1
|
Vitorino IR, Gambardella N, Semedo M, Magalhães C, Lage OM. Diversity and Vertical Distribution of Planctomycetota in the Water Column of the Remote North Pacific. ENVIRONMENTAL MICROBIOLOGY REPORTS 2025; 17:e70063. [PMID: 39976218 PMCID: PMC11840708 DOI: 10.1111/1758-2229.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 02/21/2025]
Abstract
The extensive microbial diversity found in the oceans is becoming to be uncovered despite limited knowledge and cultured representatives for many taxonomic groups. This study analysed the distribution and diversity of Planctomycetota at four water column profiles of the Eastern North Pacific subtropical front (ENPSF) using 16S rRNA gene sequencing. A dual approach, utilising PacBio long-reads and Illumina short-reads, was employed to enhance the accuracy of taxonomic assignment and compare sequencing methods. The diversity of Planctomycetota increased below the deep chlorophyll maximum level (175-200 m) and in the mesopelagic layer (500 m), with beta-diversity clustering distinctly separating samples according to different depths, resulting in pronounced vertical stratification. This community structure mirrors nutrient availability, as Planctomycetota favour depths between 175 and 200 m, where high nitrate levels are present. More Planctomycetota amplicon sequence variants (ASVs) were identified with PacBio than with Illumina, improving detection of these bacteria. Phylogenetic analyses performed after manual curation of ASVs led to the discovery of several unknown genera of Planctomycetota, indicating that substantial diversity within this group remains to be discovered and studied in remote oligotrophic oceans.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Department of Biology, Faculty of SciencesUniversity of PortoPortoPortugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoPortoPortugal
| | - Nicola Gambardella
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoPortoPortugal
| | - Miguel Semedo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoPortoPortugal
| | - Catarina Magalhães
- Department of Biology, Faculty of SciencesUniversity of PortoPortoPortugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoPortoPortugal
| | - Olga Maria Lage
- Department of Biology, Faculty of SciencesUniversity of PortoPortoPortugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoPortoPortugal
| |
Collapse
|
2
|
Lopes E, Semedo M, Tomasino MP, Mendes R, de Sousa JB, Magalhães C. Horizontal distribution of marine microbial communities in the North Pacific Subtropical Front. Front Microbiol 2024; 15:1455196. [PMID: 39777143 PMCID: PMC11703956 DOI: 10.3389/fmicb.2024.1455196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Microbial communities are crucial for important ecosystem functions in the open ocean, such as primary production and nutrient cycling. However, few studies have addressed the distribution of microplankton communities in the remote oligotrophic region of the Pacific Ocean. Moreover, the biogeochemical and physical drivers of microbial community structure are not fully understood in these areas. This research aims to investigate the patterns of prokaryotic and protists communities' distribution in the North Pacific Subtropical Front (NPSF). The NPSF is a vast oligotrophic region with layered surface water and strong ocean currents. Despite its considerable size, its community distribution and function are poorly studied. We used a 16S and 18S rRNA gene sequencing approach to identify and characterize the water column microbial communities at two depths, the surface (3-5 m) and the deep chlorophyll maximum (DCM, 108-130 m). We aimed to elucidate the horizontal distribution patterns of these communities and to dissect the factors intricately shaping their distribution in the NPSF. Results showed that the community structure of both prokaryotes and protists was significantly influenced by depth, temperature, and longitude. Regarding alpha diversity, both communities presented a higher diversity at the surface. The prokaryotes also demonstrated to have a higher diversity in samples placed further east. The prokaryotes were dominated by Proteobacteria and Cyanobacteria, and the eukaryotic communities were dominated by Syndiniales. Combining biological and hydrographic data analysis showed the influence of vertical currents near the frontal jet in shaping the vertical distribution of both prokaryotic and protist communities. Even though most studies do not consider anomalies that emerge at each depth, these occurrences are capable of having a strong impact and influence on community structure. This study marks a significant advance in unraveling the intricate community structure and distribution dynamics of marine microbial communities within the North Pacific Ocean.
Collapse
Affiliation(s)
- Eva Lopes
- Faculty of Sciences, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Miguel Semedo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Maria Paola Tomasino
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Renato Mendes
- +ATLANTIC CoLAB, Lisbon, Portugal
- Underwater Systems and Technology Laboratory (LSTS), LAETA, Faculty of Engineering, University of Porto, Porto, Portugal
| | - João Borges de Sousa
- Underwater Systems and Technology Laboratory (LSTS), LAETA, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Catarina Magalhães
- Faculty of Sciences, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| |
Collapse
|
3
|
Stuij TM, Cleary DFR, Rocha RJM, Polónia ARM, Silva DAM, Louvado A, de Voogd NJ, Gomes NCM. Impacts of humic substances, elevated temperature, and UVB radiation on bacterial communities of the marine sponge Chondrilla sp. FEMS Microbiol Ecol 2024; 100:fiae022. [PMID: 38366951 PMCID: PMC10939426 DOI: 10.1093/femsec/fiae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024] Open
Abstract
Sponges are abundant components of coral reefs known for their filtration capabilities and intricate interactions with microbes. They play a crucial role in maintaining the ecological balance of coral reefs. Humic substances (HS) affect bacterial communities across terrestrial, freshwater, and marine ecosystems. However, the specific effects of HS on sponge-associated microbial symbionts have largely been neglected. Here, we used a randomized-controlled microcosm setup to investigate the independent and interactive effects of HS, elevated temperature, and UVB radiation on bacterial communities associated with the sponge Chondrilla sp. Our results indicated the presence of a core bacterial community consisting of relatively abundant members, apparently resilient to the tested environmental perturbations, alongside a variable bacterial community. Elevated temperature positively affected the relative abundances of ASVs related to Planctomycetales and members of the families Pseudohongiellaceae and Hyphomonadaceae. HS increased the relative abundances of several ASVs potentially involved in recalcitrant organic matter degradation (e.g., the BD2-11 terrestrial group, Saccharimonadales, and SAR202 clade). There was no significant independent effect of UVB and there were no significant interactive effects of HS, heat, and UVB on bacterial diversity and composition. The significant, independent impact of HS on the composition of sponge bacterial communities suggests that alterations to HS inputs may have cascading effects on adjacent marine ecosystems.
Collapse
Affiliation(s)
- Tamara M Stuij
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Daniel F R Cleary
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Rui J M Rocha
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Ana R M Polónia
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Davide A M Silva
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Antonio Louvado
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Nicole J de Voogd
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, the Netherlands
- Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Newton C M Gomes
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
4
|
Tapilatu Y, Fauzan I, Pradipta A, Kusuma AB. A first report on prokaryotic diversity in northwestern Arafura deep-sea sediments, Indonesia. Sci Rep 2024; 14:895. [PMID: 38195681 PMCID: PMC10776683 DOI: 10.1038/s41598-024-51614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/07/2024] [Indexed: 01/11/2024] Open
Abstract
Indonesia's deep-sea microbial communities remain poorly understood, prompting the need for comprehensive investigations. This study aimed to assess the bacterial and archaeal diversities in northwestern Arafura deep-sea sediments, spanning depths of 100 to 1,457 m using a 16S rRNA based-metagenomic sequencing approach, without technical and biological replicates. Principal component analyses based on the Bray-Curtis dissimilarity index indicated that most of the bacterial and archaeal communities were habitat-specific and influenced by depth. The most prevalent known bacterial phylotypes were detected from all samples belonging to the phylum of Desulfobacteriota, Pseudomonadota, and Firmicutes. In addition, the samples also harbored diverse members of the Archaea domain, including Crenarchaeota, Nanoarchaeota and Haloarchaeota. Notably, the sequencing data revealed the significant presence of rare prokaryotic taxa, including uncultured counterparts with less than 1% abundance. The findings suggest that novel and rare prokaryotic taxa are abundant in northwestern Arafura deep-sea ecosystem, offering unique opportunities for further bioprospecting and functional ecology studies.
Collapse
Affiliation(s)
- Yosmina Tapilatu
- Marine Microbiology and Biotechnology Laboratory, Centre for Deep-Sea Research, The National Research and Innovation Agency (PRLD BRIN), KKB Atjep Suwartana, Jl. Y. Syaranamual Guru-Guru Poka, Ambon, 97233, Indonesia.
| | - Ihsan Fauzan
- Scientific Department, Genomik Solidaritas Indonesia (GSI Lab) Inc., Jl. Sultan Agung No. 29, South Jakarta, Indonesia
| | - Ariel Pradipta
- Scientific Department, Genomik Solidaritas Indonesia (GSI Lab) Inc., Jl. Sultan Agung No. 29, South Jakarta, Indonesia
| | - Ali Budhi Kusuma
- Indonesian Centre for Extremophile Bioresources and Biotechnology, Faculty of Life Sciences and Technology, Sumbawa University of Technology (UTS), Jln. Raya Olat Maras, Desa Batu Alang, Moyo Hulu Sumbawa, 84371, Indonesia
| |
Collapse
|
5
|
Song L, Wang Q, Di Y, Wu J. Bacterial communities and interactions between macrobenthos and microorganisms after Spartina alterniflora invasion and Kandelia obovata plantation in Yueqing Bay, China. ECOHYDROLOGY & HYDROBIOLOGY 2024; 24:154-168. [DOI: 10.1016/j.ecohyd.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
|
6
|
Gawas P, Kerkar S. Bacterial diversity and community structure of salt pans from Goa, India. Front Microbiol 2023; 14:1230929. [PMID: 38111647 PMCID: PMC10726047 DOI: 10.3389/fmicb.2023.1230929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
In Goa, salt production from the local salt pans is an age-old practice. These salt pans harbor a rich diversity of halophilic microbes with immense biotechnological applications, as they tolerate extremely harsh conditions. Detecting the existence of these microbes by a metabarcoding approach could be a primary step to harness their potential. Three salt pans viz. Agarwado, Curca, and Nerul adjoining prominent estuaries of Goa were selected based on their unique geographical locations. The sediments of these salt pans were examined for their bacterial community and function by 16S rRNA amplicon-sequencing. These salt pans were hypersaline (400-450 PSU) and alkaline (pH 7.6-8.25), with 0.036-0.081 mg/L nitrite, 0.0031-0.016 mg/L nitrate, 6.66-15.81 mg/L sulfate, and 20.8-25.6 mg/L sulfide. The relative abundance revealed that the Pseudomonadota was dominant in salt pans of Nerul (13.9%), Curca (19.6%), and Agarwado (32.4%). The predominant genera in Nerul, Curca, and Agarwado salt pan sediments were Rhodopirellula (1.12%), Sulfurivermis (1.28%), and Psychrobacter (25.5%) respectively. The highest alpha diversity (Shannon-diversity Index) was observed in the Nerul salt pan (4.8) followed by Curca (4.3) and Agarwado (2.03). Beta diversity indicated the highest dissimilarity between Agarwado and the other two salt pans (0.73) viz. Nerul and Curca and the lowest dissimilarity was observed between Nerul and Curca salt pans (0.48). Additionally, in the Agarwado salt pan, 125 unique genera were detected, while in Nerul 119, and in Curca 28 distinct genera were noted. The presence of these exclusive microorganisms in a specific salt pan and its absence in the others indicate that the adjacent estuaries play a critical role in determining salt pan bacterial diversity. Further, the functional prediction of bacterial communities indicated the predominance of stress adaptation genes involved in osmotic balance, membrane modification, and DNA repair mechanisms. This is the first study to report the bacterial community structure and its functional genes in these three salt pans using Next-Generation Sequencing. The data generated could be used as a reference by other researchers across the world for bioprospecting these organisms for novel compounds having biotechnological and biomedical potential.
Collapse
Affiliation(s)
| | - Savita Kerkar
- School of Biological Sciences and Biotechnology, Goa University, Taleigao, Goa, India
| |
Collapse
|
7
|
Wang M, Yu Y, Ren Y, Wang J, Chen H. Effect of antibiotic and/or heavy metal on nitrogen cycle of sediment-water interface in aquaculture system: Implications from sea cucumber culture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121453. [PMID: 36934965 DOI: 10.1016/j.envpol.2023.121453] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Antibiotics and heavy metals can have a negative impact on the nitrogen (N) cycle and microbial metabolism in coastal aquaculture environment. An indoor simulated culture experiment was conducted to explore how sulfadiazine and lead influence the N cycling in aquatic environment. Specifically, the experiment involved adding sulfadiazine (SDZ), lead (Pb), a combination of SDZ and Pb (SP), and a control group (CK). The fluxes and contents of ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N) and nitrite nitrogen (NO2--N) in sediment-water interface and sediments, the abundance of N cycle function genes (amoA_AOB, hzsA, nar, nirK, nirS, norB and nosZ) and microbiota in sediments were analyzed. The results showed that the presence of SDZ and Pb inhibited the nitrification function gene and nitrifiers abundance in surface sediment, and thus leading to more accumulation of NH4+ and NO2- in overlying water. Pb exposure increased the abundances of denitrifying bacteria stimulated the first three steps of denitrification in the sediment, resulting in more removal of NO3- from the sediment, but possibly had the risk of releasing more greenhouse gas N2O. Conversely, the presence of SDZ ultimately inhibited denitrification and anammox bacterial activities in the sediment. This study revealed how heavy metal and antibiotic impair the microbial communities and N cycling function gene expression, leading to the deterioration of typical coastal aquaculture environments.
Collapse
Affiliation(s)
- Mengshu Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266235, China
| | - Yu Yu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266235, China
| | - Yichao Ren
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266235, China.
| | - Jinye Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266235, China
| | - Hui Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266235, China
| |
Collapse
|
8
|
Jia Y, Lahm M, Chen Q, Powers L, Gonsior M, Chen F. The Predominance of Ammonia-Oxidizing Archaea in an Oceanic Microbial Community Amended with Cyanobacterial Lysate. Microbiol Spectr 2023; 11:e0240522. [PMID: 36622233 PMCID: PMC9927567 DOI: 10.1128/spectrum.02405-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
When the oligotrophic microbial community was amended with Synechococcus-derived dissolved organic matter (SDOM) and incubated under the dark condition, archaea relative abundance was initially very low but made up more than 60% of the prokaryotic community on day 60, and remained dominant for at least 9 months. The archaeal sequences were dominated by Candidatus Nitrosopumilus, the Group I.1a Thaumarchaeota. The increase of Thaumarchaeota in the dark incubation corresponded to the period of delayed ammonium oxidation upon an initially steady increase in ammonia, supporting the remarkable competency of Thaumarchaeota in energy utilization and fixation of inorganic carbon in the ocean. IMPORTANCE Thaumarchaeota, which are ammonia-oxidizing archaea (AOA), are mainly chemolithoautotrophs that can fix inorganic carbon to produce organic matter in the dark. Their distinctive physiological traits and high abundance in the water column indicate the significant ecological roles they play in the open ocean. In our study, we found predominant Thaumarchaeota in the microbial community amended with cyanobacteria-derived lysate under the dark condition. Furthermore, Thaumarchaeota remained dominant in the microbial community even after 1 year of incubation. Through the ammonification process, dissolved organic matter (DOM) from cyanobacterial lysate was converted to ammonium which was used as an energy source for Thaumarchaeota to fix inorganic carbon into biomass. Our study further advocates the important roles of Thaumarchaeota in the ocean's biogeochemical cycle.
Collapse
Affiliation(s)
- Yufeng Jia
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| | - Madeline Lahm
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, USA
| | - Qi Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Leanne Powers
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, USA
- State University of New York College of Environmental Science and Forestry, Department of Chemistry, Syracuse, New York, USA
| | - Michael Gonsior
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, USA
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Reshuffling of the Coral Microbiome during Dormancy. Appl Environ Microbiol 2022; 88:e0139122. [PMID: 36383004 PMCID: PMC9746315 DOI: 10.1128/aem.01391-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Quiescence, or dormancy, is a response to stressful conditions in which an organism slows or halts physiological functioning. Although most species that undergo dormancy maintain complex microbiomes, there is little known about how dormancy influences and is influenced by the host's microbiome, including in the temperate coral Astrangia poculata. Northern populations of A. poculata undergo winter quiescence. Here, we characterized wild A. poculata microbiomes in a high-resolution sampling time series before, during, and after quiescence using 16S rRNA gene sequencing on active (RNA) and present (DNA) microbiomes. We observed a restructuring of the coral microbiome during quiescence that persisted after reemergence. Upon entering quiescence, corals shed copiotrophic microbes, including putative pathogens, suggesting a removal of these taxa as corals cease normal functioning. During and after quiescence, bacteria and archaea associated with nitrification were enriched, suggesting that the quiescent microbiome may replace essential functions through supplying nitrate to corals and/or microbes. Overall, this study demonstrates that key microbial groups related to quiescence in A. poculata may play a role in the onset or emergence from dormancy and long-term regulation of the microbiome composition. The predictability of dormancy in A. poculata provides an ideal natural manipulation system to further identify factors that regulate host-microbial associations. IMPORTANCE Using a high-resolution sampling time series, this study is the first to demonstrate a persistent microbial community shift with quiescence (dormancy) in a marine organism, the temperate coral Astrangia poculata. Furthermore, during this period of community turnover, there is a shedding of putative pathogens and copiotrophs and an enhancement of the ammonia-oxidizing bacteria (Nitrosococcales) and archaea ("Candidatus Nitrosopumilus"). Our results suggest that quiescence represents an important period during which the coral microbiome can reset, shedding opportunistic microbes and enriching for the reestablishment of beneficial associates, including those that may contribute nitrate while the coral animal is not actively feeding. We suggest that this work provides foundational understanding of the interplay of microbes and the host's dormancy response in marine organisms.
Collapse
|
10
|
Hsu PC(L, Di HJ, Cameron K, Podolyan A, Chau H, Luo J, Miller B, Carrick S, Johnstone P, Ferguson S, Wei W, Shen J, Zhang L, Liu H, Zhao T, Wei W, Ding W, Pan H, Liu Y, Li B. Comammox Nitrospira Clade B is the most abundant complete ammonia oxidizer in a dairy pasture soil and inhibited by dicyandiamide and high ammonium concentrations. Front Microbiol 2022; 13:1048735. [PMID: 36578577 PMCID: PMC9791190 DOI: 10.3389/fmicb.2022.1048735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022] Open
Abstract
The recent discovery of comammox Nitrospira, a complete ammonia oxidizer, capable of completing the nitrification on their own has presented tremendous challenges to our understanding of the nitrification process. There are two divergent clades of comammox Nitrospira, Clade A and B. However, their population abundance, community structure and role in ammonia and nitrite oxidation are poorly understood. We conducted a 94-day microcosm study using a grazed dairy pasture soil amended with urea fertilizers, synthetic cow urine, and the nitrification inhibitor, dicyandiamide (DCD), to investigate the growth and community structure of comammox Nitrospira spp. We discovered that comammox Nitrospira Clade B was two orders of magnitude more abundant than Clade A in this fertile dairy pasture soil and the most abundant subcluster was a distinctive phylogenetic uncultured subcluster Clade B2. We found that comammox Nitrospira Clade B might not play a major role in nitrite oxidation compared to the role of canonical Nitrospira nitrite-oxidizers, however, comammox Nitrospira Clade B is active in nitrification and the growth of comammox Nitrospira Clade B was inhibited by a high ammonium concentration (700 kg synthetic urine-N ha-1) and the nitrification inhibitor DCD. We concluded that comammox Nitrospira Clade B: (1) was the most abundant comammox in the dairy pasture soil; (2) had a low tolerance to ammonium and can be inhibited by DCD; and (3) was not the dominant nitrite-oxidizer in the soil. This is the first study discovering a new subcluster of comammox Nitrospira Clade B2 from an agricultural soil.
Collapse
Affiliation(s)
- Pei-Chun (Lisa) Hsu
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, New Zealand
| | - Hong J. Di
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, New Zealand
| | - Keith Cameron
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, New Zealand
| | - Andriy Podolyan
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, New Zealand
| | - Henry Chau
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, New Zealand
| | | | - Blair Miller
- Lincoln Agritech Ltd, Lincoln University, Lincoln, New Zealand
| | - Sam Carrick
- Manaaki Whenua – Landcare Research, Lincoln, New Zealand
| | - Paul Johnstone
- The New Zealand Institute for Plant and Food Research, Havelock North, New Zealand
| | - Scott Ferguson
- Department of Microbiology, University of Otago, Dunedin, New Zealand
| | - Wenhua Wei
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | - Limei Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hongbin Liu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tongke Zhao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wenxue Wei
- Institute of Subtropical Agricultural Ecology, Chinese Academy of Sciences, Changsha, China
| | - Weixin Ding
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Hong Pan
- College of Natural Resources and Environment, Shandong Agricultural University, Taian, China
| | - Yimeng Liu
- Centre for Innovation and Development, Beijing Normal University, Zhuhai, China
| | - Bowen Li
- College of Natural Resources and Environment, Hebei Agricultural University, Baoding, China
| |
Collapse
|
11
|
Garate L, Alonso‐Sáez L, Revilla M, Logares R, Lanzén A. Shared and contrasting associations in the dynamic nano- and picoplankton communities of two close but contrasting sites from the Bay of Biscay. Environ Microbiol 2022; 24:6052-6070. [PMID: 36054533 PMCID: PMC10087561 DOI: 10.1111/1462-2920.16153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/30/2022] [Indexed: 01/12/2023]
Abstract
Pico- and nanoplankton are key players in the marine ecosystems due to their implication in the biogeochemical cycles, nutrient recycling and the pelagic food webs. However, the specific dynamics and niches of most bacterial, archaeal and eukaryotic plankton remain unknown, as well as the interactions between them. Better characterization of these is critical for understanding and predicting ecosystem functioning under anthropogenic pressures. We used environmental DNA metabarcoding across a 6-year time series to explore the structure and seasonality of pico- and nanoplankton communities in two sites of the Bay of Biscay, one coastal and one offshore, and construct association networks to reveal potential keystone and connector taxa. Temporal trends in alpha diversity were similar between the two sites, and concurrent communities more similar than within the same site at different times. However, we found differences between the network topologies of the two sites, with both shared and site-specific keystones and connectors. For example, Micromonas, with lower abundance in the offshore site is a keystone here, indicating a stronger effect of associations such as resource competition. This study provides an example of how time series and association network analysis can reveal how similar communities may function differently despite being geographically close.
Collapse
Affiliation(s)
- Leire Garate
- AZTI, Marine ResearchBasque Research and Technology Alliance (BRTA)PasaiaSpain
| | - Laura Alonso‐Sáez
- AZTI, Marine ResearchBasque Research and Technology Alliance (BRTA)PasaiaSpain
| | - Marta Revilla
- AZTI, Marine ResearchBasque Research and Technology Alliance (BRTA)PasaiaSpain
| | - Ramiro Logares
- Institute of Marine Sciences (ICM)CSICBarcelonaCataloniaSpain
| | - Anders Lanzén
- AZTI, Marine ResearchBasque Research and Technology Alliance (BRTA)PasaiaSpain
- IKERBASQUEBasque Foundation for ScienceBilbaoBizkaiaSpain
| |
Collapse
|
12
|
Lu J, Hong Y, Wei Y, Gu JD, Wu J, Wang Y, Ye F, Lin JG. Nitrification mainly driven by ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in an anammox-inoculated wastewater treatment system. AMB Express 2021; 11:158. [PMID: 34837527 PMCID: PMC8627542 DOI: 10.1186/s13568-021-01321-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/16/2021] [Indexed: 11/26/2022] Open
Abstract
Anaerobic ammonium oxidation (anammox) process has been acknowledged as an environmentally friendly and time-saving technique capable of achieving efficient nitrogen removal. However, the community of nitrification process in anammox-inoculated wastewater treatment plants (WWTPs) has not been elucidated. In this study, ammonia oxidation (AO) and nitrite oxidation (NO) rates were analyzed with the incubation of activated sludge from Xinfeng WWTPs (Taiwan, China), and the community composition of nitrification communities were investigated by high-throughput sequencing. Results showed that both AO and NO had strong activity in the activated sludge. The average rates of AO and NO in sample A were 6.51 µmol L−1 h−1 and 6.52 µmol L−1 h−1, respectively, while the rates in sample B were 14.48 µmol L−1 h−1 and 14.59 µmol L−1 h−1, respectively. The abundance of the nitrite-oxidizing bacteria (NOB) Nitrospira was 0.89–4.95 × 1011 copies/g in both samples A and B, the abundance of ammonia-oxidizing bacteria (AOB) was 1.01–9.74 × 109 copies/g. In contrast, the abundance of ammonia-oxidizing archaea (AOA) was much lower than AOB, only with 1.28–1.53 × 105 copies/g in samples A and B. The AOA community was dominated by Nitrosotenuis, Nitrosocosmicus, and Nitrososphaera, while the AOB community mainly consisted of Nitrosomonas and Nitrosococcus. The dominant species of Nitrospira were Candidatus Nitrospira defluvii, Candidatus Nitrospira Ecomare2 and Nitrospira inopinata. In summary, the strong nitrification activity was mainly catalyzed by AOB and Nitrospira, maintaining high efficiency in nitrogen removal in the anammox-inoculated WWTPs by providing the substrates required for denitrification and anammox processes.
Collapse
|