1
|
Pila-Lacuta S, Pauccar D, Rojas-Vargas J, Rodríguez-Cruz UE, Sierra JL, Castelán-Sánchez HG, Quispe-Ricalde MA. Isolation of a potentially arsenic-resistant Halomonas elongata strain (ml10562) from hypersaline systems in the Peruvian Andes, Cusco. PLoS One 2025; 20:e0320639. [PMID: 40238807 PMCID: PMC12002479 DOI: 10.1371/journal.pone.0320639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/22/2025] [Indexed: 04/18/2025] Open
Abstract
Halomonas elongata strain ml10562, was isolated from hypersaline that was collected from Acos Peru. Average Nucleotide Identity (ANI) and dDDH (digital DNA-DNA Hybridization) values between strain ml10562 and type strains of Halomonas elongata species were 71.0-78.4% and 18.8-21.5%, respectively. The draft genome, spanning 4,075,440 base pairs, has a GC content of 64.2% and contains 3,912 genes. Functional characterization revealed the strain's ability to tolerate and resist increasing concentrations of sodium arsenate, with a minimum inhibitory concentration of 25 mM. Bioinformatic analysis revealed the presence of two operons, arsR-arsH-arsB and arsJ-gapdh-arsC, in the genome of strain ml10562, which could play a crucial role in arsenic resistance through transporter-mediated mechanisms. Overall, these results emphasize the potential adaptability of H. elongata ml10562 to arsenic-containing environments and extend our understanding of bacterial arsenic resistance mechanisms, allowing promising applications in bioremediation.
Collapse
Affiliation(s)
- Shirly Pila-Lacuta
- Departamento de Biología, Facultad de Ciencias Biológicas, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú,
| | - David Pauccar
- Departamento de Biología, Facultad de Ciencias Biológicas, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú,
| | - Jorge Rojas-Vargas
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Ulises E. Rodríguez-Cruz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México City, Mexico
| | - José Luis Sierra
- Laboratorio de Genética y Biotecnología Microbiana, Facultad de Ciencias Biológicas, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú
| | - Hugo G. Castelán-Sánchez
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - María Antonieta Quispe-Ricalde
- Departamento de Biología, Facultad de Ciencias Biológicas, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú,
- Laboratorio de Genética y Biotecnología Microbiana, Facultad de Ciencias Biológicas, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú
| |
Collapse
|
2
|
Slobodkin AI, Rusanov II, Slobodkina GB, Stroeva AR, Chernyh NA, Pimenov NV, Merkel AY. Diversity, Methane Oxidation Activity, and Metabolic Potential of Microbial Communities in Terrestrial Mud Volcanos of the Taman Peninsula. Microorganisms 2024; 12:1349. [PMID: 39065117 PMCID: PMC11279179 DOI: 10.3390/microorganisms12071349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Microbial communities of terrestrial mud volcanoes are involved in aerobic and anaerobic methane oxidation, but the biological mechanisms of these processes are still understudied. We have investigated the taxonomic composition, rates of methane oxidation, and metabolic potential of microbial communities in five mud volcanoes of the Taman Peninsula, Russia. Methane oxidation rates measured by the radiotracer technique varied from 2.0 to 460 nmol CH4 cm-3 day-1 in different mud samples. This is the first measurement of high activity of microbial methane oxidation in terrestrial mud volcanos. 16S rRNA gene amplicon sequencing has shown that Bacteria accounted for 65-99% of prokaryotic diversity in all samples. The most abundant phyla were Pseudomonadota, Desulfobacterota, and Halobacterota. A total of 32 prokaryotic genera, which include methanotrophs, sulfur or iron reducers, and facultative anaerobes with broad metabolic capabilities, were detected in relative abundance >5%. The most highly represented genus of aerobic methanotrophs was Methyloprofundus reaching 36%. The most numerous group of anaerobic methanotrophs was ANME-2a-b (Ca. Methanocomedenaceae), identified in 60% of the samples and attaining relative abundance of 54%. The analysis of the metagenome-assembled genomes of a community with high methane oxidation rate indicates the importance of CO2 fixation, Fe(III) and nitrate reduction, and sulfide oxidation. This study expands current knowledge on the occurrence, distribution, and activity of microorganisms associated with methane cycle in terrestrial mud volcanoes.
Collapse
Affiliation(s)
- Alexander I. Slobodkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Leninskiy Prospect, 33, Bld. 2, 119071 Moscow, Russia; (I.I.R.); (G.B.S.); (N.A.C.); (N.V.P.); (A.Y.M.)
| | - Igor I. Rusanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Leninskiy Prospect, 33, Bld. 2, 119071 Moscow, Russia; (I.I.R.); (G.B.S.); (N.A.C.); (N.V.P.); (A.Y.M.)
| | - Galina B. Slobodkina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Leninskiy Prospect, 33, Bld. 2, 119071 Moscow, Russia; (I.I.R.); (G.B.S.); (N.A.C.); (N.V.P.); (A.Y.M.)
| | | | - Nikolay A. Chernyh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Leninskiy Prospect, 33, Bld. 2, 119071 Moscow, Russia; (I.I.R.); (G.B.S.); (N.A.C.); (N.V.P.); (A.Y.M.)
| | - Nikolai V. Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Leninskiy Prospect, 33, Bld. 2, 119071 Moscow, Russia; (I.I.R.); (G.B.S.); (N.A.C.); (N.V.P.); (A.Y.M.)
| | - Alexander Y. Merkel
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Leninskiy Prospect, 33, Bld. 2, 119071 Moscow, Russia; (I.I.R.); (G.B.S.); (N.A.C.); (N.V.P.); (A.Y.M.)
| |
Collapse
|
3
|
Belykh E, Maystrenko T, Velegzhaninov I, Tavleeva M, Rasova E, Rybak A. Taxonomic Diversity and Functional Traits of Soil Bacterial Communities under Radioactive Contamination: A Review. Microorganisms 2024; 12:733. [PMID: 38674676 PMCID: PMC11051952 DOI: 10.3390/microorganisms12040733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Studies investigating the taxonomic diversity and structure of soil bacteria in areas with enhanced radioactive backgrounds have been ongoing for three decades. An analysis of data published from 1996 to 2024 reveals changes in the taxonomic structure of radioactively contaminated soils compared to the reference, showing that these changes are not exclusively dependent on contamination rates or pollutant compositions. High levels of radioactive exposure from external irradiation and a high radionuclide content lead to a decrease in the alpha diversity of soil bacterial communities, both in laboratory settings and environmental conditions. The effects of low or moderate exposure are not consistently pronounced or unidirectional. Functional differences among taxonomic groups that dominate in contaminated soil indicate a variety of adaptation strategies. Bacteria identified as multiple-stress tolerant; exhibiting tolerance to metals and antibiotics; producing antioxidant enzymes, low-molecular antioxidants, and radioprotectors; participating in redox reactions; and possessing thermophilic characteristics play a significant role. Changes in the taxonomic and functional structure, resulting from increased soil radionuclide content, are influenced by the combined effects of ionizing radiation, the chemical toxicity of radionuclides and co-contaminants, as well as the physical and chemical properties of the soil and the initial bacterial community composition. Currently, the quantification of the differential contributions of these factors based on the existing published studies presents a challenge.
Collapse
Affiliation(s)
- Elena Belykh
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Tatiana Maystrenko
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Ilya Velegzhaninov
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Marina Tavleeva
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
- Department of Biology, Institute of Natural Sciences, Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prospekt, Syktyvkar 167001, Russia
| | - Elena Rasova
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Anna Rybak
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| |
Collapse
|
4
|
Zhai X, Zhang Y, Zhou J, Li H, Wang A, Liu L. Physiological and microbiome adaptation of coral Turbinaria peltata in response to marine heatwaves. Ecol Evol 2024; 14:e10869. [PMID: 38322002 PMCID: PMC10844694 DOI: 10.1002/ece3.10869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 02/08/2024] Open
Abstract
Against the backdrop of global warming, marine heatwaves are projected to become increasingly intense and frequent. This trend poses a potential threat to the survival of corals and the maintenance of entire coral reef ecosystems. Despite extensive evidence for the resilience of corals to heat stress, their ability to withstand repeated heatwave events has not been determined. In this study, we examined the responses and resilience of Turbinaria peltata to repeated exposure to marine heatwaves, with a focus on physiological parameters and symbiotic microorganisms. In the first heatwave, from a physiological perspective, T. peltata showed decreases in the Chl a content and endosymbiont density and significant increases in GST, caspase-3, CAT, and SOD levels (p < .05), while the effects of repeated exposure on heatwaves were weaker than those of the initial exposure. In terms of bacteria, the abundance of Leptospira, with the potential for pathogenicity and intracellular parasitism, increased significantly during the initial exposure. Beneficial bacteria, such as Achromobacter arsenitoxydans and Halomonas desiderata increased significantly during re-exposure to the heatwave. Overall, these results indicate that T. peltata might adapt to marine heatwaves through physiological regulation and microbial community alterations.
Collapse
Affiliation(s)
- Xin Zhai
- College of FisheriesGuangdong Ocean UniversityZhanjiangChina
| | - YanPing Zhang
- College of FisheriesGuangdong Ocean UniversityZhanjiangChina
- Guangdong Laboratory of Southern Ocean Science and EngineeringZhanjiangChina
| | - Jie Zhou
- College of FisheriesGuangdong Ocean UniversityZhanjiangChina
| | - Hao Li
- College of FisheriesGuangdong Ocean UniversityZhanjiangChina
| | - Ao Wang
- College of FisheriesGuangdong Ocean UniversityZhanjiangChina
| | - Li Liu
- College of FisheriesGuangdong Ocean UniversityZhanjiangChina
- Guangdong Laboratory of Southern Ocean Science and EngineeringZhanjiangChina
| |
Collapse
|
5
|
Gupta S, de Rink R, Klok JBM, Muyzer G, Plugge CM. Process conditions affect microbial diversity and activity in a haloalkaline biodesulfurization system. Appl Environ Microbiol 2024; 90:e0186423. [PMID: 38078763 PMCID: PMC10807427 DOI: 10.1128/aem.01864-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 01/25/2024] Open
Abstract
Biodesulfurization (BD) systems that treat sour gas employ mixtures of haloalkaliphilic sulfur-oxidizing bacteria to convert sulfide to elemental sulfur. In the past years, these systems have seen major technical innovations that have led to changes in microbial community composition. Different studies have identified and discussed the microbial communities in both traditional and improved systems. However, these studies do not identify metabolically active community members and merely focus on members' presence/absence. Therefore, their results cannot confirm the activity and role of certain bacteria in the BD system. To investigate the active community members, we determined the microbial communities of six different runs of a pilot-scale BD system. 16S rRNA gene-based amplicon sequencing was performed using both DNA and RNA. A comparison of the DNA- and RNA-based sequencing results identified the active microbes in the BD system. Statistical analyses indicated that not all the existing microbes were actively involved in the system and that microbial communities continuously evolved during the operation. At the end of the run, strains affiliated with Alkalilimnicola ehrlichii and Thioalkalivibrio sulfidiphilus were confirmed as the most active key bacteria in the BD system. This study determined that microbial communities were shaped predominantly by the combination of hydraulic retention time (HRT) and sulfide concentration in the anoxic reactor and, to a lesser extent, by other operational parameters.IMPORTANCEHaloalkaliphilic sulfur-oxidizing bacteria are integral to biodesulfurization (BD) systems and are responsible for converting sulfide to sulfur. To understand the cause of conversions occurring in the BD systems, knowing which bacteria are present and active in the systems is essential. So far, only a few studies have investigated the BD system's microbial composition, but none have identified the active microbial community. Here, we reveal the metabolically active community, their succession, and their influence on product formation.
Collapse
Affiliation(s)
- Suyash Gupta
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Rieks de Rink
- Environmental Technology, Wageningen University & Research, Wageningen, the Netherlands
- Paqell B.V., Utrecht, the Netherlands
| | - Johannes B. M. Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Caroline M. Plugge
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
6
|
de la Haba RR, Arahal DR, Sánchez-Porro C, Chuvochina M, Wittouck S, Hugenholtz P, Ventosa A. A long-awaited taxogenomic investigation of the family Halomonadaceae. Front Microbiol 2023; 14:1293707. [PMID: 38045027 PMCID: PMC10690426 DOI: 10.3389/fmicb.2023.1293707] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 12/05/2023] Open
Abstract
The family Halomonadaceae is the largest family composed of halophilic bacteria, with more than 160 species with validly published names as of July 2023. Several classifications to circumscribe this family are available in major resources, such as those provided by the List of Prokaryotic names with Standing in Nomenclature (LPSN), NCBI Taxonomy, Genome Taxonomy Database (GTDB), and Bergey's Manual of Systematics of Archaea and Bacteria (BMSAB), with some degree of disagreement between them. Moreover, regardless of the classification adopted, the genus Halomonas is not phylogenetically consistent, likely because it has been used as a catch-all for newly described species within the family Halomonadaceae that could not be clearly accommodated in other Halomonadaceae genera. In the past decade, some taxonomic rearrangements have been conducted on the Halomonadaceae based on ribosomal and alternative single-copy housekeeping gene sequence analysis. High-throughput technologies have enabled access to the genome sequences of many type strains belonging to the family Halomonadaceae; however, genome-based studies specifically addressing its taxonomic status have not been performed to date. In this study, we accomplished the genome sequencing of 17 missing type strains of Halomonadaceae species that, together with other publicly available genome sequences, allowed us to re-evaluate the genetic relationship, phylogeny, and taxonomy of the species and genera within this family. The approach followed included the estimate of the Overall Genome Relatedness Indexes (OGRIs) such as the average amino acid identity (AAI), phylogenomic reconstructions using amino acid substitution matrices customized for the family Halomonadaceae, and the analysis of clade-specific signature genes. Based on our results, we conclude that the genus Halovibrio is obviously out of place within the family Halomonadaceae, and, on the other hand, we propose a division of the genus Halomonas into seven separate genera and the transfer of seven species from Halomonas to the genus Modicisalibacter, together with the emendation of the latter. Additionally, data from this study demonstrate the existence of various synonym species names in this family.
Collapse
Affiliation(s)
- Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - David R. Arahal
- Departament of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, Australia
| | - Stijn Wittouck
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, Australia
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
7
|
Rodero MDR, Carmona-Martínez AA, Martínez-Fraile C, Herrero-Lobo R, Rodríguez E, García-Encina PA, Peña M, Muñoz R. Ectoines production from biogas in pilot bubble column bioreactors and their subsequent extraction via bio-milking. WATER RESEARCH 2023; 245:120665. [PMID: 37801795 DOI: 10.1016/j.watres.2023.120665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
Despite the potential of biogas from waste/wastewater treatment as a renewable energy source, the presence of pollutants and the rapid decrease in the levelized cost of solar and wind power constrain the use of biogas for energy generation. Biogas conversion into ectoine, one of the most valuable bioproducts (1000 €/kg), constitutes a new strategy to promote a competitive biogas market. The potential for a stand-alone 20 L bubble column bioreactor operating at 6% NaCl and two 10 L interconnected bioreactors (at 0 and 6% NaCl, respectively) for ectoine production from biogas was comparatively assessed. The stand-alone reactor supported the best process performance due to its highest robustness and efficiency for ectoine accumulation (20-52 mgectoine/gVSS) and CH4 degradation (up to 84%). The increase in N availability and internal gas recirculation did not enhance ectoine synthesis. However, a 2-fold increase in the internal gas recirculation resulted in an approximately 1.3-fold increase in CH4 removal efficiency. Finally, the recovery of ectoine through bacterial bio-milking resulted in efficiencies of >70% without any negative impact of methanotrophic cell recycling to the bioreactors on CH4 biodegradation or ectoine synthesis.
Collapse
Affiliation(s)
- María Del Rosario Rodero
- Institute of Sustainable Processes, University of Valladolid, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Alessandro A Carmona-Martínez
- Institute of Sustainable Processes, University of Valladolid, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Cristina Martínez-Fraile
- Institute of Sustainable Processes, University of Valladolid, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Raquel Herrero-Lobo
- Institute of Sustainable Processes, University of Valladolid, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Elisa Rodríguez
- Institute of Sustainable Processes, University of Valladolid, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Pedro A García-Encina
- Institute of Sustainable Processes, University of Valladolid, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Mar Peña
- Institute of Sustainable Processes, University of Valladolid, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain.
| |
Collapse
|
8
|
Zhu X, Wang L, Lai Q, Wang J, Huang J, Li G, Zeng L, Xia J, Shao Z. Pseudophaeobacter profundi sp. nov., isolated from the Western Pacific Ocean. Int J Syst Evol Microbiol 2023; 73. [PMID: 37768178 DOI: 10.1099/ijsem.0.006071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
A novel Gram-stain-negative, facultatively anaerobic and heterotrophic bacterium, designated strain ZH257T, was isolated from in situ enrichment samples incubated on the seamount floor of the Western Pacific Ocean. Cells were rod-shaped, oxidase- and catalase- positive, and motile by means of polar flagella. Strain ZH257T grew at 4-37 °C (optimum, 28-32 °C), pH 6.0-9.0 (optimum, pH 7.0) and with 2.0-9.0 % (w/v) NaCl (optimum, 3.0-4.0 %). Strain ZH257T was most closely related to members of the genus Pseudophaeobacter, sharing 99.13, 98.27 and 96.89 % 16S rRNA gene sequence identities with Pseudophaeobacter flagellatus GDMCC 1.2988T, Pseudophaeobacter arcticus DSM 23566T and Pseudophaeobacter leonis DSM 25627T, respectively. The DNA G+C content was 59.2 mol%. The estimated average nucleotide identity and digital DNA-DNA hybridization values between strain ZH257T and its closely related species were 79.61-93.04 % and 23.10-50.20 %, respectively. Strain ZH257T harboured complete denitrification and nitrate assimilation pathways. Strain ZH257T contained summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) as major fatty acids (>5 %), and Q-10 as the major respiratory quinone. The polar lipid profile contained phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol, an unidentified phospholipid, an unidentified aminolipid and four unidentified lipids. The combined phenotypic, genotypic and chemotaxonomic data showed that strain ZH257T represents a novel species of the genus Pseudophaeobacter, for which the name Pseudophaeobacter profundi sp. nov. is proposed, with the type strain ZH257T (=MCCC M29024T=KACC 23147T).
Collapse
Affiliation(s)
- Xuying Zhu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Liping Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Jianning Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Jiamei Huang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Guangyu Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Lingyu Zeng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Jingyu Xia
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| |
Collapse
|
9
|
Liu Y, Feng L, Liu Y, Zhang L. A novel constructed wetland based on iron carbon substrates: performance optimization and mechanisms of simultaneous removal of nitrogen and phosphorus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23035-23046. [PMID: 36319923 DOI: 10.1007/s11356-022-23754-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
In recent years, the combination of iron carbon micro-electrolysis (ICME) with constructed wetlands (CWs) for removal of nitrogen and phosphorus has attracted more and more attention. However, the removal mechanisms by CWs with iron carbon (Fe-C) substrates are still unclear. In this study, the Fe-C based CW (CW-A) was established to improve the removal efficiencies of nitrogen and phosphorus by optimizing the operating conditions. And the removal mechanisms of nitrogen and phosphorus were explored. The results shown that the removal rates of COD, NH4+-N, NO3--N, TN, and TP in CW-A could reach up to 84.4%, 94.0%, 81.1%, 86.6%, and 84.3%, respectively. Wetland plants and intermittent aeration have dominant effects on the removal of NH4+-N, while the removal efficiencies of NO3--N, TN, and TP were mainly affected by Fe-C substrates, wetland plants, and HRT. XPS analysis revealed that Fe(0)/Fe2+ and their valence transformation played important roles on the pollutants removal. High-throughput sequencing results showed that Fe-C substrates and wetland plants had considerable impacts on the microbial community structures, such as richness and diversity of microorganism. The relative abundance of autotrophic denitrification bacteria (e.g., Denitatsoma, Thauera, and Sulfuritalea) increased in CW-A than CW-C. The electrons and H2/[H] produced from Fe-C substrates were utilized by autotrophic denitrification bacteria for NO3--N reduction. Microbial degradation was the main removal mechanism of nitrogen in CW-A. Removal efficiency of phosphorus was enhanced resulted from the reaction of phosphate with iron ion. The application of CWs with Fe-C substrates and plants presented great potential for simultaneous removal of nitrogen and phosphorus.
Collapse
Affiliation(s)
- Yashun Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
10
|
Lazar CS, Schmidt F, Elvert M, Heuer VB, Hinrichs KU, Teske AP. Microbial diversity gradients in the geothermal mud volcano underlying the hypersaline Urania Basin. Front Microbiol 2022; 13:1043414. [PMID: 36620052 PMCID: PMC9812581 DOI: 10.3389/fmicb.2022.1043414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Mud volcanoes transport deep fluidized sediment and their microbial communities and thus provide a window into the deep biosphere. However, mud volcanoes are commonly sampled at the surface and not probed at greater depths, with the consequence that their internal geochemistry and microbiology remain hidden from view. Urania Basin, a hypersaline seafloor basin in the Mediterranean, harbors a mud volcano that erupts fluidized mud into the brine. The vertical mud pipe was amenable to shipboard Niskin bottle and multicorer sampling and provided an opportunity to investigate the downward sequence of bacterial and archaeal communities of the Urania Basin brine, fluid mud layers and consolidated subsurface sediments using 16S rRNA gene sequencing. These microbial communities show characteristic, habitat-related trends as they change throughout the sample series, from extremely halophilic bacteria (KB1) and archaea (Halodesulfoarchaeum spp.) in the brine, toward moderately halophilic and thermophilic endospore-forming bacteria and uncultured archaeal lineages in the mud fluid, and finally ending in aromatics-oxidizing bacteria, uncultured spore formers, and heterotrophic subsurface archaea (Thermoplasmatales, Bathyarchaeota, and Lokiarcheota) in the deep subsurface sediment at the bottom of the mud volcano. Since these bacterial and archaeal lineages are mostly anaerobic heterotrophic fermenters, the microbial ecosystem in the brine and fluidized mud functions as a layered fermenter for the degradation of sedimentary biomass and hydrocarbons. By spreading spore-forming, thermophilic Firmicutes during eruptions, the Urania Basin mud volcano likely functions as a source of endospores that occur widely in cold seafloor sediments.
Collapse
Affiliation(s)
- Cassandre Sara Lazar
- Department of Biological Sciences, Université du Québec à Montréal, Montréal, QC, Canada
| | - Frauke Schmidt
- Organic Geochemistry Group, Department of Geosciences, MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Marcus Elvert
- Organic Geochemistry Group, Department of Geosciences, MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Verena B. Heuer
- Organic Geochemistry Group, Department of Geosciences, MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Kai-Uwe Hinrichs
- Organic Geochemistry Group, Department of Geosciences, MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Andreas P. Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
11
|
Du R, Gao D, Wang Y, Liu L, Cheng J, Liu J, Zhang XH, Yu M. Heterotrophic Sulfur Oxidation of Halomonas titanicae SOB56 and Its Habitat Adaptation to the Hydrothermal Environment. Front Microbiol 2022; 13:888833. [PMID: 35774465 PMCID: PMC9237845 DOI: 10.3389/fmicb.2022.888833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Halomonas bacteria are ubiquitous in global marine environments, however, their sulfur-oxidizing abilities and survival adaptations in hydrothermal environments are not well understood. In this study, we characterized the sulfur oxidation ability and metabolic mechanisms of Halomonas titanicae SOB56, which was isolated from the sediment of the Tangyin hydrothermal field in the Southern Okinawa Trough. Physiological characterizations showed that it is a heterotrophic sulfur-oxidizing bacterium that can oxidize thiosulfate to tetrathionate, with the Na2S2O3 degradation reaching 94.86%. Two potential thiosulfate dehydrogenase-related genes, tsdA and tsdB, were identified as encoding key catalytic enzymes, and their expression levels in strain SOB56 were significantly upregulated. Nine of fifteen examined Halomonas genomes possess TsdA- and TsdB-homologous proteins, whose amino acid sequences have two typical Cys-X2-Cys-His heme-binding regions. Moreover, the thiosulfate oxidation process in H. titanicae SOB56 might be regulated by quorum sensing, and autoinducer-2 synthesis protein LuxS was identified in its genome. Regarding the mechanisms underlying adaptation to hydrothermal environment, strain SOB56 was capable of forming biofilms and producing EPS. In addition, genes related to complete flagellum assembly system, various signal transduction histidine kinases, heavy metal transporters, anaerobic respiration, and variable osmotic stress regulation were also identified. Our results shed light on the potential functions of heterotrophic Halomonas bacteria in hydrothermal sulfur cycle and revealed possible adaptations for living at deep-sea hydrothermal fields by H. titanicae SOB56.
Collapse
Affiliation(s)
- Rui Du
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Di Gao
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Yiting Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Lijun Liu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Jingguang Cheng
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Jiwen Liu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Min Yu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- *Correspondence: Min Yu,
| |
Collapse
|
12
|
Tourova TP, Sokolova DS, Semenova EM, Ershov AP, Grouzdev DS, Nazina TN. Genomic and Physiological Characterization of Halophilic Bacteria of the Genera Halomonas and Marinobacter from Petroleum Reservoirs. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722300038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
So Y, Chhetri G, Kim I, Kang M, Kim J, Lee B, Jang W, Seo T. Halomonas antri sp. nov., a carotenoid-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, moderately halophilic bacterium, designated as strain Y3S6T, was isolated from a surface seawater sample collected from Dongangyoeng cave, Udo-myeon, Jeju-si, Jeju-do, Repulic of Korea. Cells of strain Y3S6T were aerobic, rod-shaped, non-sporulated, yellow, catalase- negative, oxidase-negative and motile with one polar flagellum. Growth of strain Y3S6T occurred at 15–40 °C (optimum: 25–30 °C), at pH 6.0–9.0 (optimum: pH 7.0) and in the presence of 0–13% NaCl (optimum: 1–6 %, w/v). The novel strain was able to produce carotenoids. Its chemotaxonomic and morphological characteristics were consistent with those of members of the genus
Halomonas
. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain Y3S6T formed a clade with
Halomonas pellis
L5T (98.97 %) and
Halomonas saliphila
LCB169T(98.90%). The average nucleotide identity and digital DNA–DNA hybridization values of strain Y3S6T with the most closely related strains for which whole genomes are publicly available were 82.3–85.2% and 62.8–66.1 %, respectively. The major fatty acids in strain Y3S6T were C16 : 0, C19 : 0 cyclo ω8c and summed feature 8 (composed of C18 : 1 ω7c and/or C18 : 1 ω6c), and the predominant quinone was Q-9. Its polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified phosphoglycolipid, one unidentified phosphoaminoglycolipid and one unidentified phospholipid. The genomic DNA G+C content based on the draft genome sequence was 64.2 mol%. The results of physiological and biochemical tests and 16S rRNA sequence analysis clearly revealed that strain Y3S6T represents a novel species in the genus
Halomonas
, for which the name Halomonas antri sp. nov. has been proposed. The type strain is Y3S6T (=KACC 21536T=NBRC 114315=TBRC 15164T).
Collapse
Affiliation(s)
- Yoonseop So
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Geeta Chhetri
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Inhyup Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Minchung Kang
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Jiyoun Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Byungjo Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Wonhee Jang
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Taegun Seo
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| |
Collapse
|
14
|
Gupta S, Plugge CM, Klok JBM, Muyzer G. Comparative analysis of microbial communities from different full-scale haloalkaline biodesulfurization systems. Appl Microbiol Biotechnol 2022; 106:1759-1776. [PMID: 35147744 PMCID: PMC8882115 DOI: 10.1007/s00253-022-11771-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/17/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
Abstract In biodesulfurization (BD) at haloalkaline and dO2-limited conditions, sulfide-oxidizing bacteria (SOB) effectively convert sulfide into elemental sulfur that can be used in agriculture as a fertilizer and fungicide. Here we show which bacteria are present in this biotechnological process. 16S rRNA gene amplicon sequencing of biomass from ten reactors sampled in 2018 indicated the presence of 444 bacterial Amplicon Sequence Variants (ASVs). A core microbiome represented by 30 ASVs was found in all ten reactors, with Thioalkalivibrio sulfidiphilus as the most dominant species. The majority of these ASVs are phylogenetically related to bacteria previously identified in haloalkaline BD processes and in natural haloalkaline ecosystems. The source and composition of the feed gas had a great impact on the microbial community composition followed by alkalinity, sulfate, and thiosulfate concentrations. The halophilic SOB of the genus Guyparkeria (formerly known as Halothiobacillus) and heterotrophic SOB of the genus Halomonas were identified as potential indicator organisms of sulfate and thiosulfate accumulation in the BD process. Key points • Biodesulfurization (BD) reactors share a core microbiome • The source and composition of the feed gas affects the microbial composition in the BD reactors • Guyparkeria and Halomonas indicate high concentrations of sulfate and thiosulfate in the BD process Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11771-y.
Collapse
Affiliation(s)
- Suyash Gupta
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.,Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Caroline M Plugge
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.,Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Johannes B M Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.,Paqell B.V, Utrecht, The Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|