1
|
Bello FA, Folorunsho AB, Chia RW, Lee JY, Fasusi SA. Microplastics in agricultural soils: sources, impacts on soil organisms, plants, and humans. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:448. [PMID: 40116958 DOI: 10.1007/s10661-025-13874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
Agricultural land has long been regarded as a resource for food production, but over time, the effects of climate change have reduced the ability of soil to produce food efficiently. Nowadays, farmers have moved from traditional to modern techniques of farming. Across the globe, plastic mulching has become widely used on farmlands. According to a few studies, the breakdown of plastic mulches releases microplastics (MPs) into the soil. Despite studies reporting the presence of MPs in soils, there are limited studies on the sources and impacts on soil organisms, plant growth, fruits, and human health. This study evaluated research articles collected from the Web of Science to assess the origin of MP in soil and crops and its effects on soil organisms, plants, and humans. It was observed that MPs come from different sources such as waste water, organic fertilizer, irrigation water, sewage, and sludge. Plastic mulching, which can spread across agricultural fields at varying depths, is the dominant source. Furthermore, it was observed that MPs alter crop quality, reduce the leaf count of wheat, and decrease the root length of crops such as maize, water spinach, black gram, and garden cress. MP can decrease the abundance of soil microarthropods and nematodes, damage the intestinal walls of earthworms, and reduce the feeding and excretion of snails. MP causes liver damage, inflammation, respiratory irritation, and immunological issues. Ultimately, these contaminants (MPs) can transfer and have been detected in fruits and vegetables, which pose adverse effects on human health.
Collapse
Affiliation(s)
- Fatimo Ajoke Bello
- Department of Soil Science, Federal University of Agriculture Abeokuta, P.M.B, 2240, Alabata Road, Abeokuta, Ogun State, Nigeria
- Department of Environmental Standard, University of Lagos, Akoka, Yaba, Lagos, Nigeria
| | - Abidemi Bashiru Folorunsho
- Department of Civil and Construction Engineering, Kangwon National University, 346 Jungang-Ro, Samcheok, 25913, Republic of Korea
| | - Rogers Wainkwa Chia
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Research Institute for Earth Resources, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Jin-Yong Lee
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Research on Microplastics in Groundwater (RMPG), Kangwon National University, Chuncheon, 24341, Republic of Korea
| | | |
Collapse
|
2
|
Iamsaard K, Khongdee N, Rukkhun R, Sarin C, Klomjek P, Umponstira C. Does the Incorporation of Biochar into Biodegradable Mulch Films Provide Agricultural Soil Benefits? Polymers (Basel) 2024; 16:3434. [PMID: 39684179 DOI: 10.3390/polym16233434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
The pollution caused by plastic mulch film in agriculture has garnered significant attention. To safeguard the ecosystem from the detrimental effects of plastic pollution, it is imperative to investigate the use of biodegradable materials for manufacturing agricultural plastic film. Biochar has emerged as a feasible substance for the production of biodegradable mulch film (BDM), providing significant agricultural soil benefits. Although biochar has been widely applied in BDM manufacturing, the effect of biochar-filled plastic mulch film on soil carbon stock after its degradation has not been well documented. This study provides an overview of the current stage of biochar incorporated with BDM and summarizes its possible pathway on soil carbon stock contribution. The application of biochar-incorporated BDM can lead to substantial changes in soil microbial diversity, thereby influencing the emissions of greenhouse gases. These alterations may ultimately yield unforeseen repercussions on the carbon cycles. However, in light of the current knowledge vacuum and potential challenges, additional study is necessary to ascertain if biochar-incorporated BDM can effectively mitigate the issues of residual mulch film and microplastic contamination in agricultural land. Significant progress remains necessary before BDM may fully supplant traditional agricultural mulch film in agricultural production.
Collapse
Affiliation(s)
- Kesinee Iamsaard
- Department of Natural Resource and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Nuttapon Khongdee
- Department of Highland Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Raweerat Rukkhun
- Faculty of Natural Resources, Prince of Songkla University, Songkhla 90110, Thailand
| | - Charoon Sarin
- Department of Natural Resource and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Pantip Klomjek
- Department of Natural Resource and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Chanin Umponstira
- Department of Natural Resource and Environment, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
3
|
Shang Q, Chi J, Ma Y. Effects of biodegradable microplastics coexistence with biochars produced at low and high temperatures on bacterial community structure and phenanthrene degradation in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122212. [PMID: 39146651 DOI: 10.1016/j.jenvman.2024.122212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
The increasing use of biodegradable plastics may result in more serious pollution of microplastics which often coexist with biochar in soil, this will affect how organic pollutants move and transform in the soil. This work investigated the effect of biodegradable polybutylene adipate-co-terephthalate (PBAT) coexistence with biochars produced at temperatures of 400 and 700 °C (W4 and W7) on soil bacterial communities and phenanthrene degradation. The results showed that coexistence of PBAT and biochar paticles greatly boosted the relative abundance of Nocardioides while decreased the relative abundance of Sphingomonas as compared to soils with a single addition of PBAT or biochar. Changes in soil Eh values were the most influential factor in bacterial communities (more than 40% contribution). The degradation ratio of phenanthrene when PBAT coexisted with W7 (39.6 ± 3.6%) was not significantly different from the treatment with a single W7 addition (35.0 ± 2.3%, P>0.05), and was related to phenanthrene degradation in the adsorbed state of W7 in soil. In contrast, the degradation ratio of phenanthrene in PBAT coexisting with W4 (35.1 ± 3.5%) was intermediate between that of single PBAT (49.8 ± 0.9%) and W4 (13.7 ± 5.8%) treatments. This was primarily due to changes in the experiment's initial bioavailable phenanthrene content. Furthermore, after the introduction of earthworms, phenanthrene degradation ratio in coexistence treatments were very similar to that described above in the absence of earthworms. Except for two treatments that contain W7, phenanthrene degradation ratio in the other treatments was increased by the presence of earthworms (up to 23%), which is related to the enhanced relative abundance of polycyclic aromatic hydrocarbon-degraders. Our findings indicated that PBAT coexistence with high-temperature or low-temperature biochar had a completely different impact on bacterial communities and phenanthrene degradation in soil.
Collapse
Affiliation(s)
- Qiongqiong Shang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Jie Chi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Ying Ma
- Department of Data Science and Big Data Technology, Nanchang Hangkong University, Nanchang 330063, PR China
| |
Collapse
|
4
|
Han H, Song P, Jiang Y, Fan J, Khan A, Liu P, Mašek O, Li X. Biochar immobilized hydrolase degrades PET microplastics and alleviates the disturbance of soil microbial function via modulating nitrogen and phosphorus cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134838. [PMID: 38850944 DOI: 10.1016/j.jhazmat.2024.134838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/07/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Microplastics (MPs) pose an emerging threat to soil ecological function, yet effective solutions remain limited. This study introduces a novel approach using magnetic biochar immobilized PET hydrolase (MB-LCC-FDS) to degrade soil polyethylene terephthalate microplastics (PET-MPs). MB-LCC-FDS exhibited a 1.68-fold increase in relative activity in aquatic solutions and maintained 58.5 % residual activity after five consecutive cycles. Soil microcosm experiment amended with MB-LCC-FDS observed a 29.6 % weight loss of PET-MPs, converting PET into mono(2-hydroxyethyl) terephthalate (MHET). The generated MHET can subsequently be metabolized by soil microbiota to release terephthalic acid. The introduction of MB-LCC-FDS shifted the functional composition of soil microbiota, increasing the relative abundances of Microbacteriaceae and Skermanella while reducing Arthobacter and Vicinamibacteraceae. Metagenomic analysis revealed that MB-LCC-FDS enhanced nitrogen fixation, P-uptake and transport, and organic-P mineralization in PET-MPs contaminated soil, while weakening the denitrification and nitrification. Structural equation model indicated that changes in soil total carbon and Simpson index, induced by MB-LCC-FDS, were the driving factors for soil carbon and nitrogen transformation. Overall, this study highlights the synergistic role of magnetic biochar-immobilized PET hydrolase and soil microbiota in degrading soil PET-MPs, and enhances our understanding of the microbiome and functional gene responses to PET-MPs and MB-LCC-FDS in soil systems.
Collapse
Affiliation(s)
- Huawen Han
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Peizhi Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China; State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchao Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Jingwen Fan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Crew Building, King's Buildings, Edinburgh EH9 3FF, United Kingdom.
| | - Xiangkai Li
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China.
| |
Collapse
|
5
|
Wang M, Jiang X, Wei Z, Wang L, Song J, Cen P. Enhanced Cadmium Adsorption Dynamics in Water and Soil by Polystyrene Microplastics and Biochar. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1067. [PMID: 38998672 PMCID: PMC11243743 DOI: 10.3390/nano14131067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
Microplastics (MPs) are prevalent emerging pollutants in soil environments, acting as carriers for other contaminants and facilitating combined pollution along with toxic metals like cadmium (Cd). This interaction increases toxic effects and poses substantial threats to ecosystems and human health. The objective of this study was to investigate the hydrodynamic adsorption of Cd by conducting experiments where polystyrene microplastics (PS) and biochar (BC) coexisted across various particle sizes (10 µm, 20 µm, and 30 µm). Then, soil incubation experiments were set up under conditions of combined pollution, involving various concentrations (0.5 g·kg-1, 5 g·kg-1, 50 g·kg-1) and particle sizes of PS and BC to assess their synergistic effects on the soil environment. The results suggest that the pseudo-second-order kinetic model (R2 = 0.8642) provides a better description of the adsorption dynamics of Cd by PS and BC compared to the pseudo-first-order kinetic model (R2 = 0.7711), with an adsorption saturation time of 400 min. The Cd adsorption process in the presence of PS and BC is more accurately modeled using the Freundlich isotherm (R2 > 0.98), indicating the predominance of multilayer physical adsorption. The coexistence of 10 µm and 20 µm PS particles with BC enhanced Cd absorption, while 30 µm PS particles had an inhibitory effect. In soil incubation experiments, variations in PS particle size increased the exchangeable Cd speciation by 99.52% and decreased the residual speciation by 18.59%. The addition of microplastics notably impacted the exchangeable Cd speciation (p < 0.05), with smaller PS particles leading to more significant increases in the exchangeable content-showing respective increments of 45.90%, 106.96%, and 145.69%. This study contributes to a deeper understanding of the mitigation mechanisms of biochar in the face of combined pollution from microplastics and heavy metals, offering theoretical support and valuable insights for managing such contamination scenarios.
Collapse
Affiliation(s)
- Mengmeng Wang
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
| | - Xuyou Jiang
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
| | - Zhangdong Wei
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
| | - Lin Wang
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Jiashu Song
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
| | - Peitong Cen
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
| |
Collapse
|
6
|
Ranauda MA, Zuzolo D, Maisto M, Tartaglia M, Scarano P, Prigioniero A, Sciarrillo R, Guarino C. Microplastics affect soil-plant system: Implications for rhizosphere biology and fitness of sage (Salvia officinalis L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123656. [PMID: 38408506 DOI: 10.1016/j.envpol.2024.123656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024]
Abstract
A mesocosm experiment was set-up to investigate the effects of low-density polyethylene (LDPE) fragments deriving from plastic film on soil ecology, rhizosphere and plant (Salvia officinalis L.) fitness. The internal transcribed spacer (ITS) and 16S metagenomic analysis was adopted to evaluate taxonomic and functional shifts of both soil and rhizosphere under the influence of microplastics (MPs). Photosynthetic parameters and enzymes involved in oxidative stress were assessed to unveil the plant physiological state. MP fragments were analysed by scanning electron microscope (SEM) and metagenomics to investigate the plastisphere. Microbial biomarkers of MPs pollution were identified in soil and rhizosphere, reinforcing the concept of molecular biomonitoring. Overall, Bacillus, Nocardioides and Streptomyces genera are bacterial biomarkers of MPs pollution in soil whereas Aspergillus, Fusarium and Trichoderma genera, and Nectriaceae family are fungal biomarkers of MPs polluted soil. The data show that the presence of MPs promotes the abundance of taxa involved in the soil N cycle, but simultaneously reduces the endophytic interaction capability and enhances pathogen related functions at the rhizosphere level. A significant decrease in chlorophyll levels and increase of oxidative stress enzymes was observed in plants grown in MPs-polluted soil. The SEM observations of MPs fragments revealed a complex colonisation, where bacteria (Bacillus in MPSo and Microvirga in MPRz) and fungi (Aspergillus in MPSo and Trichoderma in MPRz) represent the main colonisers. The results demonstrate that the presence of MPs causes changes in the soil and rhizosphere microbial community and functions leading to negative effects on plant fitness.
Collapse
Affiliation(s)
- Maria Antonietta Ranauda
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy.
| | - Maria Maisto
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Maria Tartaglia
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Pierpaolo Scarano
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Antonello Prigioniero
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| |
Collapse
|
7
|
Xu L, Li K, Zhang M, Guo J, Jia W, Bai X, Tian X, Huang Y. Plastic substrate and residual time of microplastics in the urban river shape the composition and structure of bacterial communities in plastisphere. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118710. [PMID: 37536136 DOI: 10.1016/j.jenvman.2023.118710] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
The widespread secondary microplastics (MPs) in urban freshwater, originating from plastic wastes, have created a new habitat called plastisphere for microorganisms. The factors influencing the structure and ecological risks of the microbial community within the plastisphere are not yet fully understood. We conducted an in-site incubation experiment in an urban river, using MPs from garbage bags (GB), shopping bags (SB), and plastic bottles (PB). Bacterial communities in water and plastisphere incubated for 2 and 4 weeks were analyzed by 16S high-throughput sequencing. The results showed the bacterial composition of the plastisphere, especially the PB, exhibited enrichment of plastic-degrading and photoautotrophic taxa. Diversity declined in GB and PB but increased in SB plastisphere. Abundance analysis revealed distinct bacterial species that were enriched or depleted in each type of plastisphere. As the succession progressed, the differences in community structure was more pronounced, and the decline in the complexity of bacterial community within each plastisphere suggested increasing specialization. All the plastisphere exhibited elevated pathogenicity at the second or forth week, compared to bacterial communities related to natural particles. These findings highlighted the continually evolving plastisphere in urban rivers was influenced by the plastic substrates, and attention should be paid to fragile plastic wastes due to the rapidly increasing pathogenicity of the bacterial community attached to them.
Collapse
Affiliation(s)
- Libo Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Mengjun Zhang
- Peking University Shenzhen Institute, Shenzhen, Guangdong, 518057, China; PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, Guangdong, 518057, China
| | - Jiabao Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Weiqian Jia
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xinyi Bai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xudong Tian
- Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control of Zhejiang, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, 310012, China.
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Biochar as a Green Sorbent for Remediation of Polluted Soils and Associated Toxicity Risks: A Critical Review. SEPARATIONS 2023. [DOI: 10.3390/separations10030197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Soil contamination with organic contaminants and various heavy metals has become a global environmental concern. Biochar application for the remediation of polluted soils may render a novel solution to soil contamination issues. However, the complexity of the decontaminating mechanisms and the real environment significantly influences the preparation and large-scale application of biochar for soil ramification. This review paper highlights the utilization of biochar in immobilizing and eliminating the heavy metals and organic pollutants from contaminated soils and factors affecting the remediation efficacy of biochar. Furthermore, the risks related to biochar application in unpolluted agricultural soils are also debated. Biochar production conditions (pyrolysis temperature, feedstock type, and residence time) and the application rate greatly influence the biochar performance in remediating the contaminated soils. Biochars prepared at high temperatures (800 °C) contained more porosity and specific surface area, thus offering more adsorption potential. The redox and electrostatic adsorption contributed more to the adsorption of oxyanions, whereas ion exchange, complexation, and precipitation were mainly involved in the adsorption of cations. Volatile organic compounds (VOCs), dioxins, and polycyclic aromatic hydrocarbons (PAHs) produced during biochar pyrolysis induce negative impacts on soil alga, microbes, and plants. A careful selection of unpolluted feedstock and its compatibility with carbonization technology having suitable operating conditions is essential to avoid these impurities. It would help to prepare a specific biochar with desired features to target a particular pollutant at a specific site. This review provided explicit knowledge for developing a cost-effective, environment-friendly specific biochar, which could be used to decontaminate targeted polluted soils at a large scale. Furthermore, future study directions are also described to ensure a sustainable and safe application of biochar as a soil improver for the reclamation of polluted soils.
Collapse
|
9
|
Kumar R, Verma A, Rakib MRJ, Gupta PK, Sharma P, Garg A, Girard P, Aminabhavi TM. Adsorptive behavior of micro(nano)plastics through biochar: Co-existence, consequences, and challenges in contaminated ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159097. [PMID: 36179840 DOI: 10.1016/j.scitotenv.2022.159097] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The abundance of micro(nano)plastics in natural ecosystems is a crucial global challenge, as these small-sized plastic particles originate from land-based and marine-based activities and are widely present in marine, freshwater, and terrestrial ecosystems. Micro(nano)plastics can significantly be reduced through various methods, such as biological, chemical, and physical techniques. Biochar is a low-cost adsorbent and is considered an efficient material and its application is ecologically effective carbon-negative for remediation of organic and inorganic pollutants. Therefore, this review critically discusses the fate and transport of micro(nano)plastics and their interactions with different biochar in aqueous and column porous media. This review outlines the implications of biochar with the co-existence of micro(nano)plastics in efforts to understand their coupled effects on soil physicochemical properties, microbial communities, and plant growth, along with the removal of heavy metals and other toxic contaminants. In batch experiments, biochar synthesized from various biomasses such as corn straw, hardwood, pine and spruce bark, corncob, and Prosopis juliflora had shown high level of removal efficiency (>90 %) for microplastic adsorption under varying environmental conditions viz., pH, temperature, ionic strength, particle size, and dose due to chemical bonding and electrostatic attractions. Increased temperature of the aqueous solutions encouraged higher adsorption, while higher pH and dissolved organic matter and nutrients may show decreased adsorption capacities for micro(nano)plastics using biochar. Compared to other available physical, chemical, and biological methods, biochar-amended sand filters in column experiments have been very efficient in removing micro(nano)plastics. In saturated column porous media, various microplastics could be inhibited using biochar due to decreased electrostatic repulsion, steric hindrance, and competitive sorption due to humic acid, ionic strength, and cations. Finally, this review provides in-depth insights on further investigations and recommendations for overall micro(nano)plastics removal using biochar-based materials.
Collapse
Affiliation(s)
- Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar 803116, India
| | - Anurag Verma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar 803116, India
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Pankaj Kumar Gupta
- Faculty of Environment, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar 803116, India.
| | - Ankit Garg
- Guangdong Engineering Center for Structure Safety and Health Monitoring, Shantou University, Shantou, China
| | | | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580031, India; School of Engineering, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
10
|
Song J, Beule L, Jongmans-Hochschulz E, Wichels A, Gerdts G. The travelling particles: community dynamics of biofilms on microplastics transferred along a salinity gradient. ISME COMMUNICATIONS 2022; 2:35. [PMID: 37938248 PMCID: PMC9723596 DOI: 10.1038/s43705-022-00117-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 05/28/2023]
Abstract
Microplastics (MP), as novel substrata for microbial colonization within aquatic ecosystems, are a matter of growing concern due to their potential to propagate foreign or invasive species across different environments. MP are known to harbour a diversity of microorganisms, yet little is understood of the dynamics of their biofilms and their capacity to successfully displace these microorganisms across different aquatic ecosystems typically marked by steep salinity gradients. To address this, we performed an in situ sequential incubation experiment to simulate MP transport from riverine to coastal seawaters using synthetic (high-density polyethylene, HDPE and tyre wear, TW) and natural (Wood) substrata. Bacterial communities on incubated particles were compared to each other as well as to those in surrounding waters, and their dynamics along the gradient investigated. All communities differed significantly from each other in their overall structure along the salinity gradient and were shaped by different ecological processes. While HDPE communities were governed by environmental selection, those on TW and Wood were dominated by stochastic events of dispersal and drift. Upon transfer into coastal seawaters, an almost complete turnover was observed among HDPE and TW communities. While synthetic particles displaced a minor proportion of communities across the salinity gradient, some of these comprised putatively pathogenic and resistant taxa. Our findings present an extensive assessment of MP biofilms and their dynamics upon displacement across different aquatic systems, presenting new insights into the role of MP as transport vectors.
Collapse
Affiliation(s)
- Jessica Song
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27498, Helgoland, Germany.
| | - Lukas Beule
- Julius Kühn Institute-Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Strasse 19, 14195, Berlin, Germany
| | - Elanor Jongmans-Hochschulz
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27498, Helgoland, Germany
| | - Antje Wichels
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27498, Helgoland, Germany
| | - Gunnar Gerdts
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27498, Helgoland, Germany
| |
Collapse
|
11
|
Alhothali A, Haneef T, Mustafa MRU, Moria KM, Rashid U, Rasool K, Bamasag OO. Optimization of Micro-Pollutants' Removal from Wastewater Using Agricultural Waste-Derived Sustainable Adsorbent. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111506. [PMID: 34770021 PMCID: PMC8583561 DOI: 10.3390/ijerph182111506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022]
Abstract
Water pollution due to the discharge of untreated industrial effluents is a serious environmental and public health issue. The presence of organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) causes worldwide concern because of their mutagenic and carcinogenic effects on aquatic life, human beings, and the environment. PAHs are pervasive atmospheric compounds that cause nervous system damage, mental retardation, cancer, and renal kidney diseases. This research presents the first usage of palm kernel shell biochar (PKSB) (obtained from agricultural waste) for PAH removal from industrial wastewater (oil and gas wastewater/produced water). A batch scale study was conducted for the remediation of PAHs and chemical oxygen demand (COD) from produced water. The influence of operating parameters such as biochar dosage, pH, and contact time was optimized and validated using a response surface methodology (RSM). Under optimized conditions, i.e., biochar dosage 2.99 g L−1, pH 4.0, and contact time 208.89 min, 93.16% of PAHs and 97.84% of COD were predicted. However, under optimized conditions of independent variables, 95.34% of PAH and 98.21% of COD removal was obtained in the laboratory. The experimental data were fitted to the empirical second-order model of a suitable degree for the maximum removal of PAHs and COD by the biochar. ANOVA analysis showed a high coefficient of determination value (R2 = 0.97) and a reasonable second-order regression prediction. Additionally, the study also showed a comparative analysis of PKSB with previously used agricultural waste biochar for PAH and COD removal. The PKSB showed significantly higher removal efficiency than other types of biochar. The study also provides analysis on the reusability of PKSB for up to four cycles using two different methods. The methods reflected a significantly good performance for PAH and COD removal for up to two cycles. Hence, the study demonstrated a successful application of PKSB as a potential sustainable adsorbent for the removal of micro-pollutants from produced water.
Collapse
Affiliation(s)
- Areej Alhothali
- Department of Computer Sciences, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.); (K.M.M.); (O.O.B.)
| | - Tahir Haneef
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Correspondence: (T.H.); (M.R.U.M.)
| | - Muhammad Raza Ul Mustafa
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Correspondence: (T.H.); (M.R.U.M.)
| | - Kawthar Mostafa Moria
- Department of Computer Sciences, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.); (K.M.M.); (O.O.B.)
| | - Umer Rashid
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Doha 5825, Qatar;
| | - Omaimah Omar Bamasag
- Department of Computer Sciences, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.); (K.M.M.); (O.O.B.)
- Center of Excellence in Smart Environment Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|