1
|
Yao X, Jia C, Li A, Qin T, Peng D, Han Y, Guo S, Zhong K, Yang G, Wang Y, Li H. Epidemiology and genotypic diversity of duck hepatitis B virus identified from waterfowl in partial areas of Guangdong province, Southern China. Virology 2025; 603:110416. [PMID: 39842338 DOI: 10.1016/j.virol.2025.110416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Duck Hepatitis B virus (DHBV) infection model is extensively utilized as an animal model for studying human hepatitis B virus infection and for comparative research. 557 liver samples from geese and ducks were collected in parts of Guangdong province, southern China. The overall prevalence of DHBV was 45.6% (254/557) in all samples. And the 27 complete genome sequences of DHBV strains in this study share 89.6%-100% genome-wide pairwise identity with previously identified DHBV genomes. Notably, DHBV-1, DHBV-2 and DHBV-3 of were found co-circulating among the waterfowl population in parts of Guangdong. More importantly, seven out of the 16 recombination events were determined involved DHBV sequences obtained in this study as major parent and minor parent, suggesting DHBV strains from Guangdong province play an important role in recombination events. Additionally, purifying selection was the dominant evolutionary pressure acting on the genomes of DHBV.
Collapse
Affiliation(s)
- Xinyan Yao
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan province, China; Key Laboratory of Veterinary Biotechnology of Henan Province, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Chaoxiang Jia
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan province, China; Key Laboratory of Veterinary Biotechnology of Henan Province, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Anqi Li
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan province, China; Key Laboratory of Veterinary Biotechnology of Henan Province, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Ting Qin
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan province, China; Key Laboratory of Veterinary Biotechnology of Henan Province, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Dai Peng
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan province, China; Key Laboratory of Veterinary Biotechnology of Henan Province, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Yingqian Han
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan province, China; Key Laboratory of Veterinary Biotechnology of Henan Province, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Shuang Guo
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan province, China; Key Laboratory of Veterinary Biotechnology of Henan Province, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Kai Zhong
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan province, China; Key Laboratory of Veterinary Biotechnology of Henan Province, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Guoyu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan province, China; Key Laboratory of Veterinary Biotechnology of Henan Province, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Yueying Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan province, China; Key Laboratory of Veterinary Biotechnology of Henan Province, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
| | - Heping Li
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan province, China; Key Laboratory of Veterinary Biotechnology of Henan Province, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
2
|
Shionoya K, Park JH, Ekimoto T, Takeuchi JS, Mifune J, Morita T, Ishimoto N, Umezawa H, Yamamoto K, Kobayashi C, Kusunoki A, Nomura N, Iwata S, Muramatsu M, Tame JRH, Ikeguchi M, Park SY, Watashi K. Structural basis for hepatitis B virus restriction by a viral receptor homologue. Nat Commun 2024; 15:9241. [PMID: 39455604 PMCID: PMC11511851 DOI: 10.1038/s41467-024-53533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Macaque restricts hepatitis B virus (HBV) infection because its receptor homologue, NTCP (mNTCP), cannot bind preS1 on viral surface. To reveal how mNTCP loses the viral receptor function, we here solve the cryo-electron microscopy structure of mNTCP. Superposing on the human NTCP (hNTCP)-preS1 complex structure shows that Arg158 of mNTCP causes steric clash to prevent preS1 from embedding onto the bile acid tunnel of NTCP. Cell-based mutation analysis confirms that only Gly158 permitted preS1 binding, in contrast to robust bile acid transport among mutations. As the second determinant, Asn86 on the extracellular surface of mNTCP shows less capacity to restrain preS1 from dynamic fluctuation than Lys86 of hNTCP, resulting in unstable preS1 binding. Additionally, presence of long-chain conjugated-bile acids in the tunnel induces steric hindrance with preS1 through their tailed-chain. This study presents structural basis in which multiple sites in mNTCP constitute a molecular barrier to strictly restrict HBV.
Collapse
Affiliation(s)
- Kaho Shionoya
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Graduate School of Science and Technology, Tokyo University of Science, Chiba, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Jae-Hyun Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Toru Ekimoto
- Computational Life Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Junko S Takeuchi
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Junki Mifune
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takeshi Morita
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naito Ishimoto
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Haruka Umezawa
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Kenichiro Yamamoto
- Computational Life Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Chisa Kobayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Graduate School of Science and Technology, Tokyo University of Science, Chiba, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Atsuto Kusunoki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Norimichi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- RIKEN SPring-8 Center, Hyogo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Infectious Disease Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Jeremy R H Tame
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Mitsunori Ikeguchi
- Computational Life Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
- HPC- and AI-driven Drug Development Platform Division, Center for Computational Science, RIKEN, Kanagawa, Japan
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan.
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.
- Graduate School of Science and Technology, Tokyo University of Science, Chiba, Japan.
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
3
|
Rehermann B. Toward a better understanding of chronic hepatitis B virus infection. J Clin Invest 2024; 134:e185568. [PMID: 39352391 PMCID: PMC11444154 DOI: 10.1172/jci185568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
|
4
|
Ding Y, Guo H, Hong X, Li Q, Miao Z, Pan Q, Zheng K, Wang W. The distinct spatiotemporal evolutionary landscape of HBV and HDV largely determines the unique epidemic features of HDV globally. Mol Phylogenet Evol 2024; 197:108114. [PMID: 38825156 DOI: 10.1016/j.ympev.2024.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024]
Abstract
Chronic infection of hepatitis B virus (HBV) and hepatitis D virus (HDV) causes the most severe form of viral hepatitis. Due to the dependence on HBV, HDV was deemed to co-evolve and co-migrate with HBV. However, we previously found that the naturally occurred HDV/HBV combinations do not always reflect the most efficient virological adaptation (Wang et al., 2021). Moreover, regions with heavy HBV burden do not always correlate with high HDV prevalence (e.g., East Asia), and vice versa (e.g., Central Asia). Herein, we systematically elucidated the spatiotemporal evolutionary landscape of HDV to understand the unique epidemic features of HDV. We found that the MRCA of HDV was from South America around the late 13th century, was globally dispersed mainly via Central Asia, and evolved into eight genotypes from the 19th to 20th century. In contrast, the MRCA of HBV was from Europe ∼23.7 thousand years ago (Kya), globally dispersed mainly via Africa and East Asia, and evolved into eight genotypes ∼1100 years ago. When HDV stepped in, all present-day HBV genotypes had already formed and its global genotypic distribution had stayed stable geographically. Nevertheless, regionalized HDV adapted to local HBV genotypes and human lineages, contributing to the global geographical separation of HDV genotypes. Additionally, a sharp increase in HDV infections was observed after the 20th century. In conclusion, HDV exhibited a distinct spatiotemporal distribution path compared with HBV. This unique evolutionary relationship largely fostered the unique epidemic features we observe nowadays. Moreover, HDV infections may continue to ramp up globally, thus more efforts are urgently needed to combat this disease.
Collapse
Affiliation(s)
- Yibo Ding
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Hongbo Guo
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.
| | - Xinfang Hong
- Second Medical Center of PLA General Hospital, Beijing, China
| | - Qiudi Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Zhijiang Miao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.
| | - Kuiyang Zheng
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.
| | - Wenshi Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
5
|
Shen-Gunther J, Easley A. HPV, HBV, and HIV-1 Viral Integration Site Mapping: A Streamlined Workflow from NGS to Genomic Insights of Carcinogenesis. Viruses 2024; 16:975. [PMID: 38932267 PMCID: PMC11209625 DOI: 10.3390/v16060975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Viral integration within the host genome plays a pivotal role in carcinogenesis. Various disruptive mechanisms are involved, leading to genomic instability, mutations, and DNA damage. With next-generation sequencing (NGS), we can now precisely identify viral and host genomic breakpoints and chimeric sequences, which are useful for integration site analysis. In this study, we evaluated a commercial hybrid capture NGS panel specifically designed for detecting three key viruses: HPV, HBV, and HIV-1. We also tested workflows for Viral Hybrid Capture (VHC) and Viral Integration Site (VIS) analysis, leveraging customized viral databases in CLC Microbial Genomics. By analyzing sequenced data from virally infected cancer cell lines (including SiHa, HeLa, CaSki, C-33A, DoTc2, 2A3, SCC154 for HPV; 3B2, SNU-182 for HBV; and ACH-2 for HIV-1), we precisely pinpointed viral integration sites. The workflow also highlighted disrupted and neighboring human genes that may play a crucial role in tumor development. Our results included informative virus-host read mappings, genomic breakpoints, and integration circular plots. These visual representations enhance our understanding of the integration process. In conclusion, our seamless end-to-end workflow bridges the gap in understanding viral contributions to cancer development, paving the way for improved diagnostics and treatment strategies.
Collapse
Affiliation(s)
- Jane Shen-Gunther
- Gynecologic Oncology & Clinical Investigation, Department of Clinical Investigation, Brooke Army Medical Center, San Antonio, TX 78234, USA
| | - Acarizia Easley
- Department of Clinical Investigation, Brooke Army Medical Center, San Antonio, TX 78234, USA;
| |
Collapse
|
6
|
Marchio A, Sitbounlang P, Deharo E, Paboriboune P, Pineau P. Concealed for a Long Time on the Marches of Empires: Hepatitis B Virus Genotype I. Microorganisms 2023; 11:2204. [PMID: 37764048 PMCID: PMC10535388 DOI: 10.3390/microorganisms11092204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Genotype I, the penultimate HBV genotype to date, was granted the status of a bona fide genotype only in the XXIst century after some hesitations. The reason for these hesitations was that genotype I is a complex recombinant virus formed with segments from three original genotypes, A, C, and G. It was estimated that genotype I is responsible for only an infinitesimal fraction (<1.0%) of the chronic HBV infection burden worldwide. Furthermore, most probably due to its recent discovery and rarity, the natural history of infection with genotype I is poorly known in comparison with those of genotypes B or C that predominate in their area of circulation. Overall, genotype I is a minor genotype infecting ethnic minorities. It is endemic to the Southeast Asian Massif or Eastern Zomia, a vast mountainous or hilly region of 2.5 million km2 spreading from Eastern India to China, inhabited by a little more than 100 million persons belonging primarily to ethnic minorities speaking various types of languages (Tibeto-Burman, Austroasiatic, and Tai-Kadai) who managed to escape the authority of central states during historical times. Genotype I consists of two subtypes: I1, present in China, Laos, Thailand, and Vietnam; and I2, encountered in India, Laos, and Vietnam.
Collapse
Affiliation(s)
- Agnès Marchio
- Institut Pasteur, Université Paris Cité, Unité “Organisation Nucléaire et Oncogenèse”, INSERM U993, 75015 Paris, France;
| | - Philavanh Sitbounlang
- Centre d’Infectiologie Lao-Christophe Mérieux (CILM), Vientiane 3888, Laos; (P.S.); (P.P.)
| | - Eric Deharo
- MIVEGEC, Université Montpellier, CNRS, IRD, 34394 Montpellier, France;
| | - Phimpha Paboriboune
- Centre d’Infectiologie Lao-Christophe Mérieux (CILM), Vientiane 3888, Laos; (P.S.); (P.P.)
| | - Pascal Pineau
- Institut Pasteur, Université Paris Cité, Unité “Organisation Nucléaire et Oncogenèse”, INSERM U993, 75015 Paris, France;
| |
Collapse
|
7
|
Toyé RM, Loureiro CL, Jaspe RC, Zoulim F, Pujol FH, Chemin I. The Hepatitis B Virus Genotypes E to J: The Overlooked Genotypes. Microorganisms 2023; 11:1908. [PMID: 37630468 PMCID: PMC10459053 DOI: 10.3390/microorganisms11081908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatitis B virus (HBV) genotypes E to J are understudied genotypes. Genotype E is found almost exclusively in West Africa. Genotypes F and H are found in America and are rare in other parts of the world. The distribution of genotype G is not completely known. Genotypes I and J are found in Asia and probably result from recombination events with other genotypes. The number of reported sequences for HBV genotypes E to J is small compared to other genotypes, which could impact phylogenetic and pairwise distance analyses. Genotype F is the most divergent of the HBV genotypes and is subdivided into six subgenotypes F1 to F6. Genotype E may be a recent genotype circulating almost exclusively in sub-Saharan Africa. Genotype J is a putative genotype originating from a single Japanese patient. The paucity of data from sub-Saharan Africa and Latin America is due to the under-representation of these regions in clinical and research cohorts. The purpose of this review is to highlight the need for further research on HBV genotypes E to J, which appear to be overlooked genotypes.
Collapse
Affiliation(s)
- Rayana Maryse Toyé
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), 151 Cours Albert Thomas, 69003 Lyon, France; (R.M.T.); (F.Z.)
| | - Carmen Luisa Loureiro
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular (CMBC), Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020A, Venezuela; (C.L.L.); (R.C.J.)
| | - Rossana Celeste Jaspe
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular (CMBC), Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020A, Venezuela; (C.L.L.); (R.C.J.)
| | - Fabien Zoulim
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), 151 Cours Albert Thomas, 69003 Lyon, France; (R.M.T.); (F.Z.)
| | - Flor Helene Pujol
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular (CMBC), Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020A, Venezuela; (C.L.L.); (R.C.J.)
- Collégium de Lyon, Institut d’Etudes Avancées, Université Lyon 2, 69007 Lyon, France
| | - Isabelle Chemin
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), 151 Cours Albert Thomas, 69003 Lyon, France; (R.M.T.); (F.Z.)
| |
Collapse
|
8
|
Jose-Abrego A, Roman S, Laguna-Meraz S, Rebello-Pinho JR, Justo Arevalo S, Panduro A. Tracing the evolutionary history of hepatitis B virus genotype H endemic to Mexico. Front Microbiol 2023; 14:1180931. [PMID: 37293217 PMCID: PMC10244555 DOI: 10.3389/fmicb.2023.1180931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Hepatitis B virus (HBV) spreads efficiently among all human populations worldwide. HBV is classified into ten genotypes (A to J) with their geographic distribution and clinical features. In Mexico, HBV genotype H is the leading cause of hepatitis B and has been detected in indigenous populations, suggesting that HBV genotype H may be native to Mexico. However, little is known about the evolutionary history of HBV genotype H. Thus, we aimed to determine the age of HBV genotype H in Mexico using molecular dating techniques. Ninety-two HBV sequences of the reverse transcriptase (RT) domain of the polymerase gene (~1,251 bp) were analyzed; 48 were genotype H, 43 were genotype F, and the oldest HBV sequence from America was included as the root. All sequences were aligned, and the most recent common ancestor (TMRCA) time was calculated using the Bayesian Skyline Evolutionary Analysis. Our results estimate a TMRCA for the genotype H in Mexico of 2070.9 (667.5-4489.2) years before the present (YBP). We identified four major diversification events in genotype H, named H1, H2, H3, and H4. The TMRCA of H1 was 1213.0 (253.3-2638.3) YBP, followed by H2 1175.5 (557.5-2424.2) YBP, H3 949.6 (279.3-2105.0) YBP, and H4 1230.5 (336.3, 2756.7) YBP. We estimated that genotype H diverged from its sister genotype F around 8140.8 (1867.5-18012.8) YBP. In conclusion, this study found that genotype H in Mexico has an estimated age of 2070.9 (667.5-4489.2) YBP and has experienced at least four major diversification events since then.
Collapse
Affiliation(s)
- Alexis Jose-Abrego
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, "Fray Antonio Alcalde", Guadalajara, Jalisco, Mexico
- Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Sonia Roman
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, "Fray Antonio Alcalde", Guadalajara, Jalisco, Mexico
- Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Saul Laguna-Meraz
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, "Fray Antonio Alcalde", Guadalajara, Jalisco, Mexico
- Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
- Molecular Biology in Medicine Doctorate Program, Guadalajara, Mexico
| | - João Renato Rebello-Pinho
- Department of Gastroenterology, Institute of Tropical Medicine and School of Medicine, LIM07, University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Santiago Justo Arevalo
- Faculty of Biological Sciences, Ricardo Palma University, Lima, Peru
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Arturo Panduro
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, "Fray Antonio Alcalde", Guadalajara, Jalisco, Mexico
- Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
9
|
Sant'Anna TB, Araujo NM. Hepatitis B Virus Genotype D: An Overview of Molecular Epidemiology, Evolutionary History, and Clinical Characteristics. Microorganisms 2023; 11:1101. [PMID: 37317074 PMCID: PMC10221421 DOI: 10.3390/microorganisms11051101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 06/16/2023] Open
Abstract
The hepatitis B virus (HBV) genotype D (HBV/D) is the most extensively distributed genotype worldwide with distinct molecular and epidemiological features. This report provides an up-to-date review on the history of HBV/D subgenotyping and misclassifications, along with large-scale analysis of over 1000 HBV/D complete genome sequences, with the aim of gaining a thorough understanding of the global prevalence and geographic distribution of HBV/D subgenotypes. We have additionally explored recent paleogenomic findings, which facilitated the detection of HBV/D genomes dating back to the late Iron Age and provided new perspectives on the origins of modern HBV/D strains. Finally, reports on distinct disease outcomes and responses to antiviral therapy among HBV/D subgenotypes are discussed, further highlighting the complexity of this genotype and the importance of HBV subgenotyping in the management and treatment of hepatitis B.
Collapse
Affiliation(s)
- Thaís B Sant'Anna
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21041-250, RJ, Brazil
| | - Natalia M Araujo
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21041-250, RJ, Brazil
| |
Collapse
|
10
|
Kafeero HM, Ndagire D, Ocama P, Kato CD, Wampande E, Walusansa A, Kajumbula H, Kateete D, Ssenku JE, Sendagire H. Mapping hepatitis B virus genotypes on the African continent from 1997 to 2021: a systematic review with meta-analysis. Sci Rep 2023; 13:5723. [PMID: 37029173 PMCID: PMC10082212 DOI: 10.1038/s41598-023-32865-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Hepatitis B virus (HBV) has ten genotypes (A-J) and over 40 sub-genotypes based on the divergence of ≥ 8% and 4 to < 8% in the complete genome respectively. These genotypes and sub-genotypes influence the disease prognosis, response to therapy and route of viral transmission. Besides, infection with mixed genotypes and recombinant genotypes has also been reported. This study aimed at mapping the de novo genotypes and correlate them with the immigration trends in order to inform future research on the underlying reasons for the relative distribution of HBV genotypes from a large sample size pooled from many primary studies. Data was extracted from 59 full research articles obtained from Scopus, PubMed, EMBASE, Willy library, African Journal Online (AJOL) and Google Scholar. Studies that investigated the genotypes, sub-genotypes, mixed genotypes and recombinant were included. The Z-test and regression were used for the analysis. The study protocol is registered with PROSPERO under the registration number CRD42022300220. Overall, genotype E had the highest pooled prevalence significantly higher than all the other genotypes (P < 0.001). By region, genotype A posted the highest pooled prevalence in eastern and southern Africa, E in west Africa and D in north Africa (P < 0.0001). Regarding the emerging genotypes B and C on the African continent, genotype B was significantly higher in south Africa than C (P < 0.001). In contrast, genotype C was significantly higher in east Africa than west Africa (P < 0.0001). The A1 and D/E were the most diverse sub-genotypes and genotype mixtures respectively. Finally, we observed a general progressive decrease in the prevalence of predominant genotypes but a progressive increase in the less dominant by region. Historical and recent continental and intercontinental migrations can provide a plausible explanation for the HBV genotype distribution pattern on the African continent.
Collapse
Affiliation(s)
- Hussein Mukasa Kafeero
- Department of Medical Microbiology, College of Health Sciences, Makerere University, P. O Box 7062, Kampala, Uganda.
- Department of Medical Microbiology, Habib Medical School, Faculty of Health Sciences, Islamic University in Uganda, P. O Box 7689, Kampala, Uganda.
| | - Dorothy Ndagire
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Ponsiano Ocama
- Department of Medicine, College of Health Sciences, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Charles Drago Kato
- Department of Biomolecular Resources and Biolab Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Eddie Wampande
- Department of Biomolecular Resources and Biolab Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Abdul Walusansa
- Department of Medical Microbiology, Habib Medical School, Faculty of Health Sciences, Islamic University in Uganda, P. O Box 7689, Kampala, Uganda
| | - Henry Kajumbula
- Department of Medical Microbiology, College of Health Sciences, Makerere University, P. O Box 7062, Kampala, Uganda
| | - David Kateete
- Department of Molecular Biology and Immunology, College of Health Sciences, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Jamilu E Ssenku
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Hakim Sendagire
- Department of Medical Microbiology, College of Health Sciences, Makerere University, P. O Box 7062, Kampala, Uganda
- Department of Medical Microbiology, Habib Medical School, Faculty of Health Sciences, Islamic University in Uganda, P. O Box 7689, Kampala, Uganda
| |
Collapse
|
11
|
Boundenga L, Makouloutou-Nzassi P, Ngoubangoye B. A review of Gabonese gorillas and their pathogens: Diversity, transfer and One Health approach to avoid future outbreaks? FRONTIERS IN PARASITOLOGY 2023; 2:1115316. [PMID: 39816808 PMCID: PMC11731632 DOI: 10.3389/fpara.2023.1115316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/15/2023] [Indexed: 01/18/2025]
Abstract
In Africa, great apes, among which gorillas, are the reservoir of several infectious agents, some of which have zoonotic potential. However, scientific reports summarizing data on the pathogens harbored by some primate species still need to be published for the scientific community, conservation, and public health actors. In the case of Gabon, despite its outstanding biodiversity, particularly in great apes, and the history of outbreaks involving wildlife, there is a lack of reports on pathogens found in some ape species living in the vicinity of the human being. Thus, it is becoming urgent for us to synthesize the available data on pathogens (parasites, bacteria, and viruses) identified in gorillas living in different ecosystems of Gabon to assess the risks for the human population. Therefore, this review article presents the diversity of pathogens identified in gorillas in Gabon, their impact on primates' health, the cases of transfer between gorillas and humans, and the interest in a One Health approach for prevention and a better understanding of the ecology of gorilla's diseases infection in Gabon.
Collapse
Affiliation(s)
- Larson Boundenga
- Unité de Recherches en Ecologie de la Santé (URES), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Department of Anthropology, University of Durham, Durham, United Kingdom
| | - Patrice Makouloutou-Nzassi
- Unité de Recherches en Ecologie de la Santé (URES), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Departement de Biologie et Ecologie Animales, Institut de Recherches en Ecologie Tropicale (IRET), Centre National de Recherche Scientifique et Technologique (CENAREST), Libreville, Gabon
| | - Barthelemy Ngoubangoye
- Department of Anthropology, University of Durham, Durham, United Kingdom
- Centre de Primatologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| |
Collapse
|
12
|
Ji J, Xu S, Li W, Xu X, Kan Y, Yao L, Bi Y, Xie Q. Genome analysis and recombination characterization of duck hepatitis B virus isolated from ducks and geese in central China, 2017 to 2019. Poult Sci 2023; 102:102641. [PMID: 37004286 PMCID: PMC10091111 DOI: 10.1016/j.psj.2023.102641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Owing to its high similarity to human hepatitis B virus (HBV), duck HBV (DHBV) is often used as an essential model for HBV research. Although intergenotypic recombination of HBV is common, it remains unclear whether the intergenotypic recombination of human HBV is exactly the same as that of DHBV. In this study, 119 serum samples of duck and goose were collected from 51 farms (29 duck and 22 goose farms) in the central and eastern regions of China. A total of 22 strains isolated from the 22 DHBV positive flock were sequenced. Genome sequence alignment revealed that the duck- and goose-origin strains shared the highest and lowest similarities (99.7 and 90.52%, respectively). The complete genomes of these DHBV and 31 reference strains were analyzed using phylogenetic methods and classified into 3 clusters, which corresponded to the previously identified DHBV-I, DHBV-II, and DHBV-III branches. Recombination analyses of the 53 DHBV genomes indicated 2 major intergenotypic recombination events with high confidence values. These recombination events occurred between the genotypes of the Chinese isolates Y180813HB (Chinese branch [DHBV-Ⅰ]) and E170101AH (Chinese branch [DHBV-Ⅱ]) and the Western isolate DHBV-XY (Western branch [DHBV-Ⅲ]), resulting in the emergence of 2 Chinese recombinant isolates Y190303HN and Y170101HB. In addition, 40% (2/5) goose-origin and 58.8% (10/17) duck-origin DHBV in this study harbored the mutation site of G133E in preS, which promote the pathogenicity of DHBV. This is the first study to report on the genome analysis and recombination characterization of DHBV isolated from Chinese geese. Further, continuous investigation and molecular identification of DHBV should be conducted to attract researchers' attention.
Collapse
|
13
|
A novel subgenotype I3 of hepatitis B virus in Guangxi, China: a 15-year follow-up study. Virus Genes 2023; 59:359-369. [PMID: 36841897 DOI: 10.1007/s11262-023-01980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/13/2023] [Indexed: 02/27/2023]
Abstract
Genotype I of hepatitis B virus (HBV) was proposed recently following sequencing of complete HBV genomes from Vietnam and Laos. However, its long-term molecular evolution is unknown. The objectives of this study were to study the molecular evolution of this genotype from an asymptomatic HBsAg carrier from the Long An cohort over a 15-year period was studied using both NGS and clone-based sequencing. The number of complete genome sequences obtained in 2004, 2007, 2013, and 2019 are 17, 20, 19, and 10, respectively. All strains belong to subgenotype I1, except for six (five from 2007 and one from 2019) and 8 further strains from 2007 which form a cluster branching out from other subgenotype I sequences, supported by a 100% bootstrap value. Based on complete genome sequences, all of the estimated intragroup nucleotide divergence values between these strains and HBV subgenotypes I1-I2 exceed 4%. These strains are recombinants between genotype I1 and subgenotype C but the breakpoints vary. The median intrahost viral evolutionary rate in this carrier was 3.88E-4 substitutions per site per year. The Shannon entropy (Sn) ranged from 0.55 to 0.88 and the genetic diversity, D, ranged from 0.0022 to 0.0041. In conclusion, our data provide evidence of novel subgenotypes. Considering that the 8 strains disappeared after 2007, while one of the 6 strains appears again in 2019, we propose these 6 strains as a new subgenotype, provisionally designated HBV subgenotype I3 and the 8 strains as aberrant genotype.
Collapse
|
14
|
Dunay E, Owens LA, Dunn CD, Rukundo J, Atencia R, Cole MF, Cantwell A, Emery Thompson M, Rosati AG, Goldberg TL. Viruses in sanctuary chimpanzees across Africa. Am J Primatol 2023; 85:e23452. [PMID: 36329642 PMCID: PMC9812903 DOI: 10.1002/ajp.23452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Infectious disease is a major concern for both wild and captive primate populations. Primate sanctuaries in Africa provide critical protection to thousands of wild-born, orphan primates confiscated from the bushmeat and pet trades. However, uncertainty about the infectious agents these individuals potentially harbor has important implications for their individual care and long-term conservation strategies. We used metagenomic next-generation sequencing to identify viruses in blood samples from chimpanzees (Pan troglodytes) in three sanctuaries in West, Central, and East Africa. Our goal was to evaluate whether viruses of human origin or other "atypical" or unknown viruses might infect these chimpanzees. We identified viruses from eight families: Anelloviridae, Flaviviridae, Genomoviridae, Hepadnaviridae, Parvoviridae, Picobirnaviridae, Picornaviridae, and Rhabdoviridae. The majority (15/26) of viruses identified were members of the family Anelloviridae and represent the genera Alphatorquevirus (torque teno viruses) and Betatorquevirus (torque teno mini viruses), which are common in chimpanzees and apathogenic. Of the remaining 11 viruses, 9 were typical constituents of the chimpanzee virome that have been identified in previous studies and are also thought to be apathogenic. One virus, a novel tibrovirus (Rhabdoviridae: Tibrovirus) is related to Bas-Congo virus, which was originally thought to be a human pathogen but is currently thought to be apathogenic, incidental, and vector-borne. The only virus associated with disease was rhinovirus C (Picornaviridae: Enterovirus) infecting one chimpanzee subsequent to an outbreak of respiratory illness at that sanctuary. Our results suggest that the blood-borne virome of African sanctuary chimpanzees does not differ appreciably from that of their wild counterparts, and that persistent infection with exogenous viruses may be less common than often assumed.
Collapse
Affiliation(s)
- Emily Dunay
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Leah A. Owens
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Christopher D. Dunn
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Joshua Rukundo
- Ngamba Island Chimpanzee Sanctuary/Chimpanzee TrustEntebbeUganda
| | - Rebeca Atencia
- Jane Goodall Institute CongoPointe‐NoireRepublic of Congo
| | - Megan F. Cole
- Department of AnthropologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Averill Cantwell
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - Alexandra G. Rosati
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
- Department of AnthropologyUniversity of MichiganAnn ArborMichiganUSA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
15
|
Yardeni D, Chang KM, Ghany MG. Current Best Practice in Hepatitis B Management and Understanding Long-term Prospects for Cure. Gastroenterology 2023; 164:42-60.e6. [PMID: 36243037 PMCID: PMC9772068 DOI: 10.1053/j.gastro.2022.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 02/03/2023]
Abstract
The hepatitis B virus (HBV) is a major cause of cirrhosis and hepatocellular carcinoma worldwide. Despite an effective vaccine, the prevalence of chronic infection remains high. Current therapy is effective at achieving on-treatment, but not off-treatment, viral suppression. Loss of hepatitis B surface antigen, the best surrogate marker of off-treatment viral suppression, is associated with improved clinical outcomes. Unfortunately, this end point is rarely achieved with current therapy because of their lack of effect on covalently closed circular DNA, the template of viral transcription and genome replication. Major advancements in our understanding of HBV virology along with better understanding of immunopathogenesis have led to the development of a multitude of novel therapeutic approaches with the prospect of achieving functional cure (hepatitis B surface antigen loss) and perhaps complete cure (clearance of covalently closed circular DNA and integrated HBV DNA). This review will cover current best practice for managing chronic HBV infection and emerging novel therapies for HBV infection and their prospect for cure.
Collapse
Affiliation(s)
- David Yardeni
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kyong-Mi Chang
- Medical Research, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Marc G Ghany
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
16
|
Hoofnagle JH. A Modern Therapy for an Ancient Disease. N Engl J Med 2022; 387:1996-1998. [PMID: 36346068 DOI: 10.1056/nejme2213449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jay H Hoofnagle
- From the Liver Disease Research Branch, Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
17
|
Skrlec I, Talapko J. Hepatitis B and circadian rhythm of the liver. World J Gastroenterol 2022; 28:3282-3296. [PMID: 36158265 PMCID: PMC9346465 DOI: 10.3748/wjg.v28.i27.3282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/15/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
The circadian rhythm in humans is determined by the central clock located in the hypothalamus's suprachiasmatic nucleus, and it synchronizes the peripheral clocks in other tissues. Circadian clock genes and clock-controlled genes exist in almost all cell types. They have an essential role in many physiological processes, including lipid metabolism in the liver, regulation of the immune system, and the severity of infections. In addition, circadian rhythm genes can stimulate the immune response of host cells to virus infection. Hepatitis B virus (HBV) infection is the leading cause of liver disease and liver cancer globally. HBV infection depends on the host cell, and hepatocyte circadian rhythm genes are associated with HBV replication, survival, and spread. The core circadian rhythm proteins, REV-ERB and brain and muscle ARNTL-like protein 1, have a crucial role in HBV replication in hepatocytes. In addition to influencing the virus's life cycle, the circadian rhythm also affects the pharmacokinetics and efficacy of antiviral vaccines. Therefore, it is vital to apply antiviral therapy at the appropriate time of day to reduce toxicity and improve the effectiveness of antiviral treatment. For these reasons, understanding the role of the circadian rhythm in the regulation of HBV infection and host responses to the virus provides us with a new perspective of the interplay of the circadian rhythm and anti-HBV therapy. Therefore, this review emphasizes the importance of the circadian rhythm in HBV infection and the optimization of antiviral treatment based on the circadian rhythm-dependent immune response.
Collapse
Affiliation(s)
- Ivana Skrlec
- Department of Biophysics, Biology, and Chemistry, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Jasminka Talapko
- Department of Anatomy Histology, Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health, Osijek 31000, Croatia
| |
Collapse
|
18
|
The unexpected high prevalence of HBV subgenotype D4 in patients with chronic hepatitis B in Galicia, a northwestern Spanish region, reflects strong links with Latin America. J Clin Virol 2022; 153:105195. [PMID: 35661583 DOI: 10.1016/j.jcv.2022.105195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/09/2022] [Accepted: 05/28/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hepatitis B virus (HBV) comprises 9 genotypes and multiple subgenotypes that depict differences in geographic distribution, clinical outcome and response to antiviral therapy. However, the molecular epidemiology of HBV geno/subgenotypes is globally scarce. In Spain, HBV genotype D seems to be more prevalent in the northwestern regions compared to the rest of the country for unclear reasons. METHODS HBV genotyping was performed using geno2pheno on a S gene fragment amplified from plasma collected from all chronic hepatitis B individuals attended at one reference hospital in Santiago de Compostela, the Galicia's capital town. Phylogenetic and phylogeographic analyses using a fragment of 345 bp were performed in all viremic specimens. To avoid misleading allocation as consequence of short fragment analysis, several bioinformatic controls were used. RESULTS A total of 320 individuals with persistent serum HBsAg+ and detectable HBV-DNA were seen between 2000 and 2016 (male 68.4%; median age, 52 years-old; native Spaniards 83.8%). HBV genotype distribution was as follows: A 15.3%; B 1.6%; C 2.5%; D 71.6%; E 3.1%; F 2.2%; G 3.1%; and H 0.6%. HBV genotype D was mostly represented by D4 and D2 subgenotypes (33.4% and 15% of total, respectively). Compared to chronic hepatitis B patients with genotypes B, C, E and G, HBV-D4 carriers tended to be older (54.2% had >50 years-old) and HBeAg-negative (85%). Moreover, 43% were female, 4.7% had cirrhosis, 10.2% hepatitis C and 6.4% HIV coinfection. Phylogenetic analyses could be performed on 82 HBV-D4 specimens; and 79 were confirmed as HBV-D4 using PhyML. Phylogeography using FasTree suggested at least two distinct introductions of HBV-D4 in Galicia, one from the Caribbean and South America, and another from India. CONCLUSIONS HBV subgenotype D4 is the most prevalent HBV variant in chronic hepatitis B patients living in the northwest of Spain, representing 33.4% (107/320) of all chronic hepatitis B infections. This rate of HBV-D4 is among the highest reported worldwide. Epidemiological and phylogenetic analyses suggest a strong association with historical migrant exchanges with Latin America, and especially with the Caribbean basin.
Collapse
|
19
|
Ingasia LAO, Wose Kinge C, Kramvis A. Genotype E: The neglected genotype of hepatitis B virus. World J Hepatol 2021; 13:1875-1891. [PMID: 35069995 PMCID: PMC8727212 DOI: 10.4254/wjh.v13.i12.1875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/15/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) (sub)genotypes A1, D3 and E circulate in sub-Saharan Africa, the region with one of the highest incidences of HBV-associated hepatocellular carcinoma globally. Although genotype E was identified more than 20 years ago, and is the most widespread genotype in Africa, it has not been extensively studied. The current knowledge status and gaps in its origin and evolution, natural history of infection, disease progression, response to antiviral therapy and vaccination are discussed. Genotype E is an African genotype, with unique molecular characteristics that is found mainly in Western and Central Africa and rarely outside Africa except in individuals of African descent. The low prevalence of this genotype in the African descendant populations in the New World, phylogeographic analyses, the low genetic diversity and evidence of remnants of genotype E in ancient HBV samples suggests the relatively recent re-introduction into the population. There is scarcity of information on the clinical and virological characteristics of genotype E-infected patients, disease progression and outcomes and efficacy of anti-HBV drugs. Individuals infected with genotype E have been characterised with high hepatitis B e antigen-positivity and high viral load with a lower end of treatment response to interferon-alpha. A minority of genotype E-infected participants have been included in studies in which treatment response was monitored. Of concern is that current guidelines do not consider patients infected with genotype E. Thus, there is an urgent need for further large-scale investigations into genotype E, the neglected genotype of HBV.
Collapse
Affiliation(s)
- Luicer Anne Olubayo Ingasia
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
| | - Constance Wose Kinge
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
- Department of Implementation Science, Right to Care, Johannesburg 0046, Gauteng, South Africa
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
| |
Collapse
|