinformatics, further enrich our understanding of cellular dynamics and gene interactions. Innovations in imaging and modeling, combined with genetic tools like CRISPR, continue to deepen our knowledge of root formation and function. Moreover, the integration of these technologies with advanced biosensors and microfluidic devices has advanced our ability to study plant-microbe interactions and phytohormone signaling at high resolution. These tools collectively provide a more comprehensive understanding of root system architecture and its regulation by environmental factors. As these technologies evolve, they promise to drive further breakthroughs in plant science, with substantial implications for agriculture and sustainability.
Collapse
Affiliation(s)
- Núria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra 08193, Barcelona, Spain
- Department of Genetics, Universitat de Barcelona, Barcelona 08028, Spain
| | - Miguel Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA-CSIC)), 28223 Madrid, Spain
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Alexandra V Goodnight
- N.C. Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27607, USA
| | - Rosangela Sozzani
- N.C. Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27607, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
3
|
Grüterich L, Wilson M, Jensen K, Streit WR, Mueller P. Transcriptomic response of wetland microbes to root influence. iScience 2024; 27:110890. [PMID: 39493876 PMCID: PMC11530916 DOI: 10.1016/j.isci.2024.110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/17/2024] [Accepted: 08/26/2024] [Indexed: 11/05/2024] Open
Abstract
Wetlands are hotspots for carbon and nutrient cycling. The important role of plant-microbe interactions in driving wetland biogeochemistry is widely acknowledged, prompting research into their molecular biological basis for a deeper understanding of these processes. We analyzed transcriptomic responses of soil microbes to root exudates in coastal wetland soils using 13CO2 pulse labeling. Metatranscriptomics revealed 388 upregulated and 11 downregulated genes in response to root exudates. The Wood-Ljungdahl pathway and dissimilatory sulfate reduction/oxidation were the most active microbial pathways independent of root influence, whereas pathways with the strongest upregulation in response to root influence were related to infection, stress response, and motility. We demonstrate shifts within the active community toward higher relative abundances of Betaproteobacteria, Campylobacterota, Kiritimatiellota, Lentisphaerota, and Verrucomicrobiota in response to exudates. Overall, this study improves our mechanistic understanding of wetland plant-soil microbe interactions by revealing the phylogenetic and transcriptional response of soil microorganisms to root influence and exudate input.
Collapse
Affiliation(s)
- Luise Grüterich
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - Monica Wilson
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - Kai Jensen
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - Wolfgang R. Streit
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - Peter Mueller
- Institute of Landscape Ecology, University of Münster, Heisenbergstraße 2, 48149 Münster, Germany
| |
Collapse
|
4
|
Guan Y, Bak F, Hennessy RC, Horn Herms C, Elberg CL, Dresbøll DB, Winding A, Sapkota R, Nicolaisen MH. The potential of Pseudomonas fluorescens SBW25 to produce viscosin enhances wheat root colonization and shapes root-associated microbial communities in a plant genotype-dependent manner in soil systems. mSphere 2024; 9:e0029424. [PMID: 38904362 PMCID: PMC11288004 DOI: 10.1128/msphere.00294-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Microorganisms interact with plant roots through colonization of the root surface, i.e., the rhizoplane or the surrounding soil, i.e., the rhizosphere. Beneficial rhizosphere bacteria such as Pseudomonas spp. can promote plant growth and protect against pathogens by producing a range of bioactive compounds, including specialized metabolites like cyclic lipopeptides (CLPs) known for their biosurfactant and antimicrobial activities. However, the role of CLPs in natural soil systems during bacteria-plant interactions is underexplored. Here, Pseudomonas fluorescens SBW25, producing the CLP viscosin, was used to study the impact of viscosin on bacterial root colonization and microbiome assembly in two cultivars of winter wheat (Heerup and Sheriff). We inoculated germinated wheat seeds with SBW25 wild type or a viscosin-deficient mutant and grew the plants in agricultural soil. After 2 weeks, enhanced root colonization of SBW25 wild type compared to the viscosin-deficient mutant was observed, while no differences were observed between wheat cultivars. In contrast, the impact on root-associated microbial community structure was plant-genotype-specific, and SBW25 wild type specifically reduced the relative abundance of an unclassified oomycete and Phytophthora in Sheriff and Heerup, respectively. This study provides new insights into the natural role of viscosin and specifically highlights the importance of viscosin in wheat root colonization under natural soil conditions and in shaping the root microbial communities associated with different wheat cultivars. Furthermore, it pinpoints the significance of microbial microdiversity, plant genotype, and microbe-microbe interactions when studying colonization of plant roots. IMPORTANCE Understanding parameters governing microbiome assembly on plant roots is critical for successfully exploiting beneficial plant-microbe interactions for improved plant growth under low-input conditions. While it is well-known from in vitro studies that specialized metabolites are important for plant-microbe interactions, e.g., root colonization, studies on the ecological role under natural soil conditions are limited. This might explain the often-low translational power from laboratory testing to field performance of microbial inoculants. Here, we showed that viscosin synthesis potential results in a differential impact on the microbiome assembly dependent on wheat cultivar, unlinked to colonization potential. Overall, our study provides novel insights into factors governing microbial assembly on plant roots, and how this has a derived but differential effect on the bacterial and protist communities.
Collapse
Affiliation(s)
- Ying Guan
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - Frederik Bak
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
- Bioresources Unit, AIT Austrian Institute of Technology, Tulln, Austria
| | | | - Courtney Horn Herms
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | | | - Dorte Bodin Dresbøll
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - Anne Winding
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Rumakanta Sapkota
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | |
Collapse
|
5
|
Tyborski N, Koehler T, Steiner FA, Tung SY, Wild AJ, Carminati A, Mueller CW, Vidal A, Wolfrum S, Pausch J, Lueders T. Consistent prokaryotic community patterns along the radial root axis of two Zea mays L. landraces across two distinct field locations. Front Microbiol 2024; 15:1386476. [PMID: 39091306 PMCID: PMC11292614 DOI: 10.3389/fmicb.2024.1386476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
The close interconnection of plants with rhizosphere- and root-associated microorganisms is well recognized, and high expectations are raised for considering their symbioses in the breeding of future crop varieties. However, it is unclear how consistently plant-mediated selection, a potential target in crop breeding, influences microbiome members compared to selection imposed by the agricultural environment. Landraces may have traits shaping their microbiome, which were lost during the breeding of modern varieties, but knowledge about this is scarce. We investigated prokaryotic community composition along the radial root axis of two European maize (Zea mays L.) landraces. A sampling gradient included bulk soil, a distal and proximal rhizosphere fraction, and the root compartment. Our study was replicated at two field locations with differing edaphic and climatic conditions. Further, we tested for differences between two plant developmental stages and two precipitation treatments. Community data were generated by metabarcoding of the V4 SSU rRNA region. While communities were generally distinct between field sites, the effects of landrace variety, developmental stage, and precipitation treatment were comparatively weak and not statistically significant. Under all conditions, patterns in community composition corresponded strongly to the distance to the root. Changes in α- and β-diversity, as well as abundance shifts of many taxa along this gradient, were similar for both landraces and field locations. Most affected taxa belonged to a core microbiome present in all investigated samples. Remarkably, we observed consistent enrichment of Actinobacteriota (particularly Streptomyces, Lechevalieria) and Pseudomonadota (particularly Sphingobium) toward the root. Further, we report a depletion of ammonia-oxidizers along this axis at both field sites. We identified clear enrichment and depletion patterns in microbiome composition along the radial root axis of Z. mays. Many of these were consistent across two distinct field locations, plant developmental stages, precipitation treatments, and for both landraces. This suggests a considerable influence of plant-mediated effects on the microbiome. We propose that the affected taxa have key roles in the rhizosphere and root microbiome of Z. mays. Understanding the functions of these taxa appears highly relevant for the development of methods aiming to promote microbiome services for crops.
Collapse
Affiliation(s)
- Nicolas Tyborski
- Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Tina Koehler
- Root-Soil Interaction, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Franziska A. Steiner
- Soil Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Shu-Yin Tung
- Institute for Agroecology and Organic Farming, Bavarian State Research Center for Agriculture (LfL), Freising, Germany
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Andreas J. Wild
- Agroecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Andrea Carminati
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Carsten W. Mueller
- Soil Science, Institute of Ecology, Technical University of Berlin, Berlin, Germany
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Alix Vidal
- Soil Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Sebastian Wolfrum
- Institute for Agroecology and Organic Farming, Bavarian State Research Center for Agriculture (LfL), Freising, Germany
| | - Johanna Pausch
- Agroecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Tillmann Lueders
- Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
6
|
Xun W, Liu Y, Ma A, Yan H, Miao Y, Shao J, Zhang N, Xu Z, Shen Q, Zhang R. Dissection of rhizosphere microbiome and exploiting strategies for sustainable agriculture. THE NEW PHYTOLOGIST 2024; 242:2401-2410. [PMID: 38494698 DOI: 10.1111/nph.19697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
The rhizosphere microbiome plays critical roles in plant growth and provides promising solutions for sustainable agriculture. While the rhizosphere microbiome frequently fluctuates with the soil environment, recent studies have demonstrated that a small proportion of the microbiome is consistently assembled in the rhizosphere of a specific plant genotype regardless of the soil condition, which is determined by host genetics. Based on these breakthroughs, which involved exploiting the plant-beneficial function of the rhizosphere microbiome, we propose to divide the rhizosphere microbiome into environment-dominated and plant genetic-dominated components based on their different assembly mechanisms. Subsequently, two strategies to explore the different rhizosphere microbiome components for agricultural production are suggested, that is, the precise management of the environment-dominated rhizosphere microbiome by agronomic practices, and the elucidation of the plant genetic basis of the plant genetic-dominated rhizosphere microbiome for breeding microbiome-assisted crop varieties. We finally present the major challenges that need to be overcome to implement strategies for modulating these two components of the rhizosphere microbiome.
Collapse
Affiliation(s)
- Weibing Xun
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Aiyuan Ma
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - He Yan
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
7
|
Zheng L, Wu H, Ding A, Tan Q, Wang X, Xing Y, Tian Q, Zhang Y. Optimization of operating parameters and microbiological mechanism of a low C/N wastewater treatment system dominated by iron-dependent autotrophic denitrification. ENVIRONMENTAL RESEARCH 2024; 250:118419. [PMID: 38316389 DOI: 10.1016/j.envres.2024.118419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Ferrous iron (Fe2+) reduces the amount of external carbon source used for the denitrification of low-C/N wastewater. The effects of key operating parameters on the efficiency of ferrous-dependent autotrophic denitrification (FDAD) and the functioning mechanism of the microbiome can provide a regulatory strategy for improving the denitrification efficiency of low C/N wastewater. In this study, the response surface method (RSM) was used to explore the influence of four important parameters-the molar ratio of Fe2+ to NO3--N (Fe/N), total organic carbon (TOC), the molar ratio of inorganic carbon to NO3--N (IC/N) and sludge volume (SV, %)-on the FDAD efficiency. Functional prediction and molecular ecological networks based on high-throughputs sequencing techniques were used to explore changes in the structure, function, and biomarkers of the sludge microbial community. The results showed that Fe/N and TOC were the main parameters affecting FDAD efficiency. Higher concentrations of TOC and high Fe/N ratios provided more electron donors and improved denitrification efficiency, but weakened the importance of biomarkers (Rhodanobacter, Thermomonas, Comamonas, Thauera, Geothrix and unclassified genus of family Gallionellaceae) in the sludge ecological network. When Fe/N > 4, the denitrification efficiency fluctuated significantly. Functional prediction results indicated that genes that dominated N2O and NO reduction and the genes that dominated Fe2+ transport showed a slight decrease in abundance at high Fe/N levels. In light of these findings, we recommend the following optimization ranges of parameters: Fe/N (3.5-4); TOC/N (0.36-0.42); IC/N (3.5-4); and SV (approximately 35%).
Collapse
Affiliation(s)
- Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Haoming Wu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China.
| | - Qiuyang Tan
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xue Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yuzi Xing
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Qi Tian
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yaoxin Zhang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
8
|
Fiore-Donno AM, Freudenthal J, Dahl MB, Rixen C, Urich T, Bonkowski M. Biotic interactions explain seasonal dynamics of the alpine soil microbiome. ISME COMMUNICATIONS 2024; 4:ycae028. [PMID: 38500704 PMCID: PMC10945362 DOI: 10.1093/ismeco/ycae028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/24/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
While it is acknowledged that alpine soil bacterial communities are primarily driven by season and elevation, there is no consensus on the factors influencing fungi and protists. Here we used a holistic approach of the microbiome to investigate the seasonal dynamics in alpine grasslands, focusing on soil food web interactions. We collected 158 soil samples along elevation transects from three mountains in the Alps, in spring during snowmelt and in the following summer. Using metatranscriptomics, we simultaneously assessed prokaryotic and eukaryotic communities, further classified into trophic guilds. Our findings reveal that the consumers' pressure increases from spring to summer, leading to more diverse and evenly distributed prey communities. Consequently, consumers effectively maintain the diverse soil bacterial and fungal communities essential for ecosystem functioning. Our research highlights the significance of biotic interactions in understanding the distribution and dynamics of alpine microbial communities.
Collapse
Affiliation(s)
- Anna Maria Fiore-Donno
- Institute of Zoology, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| | - Jule Freudenthal
- Institute of Zoology, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| | - Mathilde Borg Dahl
- Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Christian Rixen
- WSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, Switzerland
- Climate Change, Extremes and Natural Hazards in Alpine Regions Research Centre CERC, 7260 Davos Dorf, Switzerland
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Michael Bonkowski
- Institute of Zoology, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
9
|
Acharya SM, Yee MO, Diamond S, Andeer PF, Baig NF, Aladesanmi OT, Northen TR, Banfield JF, Chakraborty R. Fine scale sampling reveals early differentiation of rhizosphere microbiome from bulk soil in young Brachypodium plant roots. ISME COMMUNICATIONS 2023; 3:54. [PMID: 37280433 PMCID: PMC10244434 DOI: 10.1038/s43705-023-00265-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
For a deeper and comprehensive understanding of the composition and function of rhizosphere microbiomes, we need to focus at the scale of individual roots in standardized growth containers. Root exudation patterns are known to vary along distinct parts of the root even in juvenile plants giving rise to spatially distinct microbial niches. To address this, we analyzed the microbial community from two spatially distinct zones of the developing primary root (tip and base) in young Brachypodium distachyon grown in natural soil using standardized fabricated ecosystems known as EcoFABs as well as in more conventional pot and tubes. 16S rRNA based community analysis showed a strong rhizosphere effect resulting in significant enrichment of several OTUs belonging to Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. However, microbial community composition did not differ between root tips and root base or across different growth containers. Functional analysis of bulk metagenomics revealed significant differences between root tips and bulk soil. The genes associated with different metabolic pathways and root colonization were enriched in root tips. On the other hand, genes associated with nutrient-limitation and environmental stress were prominent in the bulk soil compared to root tips, implying the absence of easily available, labile carbon and nutrients in bulk soil relative to roots. Such insights into the relationships between developing root and microbial communities are critical for judicious understanding of plant-microbe interactions in early developmental stages of plants.
Collapse
Affiliation(s)
- Shwetha M Acharya
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mon Oo Yee
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Spencer Diamond
- Department of Earth and Planetary Science, University of California, Berkeley, CA, 94720, USA
| | - Peter F Andeer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Nameera F Baig
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Omolara T Aladesanmi
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA, 94720, USA
| | - Romy Chakraborty
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
10
|
Zhu L, Chen Y, Sun R, Zhang J, Hale L, Dumack K, Geisen S, Deng Y, Duan Y, Zhu B, Li Y, Liu W, Wang X, Griffiths BS, Bonkowski M, Zhou J, Sun B. Resource-dependent biodiversity and potential multi-trophic interactions determine belowground functional trait stability. MICROBIOME 2023; 11:95. [PMID: 37127665 PMCID: PMC10150482 DOI: 10.1186/s40168-023-01539-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND For achieving long-term sustainability of intensive agricultural practices, it is pivotal to understand belowground functional stability as belowground organisms play essential roles in soil biogeochemical cycling. It is commonly believed that resource availability is critical for controlling the soil biodiversity and belowground organism interactions that ultimately lead to the stabilization or collapse of terrestrial ecosystem functions, but evidence to support this belief is still limited. Here, we leveraged field experiments from the Chinese National Ecosystem Research Network (CERN) and two microcosm experiments mimicking high and low resource conditions to explore how resource availability mediates soil biodiversity and potential multi-trophic interactions to control functional trait stability. RESULTS We found that agricultural practice-induced higher resource availability increased potential cross-trophic interactions over 316% in fields, which in turn had a greater effect on functional trait stability, while low resource availability made the stability more dependent on the potential within trophic interactions and soil biodiversity. This large-scale pattern was confirmed by fine-scale microcosm systems, showing that microcosms with sufficient nutrient supply increase the proportion of potential cross-trophic interactions, which were positively associated with functional stability. Resource-driven belowground biodiversity and multi-trophic interactions ultimately feedback to the stability of plant biomass. CONCLUSIONS Our results indicated the importance of potential multi-trophic interactions in supporting belowground functional trait stability, especially when nutrients are sufficient, and also suggested the ecological benefits of fertilization programs in modern agricultural intensification. Video Abstract.
Collapse
Affiliation(s)
- Lingyue Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China.
| | - Ruibo Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China.
| | - Lauren Hale
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- United States Department of Agriculture, Agricultural Research Service (ARS), Washington, DC, 20250, USA
| | - Kenneth Dumack
- Terrestrial Ecology, Institute of Zoology, University of Cologne, 50674, Cologne, Germany
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University & Research, Wageningen, 6708 PB, The Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6700AB, The Netherlands
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Yinghua Duan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bo Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yan Li
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Wenzhao Liu
- Institute of Soil and Water Conservation, Chine, Academy of Sciences and Ministry of Water Resources , Yangling, 712100, China
| | - Xiaoyue Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China
| | - Bryan S Griffiths
- SRUC, Crop and Soil System Research Group, West Mains Road, Edinburgh, EH93JG, UK
| | - Michael Bonkowski
- Terrestrial Ecology, Institute of Zoology, University of Cologne, 50674, Cologne, Germany
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China.
| |
Collapse
|
11
|
Kardish MR, Stachowicz JJ. Local environment drives rapid shifts in composition and phylogenetic clustering of seagrass microbiomes. Sci Rep 2023; 13:3673. [PMID: 36871071 PMCID: PMC9985655 DOI: 10.1038/s41598-023-30194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Plant microbiomes depend on environmental conditions, stochasticity, host species, and genotype identity. Eelgrass (Zostera marina) is a unique system for plant-microbe interactions as a marine angiosperm growing in a physiologically-challenging environment with anoxic sediment, periodic exposure to air at low tide, and fluctuations in water clarity and flow. We tested the influence of host origin versus environment on eelgrass microbiome composition by transplanting 768 plants among four sites within Bodega Harbor, CA. Over three months following transplantation, we sampled microbial communities monthly on leaves and roots and sequenced the V4-V5 region of the 16S rRNA gene to assess community composition. The main driver of leaf and root microbiome composition was destination site; more modest effects of host origin site did not last longer than one month. Community phylogenetic analyses suggested that environmental filtering structures these communities, but the strength and nature of this filtering varies among sites and over time and roots and leaves show opposing gradients in clustering along a temperature gradient. We demonstrate that local environmental differences create rapid shifts in associated microbial community composition with potential functional implications for rapid host acclimation under shifting environmental conditions.
Collapse
Affiliation(s)
- Melissa R Kardish
- Department of Evolution and Ecology, University of California, One Shields Avenue, Davis, CA, 95616, USA. .,Center for Population Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| | - John J Stachowicz
- Department of Evolution and Ecology, University of California, One Shields Avenue, Davis, CA, 95616, USA.,Center for Population Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
12
|
Liu K, Wang Q, Sun M, Gao S, Liu Q, Shan L, Guo J, Bian J. Soil bacterial communities of paddy are dependent on root compartment niches but independent of growth stages from Mollisols of Northeast China. Front Microbiol 2023; 14:1170611. [PMID: 37125155 PMCID: PMC10140518 DOI: 10.3389/fmicb.2023.1170611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Deep insights into adhering soil of root zones (rhizosphere and rhizoplane) microbial community could provide a better understanding of the plant-microbe relationship. To better understand the dynamics of these microbial assemblies over the plant life cycle in rhizodeposition along rice roots. Methods Here, we investigated bacterial distribution in bulk, rhizosphere, and rhizoplane soils at tillering, heading, and mature stage, from rice (Oryza sativa) fields of the Northeast China. Results and Discussion Our results revealed that soil bacterial α-diversity and community composition were significantly affected by root compartment niches but not by temporal change. Compared to rhizoplane soils in the same period, bulk in the heading and rhizosphere in the mature had the largest increase in Shannon's index, with 11.02 and 14.49% increases, respectively. Proteobacteria, Chloroflexi, Bacteroidetes, and Acidobacteria are predominant across all soil samples, bulk soil had more phyla increased across the growing season than that of root related-compartments. Deterministic mechanisms had a stronger impact on the bacterial community in the compartments connected to the roots, with the relative importance of the bulk soil, rhizoplane and rhizosphere at 83, 100, and 56%, respectively. Because of ecological niche drivers, the bacterial networks in bulk soils exhibit more complex networks than rhizosphere and rhizoplane soils, reflected by more nodes, edges, and connections. More module hub and connector were observed in bulk (6) and rhizoplane (5) networks than in rhizosphere (2). We also detected shifts from bulk to rhizoplane soils in some functional guilds of bacteria, which changed from sulfur and nitrogen utilization to more carbon and iron cycling processes. Taken together, our results suggest distinct bacterial network structure and distribution patterns among rhizosphere, rhizoplane, and bulk soils, which could possibly result in potential functional differentiation. And the potential functional differentiation may be influenced by plant root secretions, which still needs to be further explored.
Collapse
Affiliation(s)
- Kai Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qiuju Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, China
| | - Minglong Sun
- Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shiwei Gao
- Suihua Branch of Heilongjiang Academy of Agricultural Sciences, Suihua, China
| | - Qing Liu
- Suihua Branch of Heilongjiang Academy of Agricultural Sciences, Suihua, China
| | - Lili Shan
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Junxiang Guo
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Jingyang Bian
- Daqing Branches of Heilongjiang Academy of Agricultural Sciences, Daqing, China
- *Correspondence: Jingyang Bian,
| |
Collapse
|
13
|
Dumack K, Feng K, Flues S, Sapp M, Schreiter S, Grosch R, Rose LE, Deng Y, Smalla K, Bonkowski M. What Drives the Assembly of Plant-associated Protist Microbiomes? Investigating the Effects of Crop Species, Soil Type and Bacterial Microbiomes. Protist 2022; 173:125913. [PMID: 36257252 DOI: 10.1016/j.protis.2022.125913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/24/2022] [Accepted: 09/22/2022] [Indexed: 12/30/2022]
Abstract
In a field experiment we investigated the influence of the environmental filters soil type (i.e. three contrasting soils) and plant species (i.e. lettuce and potato) identity on rhizosphere community assembly of Cercozoa, a dominant group of mostly bacterivorous soil protists. Plant species (14%) and rhizosphere origin (vs bulk soil) with 13%, together explained four times more variation in cercozoan beta diversity than the three soil types (7% explained variation). Our results clearly confirm the existence of plant species-specific protist communities. Network analyses of bacteria-Cercozoa rhizosphere communities identified scale-free small world topologies, indicating mechanisms of self-organization. While the assembly of rhizosphere bacterial communities is bottom-up controlled through the resource supply from root (secondary) metabolites, our results support the hypothesis that the net effect may depend on the strength of top-down control by protist grazers. Since grazing of protists has a strong impact on the composition and functioning of bacteria communities, protists expand the repertoire of plant genes by functional traits, and should be considered as 'protist microbiomes' in analogy to 'bacterial microbiomes'.
Collapse
Affiliation(s)
- Kenneth Dumack
- University of Cologne, Institute of Zoology, Terrestrial Ecology, Zülpicher Str. 47b, 50674 Köln, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Germany.
| | - Kai Feng
- University of Cologne, Institute of Zoology, Terrestrial Ecology, Zülpicher Str. 47b, 50674 Köln, Germany; CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Sebastian Flues
- University of Cologne, Institute of Zoology, Terrestrial Ecology, Zülpicher Str. 47b, 50674 Köln, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Germany
| | - Melanie Sapp
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Population Genetics, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Susanne Schreiter
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany; Helmholtz Centre for Environmental Research GmbH (UFZ), Deptartment Soil System Science, Theodor-Lieser-Str.4, 06120 Halle, Germany
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Laura E Rose
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Population Genetics, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Kornelia Smalla
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Michael Bonkowski
- University of Cologne, Institute of Zoology, Terrestrial Ecology, Zülpicher Str. 47b, 50674 Köln, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Germany
| |
Collapse
|
14
|
Pantigoso HA, Newberger D, Vivanco JM. The rhizosphere microbiome: Plant-microbial interactions for resource acquisition. J Appl Microbiol 2022; 133:2864-2876. [PMID: 36648151 PMCID: PMC9796772 DOI: 10.1111/jam.15686] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 01/21/2023]
Abstract
While horticulture tools and methods have been extensively developed to improve the management of crops, systems to harness the rhizosphere microbiome to benefit plant crops are still in development. Plants and microbes have been coevolving for several millennia, conferring fitness advantages that expand the plant's own genetic potential. These beneficial associations allow the plants to cope with abiotic stresses such as nutrient deficiency across a wide range of soils and growing conditions. Plants achieve these benefits by selectively recruiting microbes using root exudates, positively impacting their nutrition, health and overall productivity. Advanced knowledge of the interplay between root exudates and microbiome alteration in response to plant nutrient status, and the underlying mechanisms there of, will allow the development of technologies to increase crop yield. This review summarizes current knowledge and perspectives on plant-microbial interactions for resource acquisition and discusses promising advances for manipulating rhizosphere microbiomes and root exudation.
Collapse
Affiliation(s)
- Hugo A. Pantigoso
- Center for Root and Rhizosphere Biology, Department of Horticulture and Landscape ArchitectureColorado State UniversityFort CollinsColorado80523‐1173United States
| | - Derek Newberger
- Center for Root and Rhizosphere Biology, Department of Horticulture and Landscape ArchitectureColorado State UniversityFort CollinsColorado80523‐1173United States
| | - Jorge M. Vivanco
- Center for Root and Rhizosphere Biology, Department of Horticulture and Landscape ArchitectureColorado State UniversityFort CollinsColorado80523‐1173United States
| |
Collapse
|
15
|
Dai L, Singh SK, Gong H, Tang Y, Peng Z, Zhang J, Wu D, Zhang H, He D. Rhizospheric microbial consortium of Lilium lancifolium Thunb. causes lily root rot under continuous cropping system. Front Microbiol 2022; 13:981615. [PMID: 36386686 PMCID: PMC9645529 DOI: 10.3389/fmicb.2022.981615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/05/2022] [Indexed: 08/13/2023] Open
Abstract
Tiger lily (Lilium lancifolium Thunb.) is a cash crop with a long history of cultivation in China. Its roots have long been used as a valuable component of Chinese medicine. Continuous cropping, the conventional planting approach for tiger lily, often leads to severe root rot disease, but it is not yet clear how this planting method leads to root rot. In this study, we analyzed the rhizosphere microbiome and predicted microbial protein function in tiger lily planted with the continuous cropping method in three different geological types of soil. In order to explore the specific rhizosphere microbiota triggering root rot disease, tiger lily was compared to maize grown in a similar system, which showed no disease development. An analysis of the chemical elements in the soil revealed that the Pseudomonas and Streptomyces genera, with pathogenic functions, were dominant in the tiger lily rhizosphere. The lower soil pH of tiger lily compared to maize supports the accumulation of pathogenic bacteria in the tiger lily rhizosphere. Meanwhile, we discovered that bacteria of the Flavobacterium genus, with their predicted phosphate transport function, specifically accumulated in the maize rhizosphere. Our findings suggest that Pseudomonas and Streptomyces bacteria may result in continuous cropping-induced root rot disease in tiger lily and that Flavobacterium could serve to protect maize from pathogenic bacteria.
Collapse
Affiliation(s)
- Liangliang Dai
- Changsha General Survey of Natural Resources Center, Changsha, China
| | - Sunil K. Singh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao Gong
- Changsha General Survey of Natural Resources Center, Changsha, China
| | - Yuanyuan Tang
- Changsha General Survey of Natural Resources Center, Changsha, China
| | - Zhigang Peng
- Changsha General Survey of Natural Resources Center, Changsha, China
| | - Jun Zhang
- Changsha General Survey of Natural Resources Center, Changsha, China
| | - Dousheng Wu
- College of Biology, Hunan University, Changsha, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Danxia He
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
16
|
Fleishman SM, Eissenstat DM, Bell TH, Centinari M. Functionally-explicit sampling can answer key questions about the specificity of plant-microbe interactions. ENVIRONMENTAL MICROBIOME 2022; 17:51. [PMID: 36221138 PMCID: PMC9555203 DOI: 10.1186/s40793-022-00445-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The rhizosphere is a nexus for plant-microbe interactions and, as a host-structured environment, a location of high activity for distinct microbes and plant species. Although our insights into this habitat have exploded in recent years, we are still limited in our ability to answer key questions about the specificity of these root-microbial relationships. In particular, it can be difficult to confirm or reject microbiome heritability in many plant systems and to pinpoint which microbial taxa are key to plant functioning. Like other host-structured environments, the rhizosphere is structurally, chemically, and biologically complex, driven largely by differences in root anatomy, location, and function. In this Correspondence, we describe a review of 377 "rhizosphere microbiome" research papers and demonstrate how matching a sampling method to the biological question can advance our understanding of host-microbe interactions in a functionally heterogeneous environment. We found that the vast majority of studies (92%) pool all roots from a root system during sampling, ignoring variation in microbial composition between roots of different function and limiting insight into key root-microbial relationships. Furthermore, approaches for removing root-associated microbes are highly variable and non-standard, complicating multi-study analyses. Our understanding of the strength and nature of host-microbe relationships in heterogenous host-microbiome environments can be clarified by targeting sampling to locations of high interaction. While the high complexity of the rhizosphere creates logistical challenges, we suggest that unambiguous language and refined approaches will improve our ability to match methods to research questions and advance our understanding of the specificity of plant-microbial interactions.
Collapse
Affiliation(s)
- Suzanne M. Fleishman
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802 USA
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA 16802 USA
- Graduate Program in Ecology, The Pennsylvania State University, University Park, PA 16802 USA
| | - David M. Eissenstat
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA 16802 USA
- Graduate Program in Ecology, The Pennsylvania State University, University Park, PA 16802 USA
| | - Terrence H. Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802 USA
- Graduate Program in Ecology, The Pennsylvania State University, University Park, PA 16802 USA
| | - Michela Centinari
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802 USA
- Graduate Program in Ecology, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
17
|
Appidi MR, Bible AN, Carper DL, Jawdy SS, Giannone RJ, Hettich RL, Morrell-Falvey J, Abraham PE. Development of an Experimental Approach to Achieve Spatially Resolved Plant Root-Associated Metaproteomics Using an Agar-Plate System. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:639-649. [PMID: 35349304 DOI: 10.1094/mpmi-01-22-0011-ta] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plant-microbe interactions in the rhizosphere play a vital role in plant health and productivity. The composition and function of root-associated microbiomes is strongly influenced by their surrounding environment, which is often customized by their host. How microbiomes change with respect to space and time across plant roots remains poorly understood, and methodologies that facilitate spatiotemporal metaproteomic studies of root-associated microbiomes are yet to be realized. Here, we developed a method that provides spatially resolved metaproteome measurements along plant roots embedded in agar-plate culture systems, which have long been used to study plants. Spatially defined agar "plugs" of interest were excised and subsequently processed using a novel peptide extraction method prior to metaproteomics, which was used to infer both microbial community composition and function. As a proof-of-principle, a previously studied 10-member community constructed from a Populus root system was grown in an agar plate with a 3-week-old Populus trichocarpa plant. Metaproteomics was performed across two time points (24 and 48 h) for three distinct locations (root base, root tip, and a region distant from the root). The spatial resolution of these measurements provides evidence that microbiome composition and expression changes across the plant root interface. Interrogation of the individual microbial proteomes revealed functional profiles related to their behavioral associations with the plant root, in which chemotaxis and augmented metabolism likely supported predominance of the most abundant member. This study demonstrated a novel peptide extraction method for studying plant agar-plate culture systems, which was previously unsuitable for (meta)proteomic measurements.
Collapse
Affiliation(s)
- Manasa R Appidi
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
- Department of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, U.S.A
| | - Amber N Bible
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
| | - Dana L Carper
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
| | - Sara S Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
| | - Richard J Giannone
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
| | | | - Paul E Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
| |
Collapse
|
18
|
Becker MF, Hellmann M, Knief C. Spatio-temporal variation in the root-associated microbiota of orchard-grown apple trees. ENVIRONMENTAL MICROBIOME 2022; 17:31. [PMID: 35715810 PMCID: PMC9205072 DOI: 10.1186/s40793-022-00427-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/30/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND The root-associated microbiome has been of keen research interest especially in the last decade due to the large potential for increasing overall plant performance in agricultural systems. Studies about spatio-temporal variation of the root-associated microbiome focused so far primarily on community-compositional changes of annual plants, while little is known about their perennial counterparts. The aim of this work was to get deep insight into the spatial patterns and temporal dynamics of the root associated microbiota of apple trees. RESULTS The bacterial community structure in rhizospheric soil and endospheric root material from orchard-grown apple trees was characterized based on 16S rRNA gene amplicon sequencing. At the small scale, the rhizosphere and endosphere bacterial communities shifted gradually with increasing root size diameter (PERMANOVA R2-values up to 0.359). At the larger scale, bulk soil heterogeneity introduced variation between tree individuals, especially in the rhizosphere microbiota, while the presence of a root pathogen was contributing to tree-to-tree variation in the endosphere microbiota. Moreover, the communities of both compartments underwent seasonal changes and displayed year-to-year variation (PERMANOVA R2-values of 0.454 and 0.371, respectively). CONCLUSIONS The apple tree root-associated microbiota can be spatially heterogeneous at field scale due to soil heterogeneities, which particularly influence the microbiota in the rhizosphere soil, resulting in tree-to-tree variation. The presence of pathogens can contribute to this variation, though primarily in the endosphere microbiota. Smaller-scale spatial heterogeneity is observed in the rhizosphere and endosphere microbiota related to root diameter, likely influenced by root traits and processes such as rhizodeposition. The microbiota is also subject to temporal variation, including seasonal effects and annual variation. As a consequence, responses of the tree root microbiota to further environmental cues should be considered in the context of this spatio-temporal variation.
Collapse
Affiliation(s)
- Maximilian Fernando Becker
- Institute of Crop Science and Resource Conservation - Molecular Biology of the Rhizosphere, University of Bonn, Nussallee 13, 53115, Bonn, Germany
| | - Manfred Hellmann
- Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Kompetenzzentrum Gartenbau Klein-Altendorf, 53359, Rheinbach, Germany
| | - Claudia Knief
- Institute of Crop Science and Resource Conservation - Molecular Biology of the Rhizosphere, University of Bonn, Nussallee 13, 53115, Bonn, Germany.
| |
Collapse
|
19
|
Galindo-Castañeda T, Lynch JP, Six J, Hartmann M. Improving Soil Resource Uptake by Plants Through Capitalizing on Synergies Between Root Architecture and Anatomy and Root-Associated Microorganisms. FRONTIERS IN PLANT SCIENCE 2022; 13:827369. [PMID: 35356114 PMCID: PMC8959776 DOI: 10.3389/fpls.2022.827369] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/15/2022] [Indexed: 05/14/2023]
Abstract
Root architectural and anatomical phenotypes are highly diverse. Specific root phenotypes can be associated with better plant growth under low nutrient and water availability. Therefore, root ideotypes have been proposed as breeding targets for more stress-resilient and resource-efficient crops. For example, root phenotypes that correspond to the Topsoil Foraging ideotype are associated with better plant growth under suboptimal phosphorus availability, and root phenotypes that correspond to the Steep, Cheap and Deep ideotype are linked to better performance under suboptimal availability of nitrogen and water. We propose that natural variation in root phenotypes translates into a diversity of different niches for microbial associations in the rhizosphere, rhizoplane and root cortex, and that microbial traits could have synergistic effects with the beneficial effect of specific root phenotypes. Oxygen and water content, carbon rhizodeposition, nutrient availability, and root surface area are all factors that are modified by root anatomy and architecture and determine the structure and function of the associated microbial communities. Recent research results indicate that root characteristics that may modify microbial communities associated with maize include aerenchyma, rooting angle, root hairs, and lateral root branching density. Therefore, the selection of root phenotypes linked to better plant growth under specific edaphic conditions should be accompanied by investigating and selecting microbial partners better adapted to each set of conditions created by the corresponding root phenotype. Microbial traits such as nitrogen transformation, phosphorus solubilization, and water retention could have synergistic effects when correctly matched with promising plant root ideotypes for improved nutrient and water capture. We propose that elucidation of the interactive effects of root phenotypes and microbial functions on plant nutrient and water uptake offers new opportunities to increase crop yields and agroecosystem sustainability.
Collapse
Affiliation(s)
- Tania Galindo-Castañeda
- Sustainable Agroecosystems, Institute of Agricultural Sciences, Department of Environmental System Science, ETH Zürich, Zurich, Switzerland
| | - Jonathan P. Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| | - Johan Six
- Sustainable Agroecosystems, Institute of Agricultural Sciences, Department of Environmental System Science, ETH Zürich, Zurich, Switzerland
| | - Martin Hartmann
- Sustainable Agroecosystems, Institute of Agricultural Sciences, Department of Environmental System Science, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
20
|
Li Y, Wang C, Chen S. Biofertilization containing
Paenibacillus triticisoli
BJ‐18 alters the composition and interaction of the protistan community in the wheat rhizosphere under field conditions. J Appl Microbiol 2022; 132:3746-3757. [DOI: 10.1111/jam.15485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/13/2022] [Accepted: 02/08/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Yongbin Li
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences China Agricultural University Beijing People’s Republic of China
| | - Caixia Wang
- National‐Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro‐environmental Pollution Control and Management Institute of Eco‐environmental and Soil Sciences Guangdong Guangzhou China
| | - Sanfeng Chen
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences China Agricultural University Beijing People’s Republic of China
| |
Collapse
|
21
|
Taerum SJ, Micciulla J, Corso G, Steven B, Gage DJ, Triplett LR. 18S rRNA gene amplicon sequencing combined with culture-based surveys of maize rhizosphere protists reveal dominant, plant-enriched and culturable community members. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:110-118. [PMID: 34957692 DOI: 10.1111/1758-2229.13038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Protists play important roles in shaping the microbial community of the rhizosphere and defining these roles will require the study of protist isolates. However, there is still a limited understanding of how well protist isolation efforts can capture the diversity and composition of rhizosphere protistan communities. Here, we report a simultaneous isolation and 18S rRNA gene amplicon sequencing survey describing the protist diversity of maize rhizospheres in two climatically and pedologically distinct sites. We demonstrated that the maize rhizosphere exerted significant and site-dependent effects on the protistan community structure and defined a set of core and rhizosphere-enriched protists. From the same root samples, we generated a library of 103 protist isolates representing 46 18S rRNA gene sequence variants from six eukaryotic supergroups. While cultured isolates represented a small proportion of total protist diversity recovered by sequencing, they included taxa enriched in rhizosphere soils across all samples, encompassing 9% of all core sequence variants. The isolation approach also captured 17 protists not detected through 18S rRNA gene amplicon sequencing. This study demonstrated that maize roots select for distinct protistan communities, and established a diverse protist culture collection that can be used for future research linking protists to rhizosphere status and plant health.
Collapse
Affiliation(s)
- Stephen J Taerum
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, 06511, USA
| | - Jamie Micciulla
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Gabrielle Corso
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Blaire Steven
- Department of Environmental Science, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, 06511, USA
| | - Daniel J Gage
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Lindsay R Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, 06511, USA
| |
Collapse
|
22
|
Nazari M, Bickel S, Benard P, Mason-Jones K, Carminati A, Dippold MA. Biogels in Soils: Plant Mucilage as a Biofilm Matrix That Shapes the Rhizosphere Microbial Habitat. FRONTIERS IN PLANT SCIENCE 2022; 12:798992. [PMID: 35095970 PMCID: PMC8792611 DOI: 10.3389/fpls.2021.798992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Mucilage is a gelatinous high-molecular-weight substance produced by almost all plants, serving numerous functions for plant and soil. To date, research has mainly focused on hydraulic and physical functions of mucilage in the rhizosphere. Studies on the relevance of mucilage as a microbial habitat are scarce. Extracellular polymeric substances (EPS) are similarly gelatinous high-molecular-weight substances produced by microorganisms. EPS support the establishment of microbial assemblages in soils, mainly through providing a moist environment, a protective barrier, and serving as carbon and nutrient sources. We propose that mucilage shares physical and chemical properties with EPS, functioning similarly as a biofilm matrix covering a large extent of the rhizosphere. Our analyses found no evidence of consistent differences in viscosity and surface tension between EPS and mucilage, these being important physical properties. With regard to chemical composition, polysaccharide, protein, neutral monosaccharide, and uronic acid composition also showed no consistent differences between these biogels. Our analyses and literature review suggest that all major functions known for EPS and required for biofilm formation are also provided by mucilage, offering a protected habitat optimized for nutrient mobilization. Mucilage enables high rhizo-microbial abundance and activity by functioning as carbon and nutrient source. We suggest that the role of mucilage as a biofilm matrix has been underestimated, and should be considered in conceptual models of the rhizosphere.
Collapse
Affiliation(s)
- Meisam Nazari
- Division of Biogeochemistry of Agroecosystems, Georg-August University of Göttingen, Göttingen, Germany
| | - Samuel Bickel
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | - Pascal Benard
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | - Kyle Mason-Jones
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Andrea Carminati
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | | |
Collapse
|
23
|
Laschke L, Schütz V, Schackow O, Sicker D, Hennig L, Hofmann D, Dörmann P, Schulz M. Survival of Plants During Short-Term BOA-OH Exposure: ROS Related Gene Expression and Detoxification Reactions Are Accompanied With Fast Membrane Lipid Repair in Root Tips. J Chem Ecol 2022; 48:219-239. [PMID: 34988771 PMCID: PMC8881443 DOI: 10.1007/s10886-021-01337-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/30/2022]
Abstract
For the characterization of BOA-OH insensitive plants, we studied the time-dependent effects of the benzoxazolinone-4/5/6/7-OH isomers on maize roots. Exposure of Zea mays seedlings to 0.5 mM BOA-OH elicits root zone-specific reactions by the formation of dark rings and spots in the zone of lateral roots, high catalase activity on root hairs, and no visible defense reaction at the root tip. We studied BOA-6-OH- short-term effects on membrane lipids and fatty acids in maize root tips in comparison to the benzoxazinone-free species Abutilon theophrasti Medik. Decreased contents of phosphatidylinositol in A. theophrasti and phosphatidylcholine in maize were found after 10-30 min. In the youngest tissue, α-linoleic acid (18:2), decreased considerably in both species and recovered within one hr. Disturbances in membrane phospholipid contents were balanced in both species within 30-60 min. Triacylglycerols (TAGs) were also affected, but levels of maize diacylglycerols (DAGs) were almost unchanged, suggesting a release of fatty acids for membrane lipid regeneration from TAGs while resulting DAGs are buildings blocks for phospholipid reconstitution, concomitant with BOA-6-OH glucosylation. Expression of superoxide dismutase (SOD2) and of ER-bound oleoyl desaturase (FAD2-2) genes were contemporaneously up regulated in contrast to the catalase CAT1, while CAT3 was arguably involved at a later stage of the detoxification process. Immuno-responses were not elicited in short-terms, since the expression of NPR1, POX12 were barely affected, PR4 after 6 h with BOA-4/7-OH and PR1 after 24 h with BOA-5/6-OH. The rapid membrane recovery, reactive oxygen species, and allelochemical detoxification may be characteristic for BOA-OH insensitive plants.
Collapse
Affiliation(s)
- Laura Laschke
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten Str. 13, 53115, Bonn, Germany
| | - Vadim Schütz
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten Str. 13, 53115, Bonn, Germany
| | - Oliver Schackow
- Institute of Organic Chemistry, Institut Für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Dieter Sicker
- Institute of Organic Chemistry, Institut Für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Lothar Hennig
- Institute of Organic Chemistry, Institut Für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Diana Hofmann
- IBG-3: Agrosphäre, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Peter Dörmann
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten Str. 13, 53115, Bonn, Germany
| | - Margot Schulz
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten Str. 13, 53115, Bonn, Germany.
| |
Collapse
|
24
|
Kawasaki A, Dennis PG, Forstner C, Raghavendra AKH, Mathesius U, Richardson AE, Delhaize E, Gilliham M, Watt M, Ryan PR. Manipulating exudate composition from root apices shapes the microbiome throughout the root system. PLANT PHYSIOLOGY 2021; 187:2279-2295. [PMID: 34618027 PMCID: PMC8644255 DOI: 10.1093/plphys/kiab337] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Certain soil microorganisms can improve plant growth, and practices that encourage their proliferation around the roots can boost production and reduce reliance on agrochemicals. The beneficial effects of the microbial inoculants currently used in agriculture are inconsistent or short-lived because their persistence in soil and on roots is often poor. A complementary approach could use root exudates to recruit beneficial microbes directly from the soil and encourage inoculant proliferation. However, it is unclear whether the release of common organic metabolites can alter the root microbiome in a consistent manner and if so, how those changes vary throughout the whole root system. In this study, we altered the expression of transporters from the ALUMINUM-ACTIVATED MALATE TRANSPORTER and the MULTIDRUG AND TOXIC COMPOUND EXTRUSION families in rice (Oryza sativa L.) and wheat (Triticum aestivum L.) and tested how the subsequent release of their substrates (simple organic anions, including malate, citrate, and γ-amino butyric acid) from root apices affected the root microbiomes. We demonstrate that these exudate compounds, separately and in combination, significantly altered microbiome composition throughout the root system. However, the root type (seminal or nodal), position along the roots (apex or base), and soil type had a greater influence on microbiome structure than the exudates. These results reveal that the root microbiomes of important cereal species can be manipulated by altering the composition of root exudates, and support ongoing attempts to improve plant production by manipulating the root microbiome.
Collapse
Affiliation(s)
| | - Paul G Dennis
- Faculty of Sciences, School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Christian Forstner
- Faculty of Sciences, School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Anil K H Raghavendra
- Faculty of Sciences, School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | | | - Emmanuel Delhaize
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Michelle Watt
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter R Ryan
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| |
Collapse
|
25
|
Zhou Y, Sun B, Xie B, Feng K, Zhang Z, Zhang Z, Li S, Du X, Zhang Q, Gu S, Song W, Wang L, Xia J, Han G, Deng Y. Warming reshaped the microbial hierarchical interactions. GLOBAL CHANGE BIOLOGY 2021; 27:6331-6347. [PMID: 34544207 DOI: 10.1111/gcb.15891] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Global warming may alter microbially mediated ecosystem functions through reshaping of microbial diversity and modified microbial interactions. Here, we examined the effects of 5-year experimental warming on different microbial hierarchical groups in a coastal nontidal soil ecosystem, including prokaryotes (i.e., bacteria and archaea), fungi, and Cercozoa, which is a widespread phylum of protists. Warming significantly altered the diversity and structure of prokaryotic and fungal communities in soil and additionally decreased the complexity of the prokaryotic network and fragmented the cercozoan network. By using the Inter-Domain Ecological Network approach, the cross-trophic interactions among prokaryotes, fungi, and Cercozoa were further investigated. Under warming, cercozoan-prokaryotic and fungal-prokaryotic bipartite networks were simplified, whereas the cercozoan-fungal network became slightly more complex. Despite simplification of the fungal-prokaryotic network, the strengthened synergistic interactions between saprotrophic fungi and certain prokaryotic groups, such as the Bacteroidetes, retained these phyla within the network under warming. In addition, the interactions within the fungal community were quite stable under warming conditions, which stabilized the interactions between fungi and prokaryotes or protists. Additionally, we found the microbial hierarchical interactions were affected by environmental stress (i.e., salinity and pH) and soil nutrients. Interestingly, the relevant microbial groups could respond to different soil properties under ambient conditions, whereas under warming these two groups tended to respond to similar soil properties, suggesting network hub species responded to certain environmental changes related to warming, and then transferred this response to their partners through trophic interactions. Finally, warming strengthened the network modules' negative association with soil organic matters through some fungal hub species, which might trigger soil carbon loss in this ecosystem. Our study provides new insights into the response and feedback of microbial hierarchical interactions under warming scenario.
Collapse
Affiliation(s)
- Yuqi Zhou
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Baoyu Sun
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- State Key Laboratory of Estuarine and Coastal Research, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Yellow River Delta Field Observation and Research Station of Coastal Wetland Ecosystem, Chinese Academy of Sciences, Yantai, China
| | - Baohua Xie
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Yellow River Delta Field Observation and Research Station of Coastal Wetland Ecosystem, Chinese Academy of Sciences, Yantai, China
| | - Kai Feng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhaojing Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Zheng Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Shuzhen Li
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Xiongfeng Du
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qi Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Songsong Gu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Wen Song
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Linlin Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Jianyang Xia
- State Key Laboratory of Estuarine and Coastal Research, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Guangxuan Han
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Yellow River Delta Field Observation and Research Station of Coastal Wetland Ecosystem, Chinese Academy of Sciences, Yantai, China
| | - Ye Deng
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Ambardar S, Bhagat N, Vakhlu J, Gowda M. Diversity of Rhizo-Bacteriome of Crocus sativus Grown at Various Geographical Locations and Cataloging of Putative PGPRs. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.644230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Earlier plant growth promoting rhizo-bacteria (PGPRs) were isolated from the plants, by cultivation based techniques and the interaction was mostly thought to be bilateral. The routine bilateral study, with no information on the associated microbiome, could be one of the reasons for the limited success of PGPRs in the field conditions. Keeping in view the role of PGPRs in rhizo-bacteriome on the growth and production of plant, the present study was aimed at studying the diversity of the rhizo-bacteriome of saffron grown across three geographical locations namely Kashmir, Kishtwar and Bengaluru. Variation in the rhizo-bacteriome of saffron growing across 10 different sites from 3 geographical locations was studied using 16S rDNA amplicon metagenomic sequencing. 16 bacterial phyla, 261 genera and 73 bacterial species were cataloged from all the rhizosphere samples. Proteobacteria was a dominant phylum in all the rhizosphere samples. Rhizo-bacteriome of saffron grown in Kishtwar was found to be significantly different from the rhizo-bacteriome of saffron grown in Kashmir and Bengaluru. Interestingly, the rhizo-bacteriome of saffron grown in Bengaluru was very similar to the saffron grown in Kashmir, thereby indicating that the rhizo-bacteriome in saffron is “plant driven” as the corm sown in Bengaluru were from Kashmir. Despite variation in rhizo-bacteriome, core rhizo-bacteriome in saffron was identified that was represented by 53 genera and eight bacterial species belonging to 11 phyla irrespective of their geographical distribution. In addition, 21 PGPRs were reported for the first time from the saffron rhizosphere. The high yielding saffron field Wuyan was found to have the highest number of PGPRs; this indicates that the presence of PGPR is important for yield enhancement than diversity. The two PGPR Rhizobium leguminosarum and Luteibacter rhizovicinus were reported from all the locations except Kishtwar that had escaped isolation in our previous attempts using cultivation based techniques. It is being proposed instead of going for random isolation and screening for PGPRs from plant rhizosphere, an alternate strategy using metagenomic cataloging of the rhizo-bacteriome community and cultivation of the dominant PGPR should be undertaken. This strategy will help in the selection of dominant PGPRs, specific to the plant in question.
Collapse
|
27
|
Tovi N, Orevi T, Grinberg M, Kashtan N, Hadar Y, Minz D. Pairwise Interactions of Three Related Pseudomonas Species in Plant Roots and Inert Surfaces. Front Microbiol 2021; 12:666522. [PMID: 34335497 PMCID: PMC8320352 DOI: 10.3389/fmicb.2021.666522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteria are social organisms that interact extensively within and between species while responding to external stimuli from their environments. Designing synthetic microbial communities can enable efficient and beneficial microbiome implementation in many areas. However, in order to design an efficient community, one must consider the interactions between their members. Using a reductionist approach, we examined pairwise interactions of three related Pseudomonas species in various microenvironments including plant roots and inert surfaces. Our results show that the step between monoculture and co-culture is already very complex. Monoculture root colonization patterns demonstrate that each isolate occupied a particular location on wheat roots, such as root tip, distance from the tip, or scattered along the root. However, pairwise colonization outcomes on the root did not follow the bacterial behavior in monoculture, suggesting various interaction patterns. In addition, we show that interspecies interactions on a microscale on inert surface take part in co-culture colonization and that the interactions are affected by the presence of root extracts and depend on its source. The understanding of interrelationships on the root may contribute to future attempts to manipulate and improve bacterial colonization and to intervene with root microbiomes to construct and design effective synthetic microbial consortia.
Collapse
Affiliation(s)
- Nesli Tovi
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization - Volcani Center, Rishon LeZion, Israel.,Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tomer Orevi
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maor Grinberg
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nadav Kashtan
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dror Minz
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization - Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
28
|
Bonkowski M, Tarkka M, Razavi BS, Schmidt H, Blagodatskaya E, Koller R, Yu P, Knief C, Hochholdinger F, Vetterlein D. Spatiotemporal Dynamics of Maize ( Zea mays L.) Root Growth and Its Potential Consequences for the Assembly of the Rhizosphere Microbiota. Front Microbiol 2021; 12:619499. [PMID: 33815308 PMCID: PMC8010349 DOI: 10.3389/fmicb.2021.619499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Numerous studies have shown that plants selectively recruit microbes from the soil to establish a complex, yet stable and quite predictable microbial community on their roots – their “microbiome.” Microbiome assembly is considered as a key process in the self-organization of root systems. A fundamental question for understanding plant-microbe relationships is where a predictable microbiome is formed along the root axis and through which microbial dynamics the stable formation of a microbiome is challenged. Using maize as a model species for which numerous data on dynamic root traits are available, this mini-review aims to give an integrative overview on the dynamic nature of root growth and its consequences for microbiome assembly based on theoretical considerations from microbial community ecology.
Collapse
Affiliation(s)
- Michael Bonkowski
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Mika Tarkka
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Bahar S Razavi
- Department of Soil and Plant Microbiome, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Hannes Schmidt
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Evgenia Blagodatskaya
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle, Germany
| | - Robert Koller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Peng Yu
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Claudia Knief
- Institute of Crop Science and Resource Conservation - Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Doris Vetterlein
- Department of Soil System Science, Helmholtz Centre for Environmental Research - UFZ, Halle, Germany.,Soil Science, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|