1
|
Liu J, Cao J, Su R, Yan L, Wang K, Hu H, Bao Z. Variations in the N 2 Fixation and CH 4 Oxidation Activities of Type I Methanotrophs in the Rice Roots in Saline-Alkali Paddy Field Under Nitrogen Fertilization. RICE (NEW YORK, N.Y.) 2025; 18:17. [PMID: 40087188 PMCID: PMC11909318 DOI: 10.1186/s12284-025-00766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
The root-associated methanotrophs contribute to N2 fixation and CH4 oxidation in paddy fields under N-limited conditions. However, the impact of nitrogen inputs on N₂ fixation and CH₄ oxidation by methanotrophs is largely unknown, especially in saline-alkali paddy fields with higher nitrogen application. This study explored the impact of nitrogen fertilization on N₂ fixation and CH₄ oxidation by root-associated active diazotrophic and methanotrophic communities in a saline-alkali paddy field using 15N-N2 and 13C-CH4 isotope feeding experiments along with RNA-based sequencing. The 15N and 13C isotope feeding experiments showed that the CH₄ oxidation-dependent nitrogen fixation rate of methanotrophs (15N and 13C) in the roots of two rice cultivars was significantly higher than the CH₄ oxidation-independent nitrogen fixation rate of heterotrophic diazotrophs (only 15N) under nitrogen fertilization (SN) in a saline-alkali environment (P < 0.05). For Kongyu131 rice, the CH₄ oxidation-dependent nitrogen fixation rate ranged from 1.17 to 4.15 μmol/h/g, while the CH₄ oxidation-independent nitrogen fixation rate was determined to be 1.10 to 3.17 μmol/h/g. In J3 rice, these rates were 7.30 to 9.22 μmol/h/g and 5.76 to 4.85 μmol/h/g, respectively (P < 0.05). Moreover, both N2 fixation and CH4 oxidation rates of methanotrophs in the roots of salt-alkali tolerant J3 cultivar (9.22 μmol/h/g for N2 fixation; 0.09 μmol/h/g for CH4 oxidation) were significantly higher than those in the roots of the common rice cultivar Kongyu131 (4.15 μmol/h/g for N₂ fixation; 0.03 μmol/h/g for CH₄ oxidation) under nitrogen fertilization (P < 0.01). Thus, methanotrophs associated with J3 rice roots demonstrated improved N2 fixation and CH4 oxidation activities under saline-alkali stress in the presence of nitrogen fertilizer. Even heterotrophic diazotrophs in J3 rice roots showed enhanced N2 fixation with (SN) or without (LN) nitrogen inputs. The RNA-based amplicon sequencing showed that nitrogen fertilizer had a greater influence on diazotrophic and methanotrophic communities than the differences between rice cultivars. Further, active Methylomonas (type I methanotrophs) dominated the root-associated diazotrophic (9.8-20.9%) and methanotrophic (46.8-80.3%) communities. Within these, Methylomonas methanica (13.3 vs. 3.8%) and Methylomonas paludis (8.8 vs. 27.4%) were determined as the common genera in the diazotrophic and methanotrophic communities, respectively, with both proportions undergoing significant shifts under SN conditions. Whereas the LN condition led to high CH4 oxidation activity and a relatively high abundance of Methylocystis (26.0%) in the roots of Kongyu131 rice, which sharply decreased under the SN condition (0.3%). The findings revealed that CH4 oxidation-dependent N2 fixation and CH4 oxidation activities of root-associated type I methanotrophs were significantly affected under nitrogen fertilization, with a more pronounced effect in the salt-alkali tolerant J3 rice cultivar compared to Kongyu131. This study highlights the potential of aerobic diazotrophic methanotrophs in enhancing symbiotic diversity and environmental adaptability while contributing to CH4 emission reduction and bioavailable nitrogen accumulation in saline-alkali paddy fields.
Collapse
Affiliation(s)
- Jumei Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Aquatic Ecosystems in the Three Gorges Reservoir Region of Chongqing Observation and Research Station, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Jiahui Cao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
- Mechanical and Electronic Engineering Department, Tongliao Vocational College, Tongliao, 028000, China
| | - Rina Su
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Lei Yan
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Kexin Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
- Huai'an County Meteorological Bureau of Hebei Province, Zhangjiakou, 076150, China
| | - Haiyang Hu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Zhihua Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
- Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
2
|
Ferrando L, Rariz G, Martínez-Pereyra A, Fernández-Scavino A. Endophytic diazotrophic communities from rice roots are diverse and weakly associated with soil diazotrophic community composition and soil properties. J Appl Microbiol 2024; 135:lxae157. [PMID: 38925647 DOI: 10.1093/jambio/lxae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
AIM Bacteria that promote plant growth, such as diazotrophs, are valuable tools for achieving a more sustainable production of important non-legume crops like rice. Different strategies have been used to discover new bacteria capable of promoting plant growth. This work evaluated the contribution of soil diazotrophs to the endophytic communities established in the roots of rice seedlings cultivated on seven representative soils from Uruguay. METHODS AND RESULTS The soils were classified into two groups according to the C and clay content. qPCR, terminal restriction fragment length polymorphism (T-RFLP), and 454-pyrosequencing of the nifH gene were used for analyzing diazotrophs in soil and plantlets' roots grown from seeds of the same genotype for 25 days under controlled conditions. A similar nifH abundance was found among the seven soils, roots, or leaves. The distribution of diazotrophs was more uneven in roots than in soils, with dominance indices significantly higher than in soils (nifH T-RFLP). Dominant soils' diazotrophs were mainly affiliated to Alphaproteobacteria and Planctomycetota. Conversely, Alpha, Beta, Gammaproteobacteria, and Bacillota were predominant in different roots, though undetectable in soils. Almost no nifH sequences were shared between soils and roots. CONCLUSIONS Root endophytic diazotrophs comprised a broader taxonomic range of microorganisms than diazotrophs found in soils from which the plantlets were grown and showed strong colonization patterns.
Collapse
Affiliation(s)
- Lucía Ferrando
- Laboratorio de Ecología Microbiana Medioambiental, Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo, Uruguay
| | - Gastón Rariz
- Laboratorio de Ecología Microbiana Medioambiental, Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo, Uruguay
| | - Andrea Martínez-Pereyra
- Laboratorio de Ecología Microbiana Medioambiental, Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo, Uruguay
| | - Ana Fernández-Scavino
- Laboratorio de Ecología Microbiana Medioambiental, Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo, Uruguay
| |
Collapse
|
3
|
Ju Y, Jia Y, Cheng B, Wang D, Gu D, Jing W, Zhang H, Chen X, Li G. NRT1.1B mediates rice plant growth and soil microbial diversity under different nitrogen conditions. AMB Express 2024; 14:39. [PMID: 38647736 PMCID: PMC11035536 DOI: 10.1186/s13568-024-01683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/25/2024] [Indexed: 04/25/2024] Open
Abstract
Interactions between microorganisms and plants can stimulate plant growth and promote nitrogen cycling. Nitrogen fertilizers are routinely used in agriculture to improve crop growth and yield; however, poor use efficiency impairs the optimal utilization of such fertilizers. Differences in the microbial diversity and plant growth of rice soil under different nitrogen application conditions and the expression of nitrogen-use efficiency-related genes have not been previously investigated. Therefore, this study investigates how nitrogen application and nitrogen-use efficiency-related gene NRT1.1B expression affect the soil microbial diversity and growth indices of two rice varieties, Huaidao 5 and Xinhuai 5. In total, 103,463 and 98,427 operational taxonomic units were detected in the soils of the Huaidao 5 and Xinhuai 5 rice varieties, respectively. The Shannon and Simpson indices initially increased and then decreased, whereas the Chao and abundance-based coverage estimator indices decreased after the application of nitrogen fertilizer. Nitrogen fertilization also reduced soil bacterial diversity and richness, as indicated by the reduced abundances of Azotobacter recorded in the soils of both rice varieties. Nitrogen application initially increased and then decreased the grain number per panicle, yield per plant, root, stem, and leaf nitrogen, total nitrogen content, glutamine synthetase, nitrate reductase, urease, and root activities of both varieties. Plant height showed positive linear trends in response to nitrogen application, whereas thousand-grain weights showed a negative trend. Our findings may be used to optimize nitrogen fertilizer use for rice cultivation and develop crop-variety-specific strategies for nitrogen fertilizer application.
Collapse
Affiliation(s)
- Yawen Ju
- Huai'an Key Laboratory of Agricultural Biotechnology, Huaiyin Institute of Agricultural Science in Xuhuai Region of Jiangsu, Huai'an, 223001, China
| | - Yanyan Jia
- Huai'an Key Laboratory of Agricultural Biotechnology, Huaiyin Institute of Agricultural Science in Xuhuai Region of Jiangsu, Huai'an, 223001, China
| | - Baoshan Cheng
- Huai'an Key Laboratory of Agricultural Biotechnology, Huaiyin Institute of Agricultural Science in Xuhuai Region of Jiangsu, Huai'an, 223001, China
| | - Di Wang
- Huai'an Key Laboratory of Agricultural Biotechnology, Huaiyin Institute of Agricultural Science in Xuhuai Region of Jiangsu, Huai'an, 223001, China
| | - Dalu Gu
- Huai'an Key Laboratory of Agricultural Biotechnology, Huaiyin Institute of Agricultural Science in Xuhuai Region of Jiangsu, Huai'an, 223001, China
| | - Wenjiang Jing
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Xinhong Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223001, China.
| | - Gang Li
- Huai'an Key Laboratory of Agricultural Biotechnology, Huaiyin Institute of Agricultural Science in Xuhuai Region of Jiangsu, Huai'an, 223001, China.
| |
Collapse
|
4
|
Wei W, Guan D, Ma M, Jiang X, Fan F, Meng F, Li L, Zhao B, Zhao Y, Cao F, Chen H, Li J. Long-term fertilization coupled with rhizobium inoculation promotes soybean yield and alters soil bacterial community composition. Front Microbiol 2023; 14:1161983. [PMID: 37275141 PMCID: PMC10232743 DOI: 10.3389/fmicb.2023.1161983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/12/2023] [Indexed: 06/07/2023] Open
Abstract
Microbial diversity is an important indicator of soil fertility and plays an indispensable role in farmland ecosystem sustainability. The short-term effects of fertilization and rhizobium inoculation on soil microbial diversity and community structure have been explored extensively; however, few studies have evaluated their long-term effects. Here, we applied quantitative polymerase chain reaction (qPCR) and amplicon sequencing to characterize the effect of 10-year fertilizer and rhizobium inoculation on bacterial communities in soybean bulk and rhizosphere soils at the flowering-podding and maturity stages. Four treatments were examined: non-fertilization control (CK), phosphorus and potassium fertilization (PK), nitrogen and PK fertilization (PK + N), and PK fertilization and Bradyrhizobium japonicum 5821 (PK + R). Long-term co-application of rhizobium and PK promoted soybean nodule dry weight by 33.94% compared with PK + N, and increased soybean yield by average of 32.25%, 5.90%, and 5.00% compared with CK, PK, and PK + N, respectively. The pH of PK + R was significantly higher than that of PK and PK + N at the flowering-podding stage. The bacterial abundance at the flowering-podding stage was positively correlated with soybean yield, but not at the maturity stage. The significant different class Gemmatimonadetes, and the genera Gemmatimonas, and Ellin6067 in soil at the flowering-podding stage were negatively correlated with soybean yield. However, the bacterial community at class and genus levels at maturity had no significant effect on soybean yield. The key bacterial communities that determine soybean yield were concentrated in the flowering-podding stage, not at maturity stage. Rhizosphere effect, growth period, and treatment synergies resulted in significant differences in soil bacterial community composition. Soil organic matter (OM), total nitrogen (TN), pH, and available phosphorus (AP) were the main variables affecting bacterial community structure. Overall, long-term co-application of rhizobium and fertilizer not only increased soybean yield, but also altered soil bacterial community structure through niche reconstruction and microbial interaction. Rhizobium inoculation plays key role in reducing nitrogen fertilizer application and promoting sustainable agriculture practices.
Collapse
Affiliation(s)
- Wanling Wei
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dawei Guan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingchao Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, China
| | - Xin Jiang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, China
| | - Fenliang Fan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fangang Meng
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Jilin, China
| | - Li Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, China
| | - Baisuo Zhao
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, China
| | - Yubin Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengming Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, China
| | - Huijun Chen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, China
| |
Collapse
|
5
|
Zhang S, Yan L, Cao J, Wang K, Luo Y, Hu H, Wang L, Yu R, Pan B, Yu K, Zhao J, Bao Z. Salinity significantly affects methane oxidation and methanotrophic community in Inner Mongolia lake sediments. Front Microbiol 2023; 13:1067017. [PMID: 36687579 PMCID: PMC9853545 DOI: 10.3389/fmicb.2022.1067017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Methanotrophs oxidize methane (CH4) and greatly help in mitigating greenhouse effect. Increased temperatures due to global climate change can facilitate lake salinization, particularly in the regions with cold semiarid climate. However, the effects of salinity on the CH4 oxidation activity and diversity and composition of methanotrophic community in the sediment of natural lakes at a regional scale are still unclear. Therefore, we collected lake sediment samples from 13 sites in Mongolian Plateau; CH4 oxidation activities of methanotrophs were investigated, and the diversity and abundance of methanotrophs were analyzed using real-time quantitative polymerase chain reaction and high throughput sequencing approach. The results revealed that the diversity of methanotrophic community decreased with increasing salinity, and community structure of methanotrophs was clearly different between the hypersaline sediment samples (HRS; salinity > 0.69%) and hyposaline sediment samples (HOS; salinity < 0.69%). Types II and I methanotrophs were predominant in HRS and HOS, respectively. Salinity was significantly positively correlated with the relative abundance of Methylosinus and negatively correlated with that of Methylococcus. In addition, CH4 oxidation rate and pmoA gene abundance decreased with increasing salinity, and salinity directly and indirectly affected CH4 oxidation rate via regulating the community diversity. Moreover, high salinity decreased cooperative association among methanotrophs and number of key methanotrophic species (Methylosinus and Methylococcus, e.g). These results suggested that salinity is a major driver of CH4 oxidation in lake sediments and acts by regulating the diversity of methanotrophic community and accociation among the methanotrophic species.
Collapse
Affiliation(s)
- Shaohua Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lei Yan
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jiahui Cao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Kexin Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Ying Luo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Haiyang Hu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lixin Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China,Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| | - Ruihong Yu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| | - Baozhu Pan
- Institute of Water Resources and Hydro-electric Engineering, Xi’an University of Technology, Xi’an, Shaanxi, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Ji Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China,Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| | - Zhihua Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China,Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Inner Mongolia University, Hohhot, China,*Correspondence: Zhihua Bao, ✉
| |
Collapse
|
6
|
Sun C, Wang R, Tang G, Cai S, Shi H, Liu F, Xie H, Zhu J, Xiong Q. Integrated 16S and metabolomics revealed the mechanism of drought resistance and nitrogen uptake in rice at the heading stage under different nitrogen levels. FRONTIERS IN PLANT SCIENCE 2023; 14:1120584. [PMID: 37089655 PMCID: PMC10114610 DOI: 10.3389/fpls.2023.1120584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
The normal methods of agricultural production worldwide have been strongly affected by the frequent occurrence of drought. Rice rhizosphere microorganisms have been significantly affected by drought stress. To provide a hypothetical basis for improving the drought resistance and N utilization efficiency of rice, the study adopted a barrel planting method at the heading stage, treating rice with no drought or drought stress and three different nitrogen (N) levels. Untargeted metabolomics and 16S rRNA gene sequencing technology were used to study the changes in microorganisms in roots and the differential metabolites (DMs) in rhizosphere soil. The results showed that under the same N application rate, the dry matter mass, N content and N accumulation in rice plants increased to different degrees under drought stress. The root soluble protein, nitrate reductase and soil urease activities were improved over those of the no-drought treatment. Proteobacteria, Bacteroidota, Nitrospirota and Zixibacteria were the dominant flora related to N absorption. A total of 184 DMs (98 upregulated and 86 downregulated) were identified between low N with no drought (LN) and normal N with no drought (NN); 139 DMs (83 upregulated and 56 downregulated) were identified between high N with no drought (HN) and NN; 166 DMs (103 upregulated and 63 downregulated) were identified between low N with drought stress (LND) and normal N with drought stress (NND); and 124 DMs (71 upregulated and 53 downregulated) were identified between high N with drought stress (HND) and NND. Fatty acyl was the metabolite with the highest proportion. KEGG analysis showed that energy metabolism pathways, such as D-alanine metabolism and the phosphotransferase system (PTS), were enriched. We conclude that N-metabolism enzymes with higher activity and higher bacterial diversity have a significant effect on drought tolerance and nitrogen uptake in rice.
Collapse
Affiliation(s)
- Changhui Sun
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Runnan Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Guoping Tang
- Jiangxi Academy of Agricultural Sciences Rice Research Institute, Nanchang, China
| | - Shuo Cai
- Jiangxi Irrigation Experiment Central Station, Nanchang, China
| | - Hong Shi
- Jiangxi Irrigation Experiment Central Station, Nanchang, China
| | - Fangping Liu
- Jiangxi Irrigation Experiment Central Station, Nanchang, China
| | - Hengwang Xie
- Jiangxi Irrigation Experiment Central Station, Nanchang, China
| | - Jinyan Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Qiangqiang Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangxi Irrigation Experiment Central Station, Nanchang, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- *Correspondence: Qiangqiang Xiong,
| |
Collapse
|
7
|
Carrasco-Espinosa K, Avitia M, Barrón-Sandoval A, Abbruzzini TF, Salazar Cabrera UI, Arroyo-Lambaer D, Uscanga A, Campo J, Benítez M, Wegier A, Rosell JA, Reverchon F, Hernández G, Boege K, Escalante AE. Land-Use Change and Management Intensification Is Associated with Shifts in Composition of Soil Microbial Communities and Their Functional Diversity in Coffee Agroecosystems. Microorganisms 2022; 10:microorganisms10091763. [PMID: 36144367 PMCID: PMC9504970 DOI: 10.3390/microorganisms10091763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the central role of microorganisms in soil fertility, little understanding exists regarding the impact of management practices and soil microbial diversity on soil processes. Strong correlations among soil microbial composition, management practices, and microbially mediated processes have been previously shown. However, limited integration of the different parameters has hindered our understanding of agroecosystem functioning. Multivariate analyses of these systems allow simultaneous evaluation of the parameters and can lead to hypotheses on the microbial groups involved in specific nutrient transformations. In the present study, using a multivariate approach, we investigated the effect of microbial composition (16SrDNA sequencing) and soil properties in carbon mineralization (CMIN) (BIOLOG™, Hayward, CA, USA) across different management categories on coffee agroecosystems in Mexico. Results showed that (i) changes in soil physicochemical variables were related to management, not to region, (ii) microbial composition was associated with changes in management intensity, (iii) specific bacterial groups were associated with different management categories, and (iv) there was a broader utilization range of carbon sources in non-managed plots. The identification of specific bacterial groups, management practices, and soil parameters, and their correlation with the utilization range of carbon sources, presents the possibility to experimentally test hypotheses on the interplay of all these components and further our understanding of agroecosystem functioning and sustainable management.
Collapse
Affiliation(s)
- Karen Carrasco-Espinosa
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Morena Avitia
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alberto Barrón-Sandoval
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Thalita F. Abbruzzini
- Laboratorio de Biogeoquímica Terrestre y Clima, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Ulises Isaac Salazar Cabrera
- Laboratorio de Biogeoquímica Terrestre y Clima, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Denise Arroyo-Lambaer
- Laboratorio de Restauración Ecológica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Adriana Uscanga
- Laboratorio de Restauración Ecológica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Julio Campo
- Laboratorio de Biogeoquímica Terrestre y Clima, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Ana Wegier
- Laboratorio de Genética de la Conservación, Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Julieta A. Rosell
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Frédérique Reverchon
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Pátzcuaro 91070, Mexico
| | - Gerardo Hernández
- Centro Agroecológico del Café A.C. Clúster Biomimic-Inecol, Xalapa Enríquez Centro, Veracruz 91000, Mexico
| | - Karina Boege
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Ana E. Escalante
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Correspondence:
| |
Collapse
|
8
|
Cui J, Zhang M, Chen L, Zhang S, Luo Y, Cao W, Zhao J, Wang L, Jia Z, Bao Z. Methanotrophs Contribute to Nitrogen Fixation in Emergent Macrophytes. Front Microbiol 2022; 13:851424. [PMID: 35479617 PMCID: PMC9036440 DOI: 10.3389/fmicb.2022.851424] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Root-associated aerobic methanotroph plays an important role in reducing methane emissions from wetlands. In this study, we examined the activity of methane-dependent nitrogen fixation and active nitrogen-fixing bacterial communities on the roots of Typha angustifolia and Scirpus triqueter using a 15N-N2 feeding experiment and a cDNA-based clone library sequence of the nifH gene, respectively. A 15N-N2 feeding experiment showed that the N2 fixation rate of S. triqueter (1.74 μmol h-1 g-1 dry weight) was significantly higther than that of T. angustifolia (0.48 μmol h-1 g-1 dry weight). The presence of CH4 significantly increased the incorporation of 15N-labeled N2 into the roots of both plants, and the rate of CH4-dependent N2 fixation of S. triqueter (5.6 μmol h-1 g-1 dry weight) was fivefold higher than that of T. angustifolia (0.94 μmol h-1 g-1 dry weight). The active root-associated diazotrophic communities differed between the plant species. Diazotrophic Methylosinus of the Methylocystaceae was dominant in S. triqueter, while Rhizobium of the Rhizobiaceae was dominant in T. angustifolia. However, there were no significant differences in the copy numbers of nifH between plant species. These results suggest that N2 fixation was enhanced by the oxidation of CH4 in the roots of macrophytes grown in natural wetlands and that root-associated Methylocystacea, including Methylosinus, contribute to CH4 oxidation-dependent N2 fixation.
Collapse
Affiliation(s)
- Jing Cui
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- The High School Affiliated to Minzu University of China, Hohhot, China
| | - Meng Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Linxia Chen
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Shaohua Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Ying Luo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Weiwei Cao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ji Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| | - Lixin Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| | - Zhongjun Jia
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Zhihua Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| |
Collapse
|