1
|
Beenken KE, Smeltzer MS. Staphylococcus aureus Biofilm-Associated Infections: Have We Found a Clinically Relevant Target? Microorganisms 2025; 13:852. [PMID: 40284688 PMCID: PMC12029350 DOI: 10.3390/microorganisms13040852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Staphylococcus aureus is one of the most diverse bacterial pathogens. This is reflected in its ability to cause a wide array of infections and in genotypic and phenotypic differences between clinical isolates that extend beyond their antibiotic resistance status. Many S. aureus infections, including those involving indwelling medical devices, are therapeutically defined by the formation of a biofilm. This is reflected in the number of reports focusing on S. aureus biofilm formation and biofilm-associated infections. These infections are characterized by a level of intrinsic resistance that compromises conventional antibiotic therapy irrespective of acquired resistance, suggesting that an inhibitor of biofilm formation would have tremendous clinical value. Many reports have described large-scale screens aimed at identifying compounds that limit S. aureus biofilm formation, but relatively few examined whether the limitation was sufficient to overcome this intrinsic resistance. Similarly, while many of these reports examined the impact of putative inhibitors on S. aureus phenotypes, very few took a focused approach to identify and optimize an effective inhibitor of specific biofilm-associated targets. Such approaches are dependent on validating a target, hopefully one that is not restricted by the diversity of S. aureus as a bacterial pathogen. Rigorous biological validation of such a target would allow investigators to virtually screen vast chemical libraries to identify potential inhibitors that warrant further investigation based on their predicted function. Here, we summarize reports describing S. aureus regulatory loci implicated in biofilm formation to assess whether they are viable targets for the development of an anti-biofilm therapeutic strategy with an emphasis on whether sarA has been sufficiently validated to warrant consideration in this important clinical context.
Collapse
Affiliation(s)
- Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
2
|
Post V, Pascoe B, Hitchings MD, Erichsen C, Fischer J, Morgenstern M, Richards RG, Sheppard SK, Moriarty TF. Methicillin-sensitive Staphylococcus aureus lineages contribute towards poor patient outcomes in orthopaedic device-related infections. Microb Genom 2025; 11:001390. [PMID: 40238650 PMCID: PMC12068410 DOI: 10.1099/mgen.0.001390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 03/04/2025] [Indexed: 04/18/2025] Open
Abstract
Staphylococci are the most common cause of orthopaedic device-related infections (ODRIs), with Staphylococcus aureus responsible for a third or more of cases. This prospective clinical and laboratory study investigated the association of genomic and phenotypic variation with treatment outcomes in ODRI isolates. Eighty-six invasive S. aureus isolates were collected from patients with ODRI, and clinical outcome was assessed after a follow-up examination of 24 months. Each patient was then considered to have been 'cured' or 'not cured' based on predefined clinical criteria. Whole-genome sequencing and molecular characterization identified isolates belonging to globally circulating community- and hospital-acquired lineages. Most isolates were phenotypically susceptible to methicillin and lacked the staphylococcal cassette chromosome mec cassette [methicillin-susceptible S. aureus (MSSA); 94%] but contained several virulence genes, including toxins and biofilm genes. Whilst recognizing the role of the host immune response, we identified genetic variance, which could be associated with the infection severity or clinical outcome. Whilst this and several other studies reinforce the role antibiotic resistance [e.g. methicillin-resistant S. aureus (MRSA) infection] has on treatment failure, it is important not to overlook MSSA that can cause equally destructive infections and lead to poor patient outcomes.
Collapse
Affiliation(s)
| | - Ben Pascoe
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | | | | | - Julian Fischer
- Centrum of Orthopedic Isartal, Pullach im Isartal, Germany
| | - Mario Morgenstern
- Department of Orthopedic and Trauma Surgery, University Hospital, Basel, Switzerland
| | | | - Samuel K. Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - T. Fintan Moriarty
- AO Research Institute Davos, Davos, Switzerland
- Department of Orthopedic and Trauma Surgery, University Hospital, Basel, Switzerland
| |
Collapse
|
3
|
Liu S, Teng L, Ping J. Graphitic Carbon Nitride Confers Bacterial Tolerance to Antibiotics in Wastewater Relating to ATP Depletion. Molecules 2024; 29:5780. [PMID: 39683937 DOI: 10.3390/molecules29235780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Graphitic carbon nitride (C3N4) is a kind of visible light-responsive photocatalyst that has been of great interest in wastewater treatment. However, its environmental impact and biological effect remains to be elucidated. This study investigated the effect of C3N4 nanosheets on bacterial abundance and antibiotic tolerance in wastewater. Interestingly, as compared to the wastewater containing the antibiotic ofloxacin alone, the wastewater containing both ofloxacin and C3N4 had much higher numbers of total living bacteria, but lower levels of the ofloxacin-resistant bacteria and the ofloxacin-resistant gene qnrS. The model bacterium Staphylococcus aureus was then used to explore the mechanism of C3N4-induced antibiotic tolerance. The nanosheets neither adsorbed the antibiotic nor promoted drug efflux, uncovering that drug adsorption and efflux were not involved in antibiotic tolerance. Further investigations revealed that the nanosheets, like arsenate and menadione, drastically reduced ATP levels and induced the production of reactive oxygen species for enhanced antibiotic tolerance. This study revealed an antibiotic-tolerating mechanism associated with C3N4-induced ATP depletion, and shed a light on the effect of photocatalysts on microbial ecology during their application in wastewater treatment.
Collapse
Affiliation(s)
- Shuo Liu
- School of Energy and Chemical Engineering, Tianjin Renai College, Tianjin 301636, China
| | - Lin Teng
- School of Energy and Chemical Engineering, Tianjin Renai College, Tianjin 301636, China
| | - Jiantao Ping
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
4
|
Bjerg CSB, Poehlein A, Bömeke M, Himmelbach A, Schramm A, Brüggemann H. Increased biofilm formation in dual-strain compared to single-strain communities of Cutibacterium acnes. Sci Rep 2024; 14:14547. [PMID: 38914744 PMCID: PMC11196685 DOI: 10.1038/s41598-024-65348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
Cutibacterium acnes is a known opportunistic pathogen in orthopedic implant-associated infections (OIAIs). The species of C. acnes comprises distinct phylotypes. Previous studies suggested that C. acnes can cause single- as well as multi-typic infections, i.e. infections caused by multiple strains of different phylotypes. However, it is not known if different C. acnes phylotypes are organized in a complex biofilm community, which could constitute a multicellular strategy to increase biofilm strength and persistency. Here, the interactions of two C. acnes strains belonging to phylotypes IB and II were determined in co-culture experiments. No adverse interactions between the strains were observed in liquid culture or on agar plates; instead, biofilm formation in both microtiter plates and on titanium discs was significantly increased when combining both strains. Fluorescence in situ hybridization showed that both strains co-occurred throughout the biofilm. Transcriptome analyses revealed strain-specific alterations of gene expression in biofilm-embedded cells compared to planktonic growth, in particular affecting genes involved in carbon and amino acid metabolism. Overall, our results provide first insights into the nature of dual-type biofilms of C. acnes, suggesting that strains belonging to different phylotypes can form biofilms together with additive effects. The findings might influence the perception of C. acnes OIAIs in terms of diagnosis and treatment.
Collapse
Affiliation(s)
- Cecilie Scavenius Brønnum Bjerg
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Mechthild Bömeke
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Andreas Schramm
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Holger Brüggemann
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
5
|
Ngo HG, Mohiuddin SG, Ananda A, Orman MA. UNRAVELING CRP/cAMP-MEDIATED METABOLIC REGULATION IN ESCHERICHIA COLI PERSISTER CELLS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598332. [PMID: 38915711 PMCID: PMC11195080 DOI: 10.1101/2024.06.10.598332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
A substantial gap persists in our comprehension of how bacterial metabolism undergoes rewiring during the transition to a persistent state. Also, it remains unclear which metabolic mechanisms become indispensable for persister cell survival. To address these questions, we directed our efforts towards persister cells in Escherichia coli that emerge during the late stationary phase. These cells have been recognized for their exceptional resilience and are commonly believed to be in a dormant state. Our results demonstrate that the global metabolic regulator Crp/cAMP redirects the metabolism of these antibiotic-tolerant cells from anabolism to oxidative phosphorylation. Although our data indicates that persisters exhibit a reduced metabolic rate compared to rapidly growing exponential-phase cells, their survival still relies on energy metabolism. Extensive genomic-level analyses of metabolomics, proteomics, and single-gene deletions consistently emphasize the critical role of energy metabolism, specifically the tricarboxylic acid (TCA) cycle, electron transport chain (ETC), and ATP synthase, in sustaining the viability of persisters. Altogether, this study provides much-needed clarification regarding the role of energy metabolism in antibiotic tolerance and highlights the importance of using a multipronged approach at the genomic level to obtain a broader picture of the metabolic state of persister cells.
Collapse
Affiliation(s)
- Han G. Ngo
- Department of Chemical and Biomolecular Engineering, University of Houston, TX, 77204
| | - Sayed Golam Mohiuddin
- Department of Chemical and Biomolecular Engineering, University of Houston, TX, 77204
| | - Aina Ananda
- Department of Biology, Monmouth University, NJ, 07764
| | - Mehmet A. Orman
- Department of Chemical and Biomolecular Engineering, University of Houston, TX, 77204
| |
Collapse
|
6
|
Truong-Bolduc QC, Wang Y, Ferrer-Espada R, Reedy JL, Martens AT, Goulev Y, Paulsson J, Vyas JM, Hooper DC. Staphylococcus aureus AbcA transporter enhances persister formation under β-lactam exposure. Antimicrob Agents Chemother 2024; 68:e0134023. [PMID: 38364015 PMCID: PMC10916373 DOI: 10.1128/aac.01340-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
We evaluated the role of Staphylococcus aureus AbcA transporter in bacterial persistence and survival following exposure to the bactericidal agents nafcillin and oxacillin at both the population and single-cell levels. We show that AbcA overexpression resulted in resistance to nafcillin but not oxacillin. Using distinct fluorescent reporters of cell viability and AbcA expression, we found that over 6-14 hours of persistence formation, the proportion of AbcA reporter-expressing cells assessed by confocal microscopy increased sixfold as cell viability reporters decreased. Similarly, single-cell analysis in a high-throughput microfluidic system found a strong correspondence between antibiotic exposure and AbcA reporter expression. Persister cells grown in the absence of antibiotics showed neither an increase in nafcillin MIC nor in abcA transcript levels, indicating that survival was not associated with stable mutational resistance or abcA overexpression. Furthermore, persister cell levels on exposure to 1×MIC and 25×MIC of nafcillin decreased in an abcA knockout mutant. Survivors of nafcillin and oxacillin treatment overexpressed transporter AbcA, contributing to an enrichment of the number of persisters during treatment with pump-substrate nafcillin but not with pump-non-substrate oxacillin, indicating that efflux pump expression can contribute selectively to the survival of a persister population.
Collapse
Affiliation(s)
- Q. C. Truong-Bolduc
- Infectious Diseases Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Y. Wang
- Infectious Diseases Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - R. Ferrer-Espada
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - J. L. Reedy
- Infectious Diseases Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - A. T. Martens
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Y. Goulev
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - J. Paulsson
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - J. M. Vyas
- Infectious Diseases Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - D. C. Hooper
- Infectious Diseases Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Karimaei S, Aghamir SMK, Pourmand MR. Comparative analysis of genes expression involved in type II toxin-antitoxin system in Staphylococcus aureus following persister cell formation. Mol Biol Rep 2024; 51:324. [PMID: 38393536 DOI: 10.1007/s11033-023-09179-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/18/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND The formation of persister cells is the main reason for persistent infections. They are associated with antibiotic treatment failure and subsequently chronic infection. The study aimed to assess the expression of type II toxin/antitoxin (TA) system genes in persister cells of Staphylococcus aureus in the presence of the following antibiotics vancomycin, ciprofloxacin, and gentamicin in exponential and stationary phases. METHODS AND RESULTS The colony count was used to evaluate the effect of different types of antibiotics on S. aureus persister cell formation during exponential and stationary phases. Moreover, the expression level of TA systems and clpP genes in the persister population in exponential and stationary phases were measured by quantitative reverse transcriptase real-time PCR (qRT-PCR). The results of the study showed the presence of persister phenotype of S. aureus strains in the attendance of bactericidal antibiotics in comparison to the control group during the exponential and stationary phases. Moreover, qRT-PCR resulted in the fact that the role of TA systems involved in the persister cell formation depends on the bacterial growth phase and the type of strain and antibiotic. CONCLUSIONS In total, the present study provides some data on the persister cell formation and the possible role of TA system genes in this process.
Collapse
Affiliation(s)
- Samira Karimaei
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pathobiology, School of Public Health and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Vasudevan S, David H, Chanemougam L, Ramani J, Ramesh Sangeetha M, Solomon AP. Emergence of persister cells in Staphylococcus aureus: calculated or fortuitous move? Crit Rev Microbiol 2024; 50:64-75. [PMID: 36548910 DOI: 10.1080/1040841x.2022.2159319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
A stable but reversible phenotype switch from normal to persister state is advantageous to the intracellular pathogens to cause recurrent infections and to evade the host immune system. Staphylococcus aureus is a versatile opportunistic pathogen known to cause chronic infections with significant mortality. One of the notable features is the ability to switch to a per-sisters cell, which is found in planktonic and biofilm states. This phenotypic switch is always an open question to explore the hidden fundamental science that coheres with a calculated or fortuitous move. Toxin-antitoxin modules, nutrient stress, and an erroneous translation-enabled state of dormancy entail this persistent behaviour in S. aureus. It is paramount to get a clear picture of why the cell chooses to enter a persistent condition, as it would decide the course of treatment. Analyzing the exit from a persistent state to an active state and the subsequent repercussion of this transition is essential to determine its role in chronic infections. This review attempts to provide a constructed argument discussing the most widely accepted mechanisms and identifying the various attributes of persistence.
Collapse
Affiliation(s)
- Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Lakshmi Chanemougam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Jayalakshmi Ramani
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Maanasa Ramesh Sangeetha
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
9
|
Habib G, Gul H, Ahmad P, Hayat A, Rehman MU, Mohamed Moussa I, Elansary HO. Teicoplanin associated gene tcaA inactivation increases persister cell formation in Staphylococcus aureus. Front Microbiol 2023; 14:1241995. [PMID: 37901830 PMCID: PMC10611510 DOI: 10.3389/fmicb.2023.1241995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Staphylococcus aureus is part of normal human flora and is widely associated with hospital-acquired bacteremia. S. aureus has shown a diverse array of resistance to environmental stresses and antibiotics. Methicillin-resistant S. aureus (MRSA) is on the high priority list of new antibiotics discovery and glycopeptides are considered the last drug of choice against MRSA. S. aureus has developed resistance against glycopeptides and the emergence of vancomycin-intermediate-resistant, vancomycin-resistant, and teicoplanin-resistant strains is globally reported. Teicoplanin-associated genes tcaR-tcaA-tcaB (tcaRAB) is known as the S. aureus glycopeptide resistance operon that is associated with glycopeptide resistance. Here, for the first time, the role of tcaRAB in S. aureus persister cells formation, and ΔtcaA dependent persisters' ability to resuscitate the bacterial population was explored. We recovered a clinical strain of MRSA from a COVID-19 patient which showed a high level of resistance to teicoplanin, vancomycin, and methicillin. Whole genome RNA sequencing revealed that the tcaRAB operon expression was altered followed by high expression of glyS and sgtB. The RNA-seq data revealed a significant decrease in tcaA (p = 0.008) and tcaB (p = 0.04) expression while tcaR was not significantly altered. We knocked down tcaA, tcaB, and tcaR using CRISPR-dCas9 and the results showed that when tcaA was suppressed by dCas9, a significant increase was witnessed in persister cells while tcaB suppression did not induce persistence. The results were further evaluated by creating a tcaA mutant that showed ΔtcaA formed a significant increase in persisters in comparison to the wild type. Based on our findings, we concluded that tcaA is the gene that increases persister cells and glycopeptide resistance and could be a potential therapeutic target in S. aureus.
Collapse
Affiliation(s)
- Gul Habib
- Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Haji Gul
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Prevez Ahmad
- Department of Physics, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Azam Hayat
- Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Mujaddad Ur Rehman
- Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Ihab Mohamed Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hosam O. Elansary
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Gussak A, Ferrando ML, Schrama M, van Baarlen P, Wells JM. Precision Genome Engineering in Streptococcus suis Based on a Broad-Host-Range Vector and CRISPR-Cas9 Technology. ACS Synth Biol 2023; 12:2546-2560. [PMID: 37602730 PMCID: PMC10510748 DOI: 10.1021/acssynbio.3c00110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Indexed: 08/22/2023]
Abstract
Streptococcussuis is an important zoonotic pathogen that causes severe invasive disease in pigs and humans. Current methods for genome engineering of S. suis rely on the insertion of antibiotic resistance markers, which is time-consuming and labor-intensive and does not allow the precise introduction of small genomic mutations. Here we developed a system for CRISPR-based genome editing in S. suis, utilizing linear DNA fragments for homologous recombination (HR) and a plasmid-based negative selection system for bacteria not edited by HR. To enable the use of this system in other bacteria, we engineered a broad-host-range replicon in the CRISPR plasmid. We demonstrated the utility of this system to rapidly introduce multiple gene deletions in successive rounds of genome editing and to make precise nucleotide changes in essential genes. Furthermore, we characterized a mechanism by which S. suis can escape killing by a targeted Cas9-sgRNA complex in the absence of HR. A characteristic of this new mechanism is the presence of very slow-growing colonies in a persister-like state that may allow for DNA repair or the introduction of mutations, alleviating Cas9 pressure. This does not impact the utility of CRISPR-based genome editing because the escape colonies are easily distinguished from genetically edited clones due to their small colony size. Our CRISPR-based editing system is a valuable addition to the genetic toolbox for engineering of S. suis, as it accelerates the process of mutant construction and simplifies the removal of antibiotic markers between successive rounds of genome editing.
Collapse
Affiliation(s)
- Alex Gussak
- Host-Microbe Interactomics, Animal
Sciences, Wageningen University, 6708 WD Wageningen, The Netherlands
| | | | | | - Peter van Baarlen
- Host-Microbe Interactomics, Animal
Sciences, Wageningen University, 6708 WD Wageningen, The Netherlands
| | - Jerry Mark Wells
- Host-Microbe Interactomics, Animal
Sciences, Wageningen University, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
11
|
Theis TJ, Daubert TA, Kluthe KE, Brodd KL, Nuxoll AS. Staphylococcus aureus persisters are associated with reduced clearance in a catheter-associated biofilm infection. Front Cell Infect Microbiol 2023; 13:1178526. [PMID: 37228667 PMCID: PMC10203555 DOI: 10.3389/fcimb.2023.1178526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Background Staphylococcus aureus causes a wide variety of infections, many of which are chronic or relapsing in nature. Antibiotic therapy is often ineffective against S. aureus biofilm-mediated infections. Biofilms are difficult to treat partly due to their tolerance to antibiotics, however the underlying mechanism responsible for this remains unknown. One possible explanation is the presence of persister cells-dormant-like cells that exhibit tolerance to antibiotics. Recent studies have shown a connection between a fumC (fumarase C, a gene in the tricarboxylic acid cycle) knockout strain and increased survival to antibiotics, antimicrobial peptides, and in a Drosophila melanogaster model. Objective It remained unclear whether a S. aureus high persister strain would have a survival advantage in the presence of innate and adaptive immunity. To further investigate this, a fumC knockout and wild type strains were examined in a murine catheter-associated biofilm model. Results Interestingly, mice struggled to clear both S. aureus wild type and the fumC knockout strains. We reasoned both biofilm-mediated infections predominantly consisted of persister cells. To determine the persister cell population within biofilms, expression of a persister cell marker (Pcap5A::dsRED) in a biofilm was examined. Cell sorting of biofilms challenged with antibiotics revealed cells with intermediate and high expression of cap5A had 5.9-and 4.5-fold higher percent survival compared to cells with low cap5A expression. Based on previous findings that persisters are associated with reduced membrane potential, flow cytometry analysis was used to examine the metabolic state of cells within a biofilm. We confirmed cells within biofilms had reduced membrane potential compared to both stationary phase cultures (2.5-fold) and exponential phase cultures (22.4-fold). Supporting these findings, cells within a biofilm still exhibited tolerance to antibiotic challenge following dispersal of the matrix through proteinase K. Conclusion Collectively, these data show that biofilms are largely comprised of persister cells, and this may explain why biofilm infections are often chronic and/or relapsing in clinical settings.
Collapse
|
12
|
G C B, Sahukhal GS, Elasri MO. Delineating the Role of the msaABCR Operon in Staphylococcal Overflow Metabolism. Front Microbiol 2022; 13:914512. [PMID: 35722290 PMCID: PMC9204165 DOI: 10.3389/fmicb.2022.914512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is an important human pathogen that can infect almost every organ system, resulting in a high incidence of morbidity and mortality. The msaABCR operon is an important regulator of several staphylococcal phenotypes, including biofilm development, cell wall crosslinking, antibiotic resistance, oxidative stress, and acute and chronic implant-associated osteomyelitis. Our previous study showed that, by modulating murein hydrolase activity, the msaABCR operon negatively regulates the proteases that govern cell death. Here, we report further elucidation of the mechanism of cell death, which is regulated by the msaABCR operon at the molecular level in the USA300 LAC strain. We showed that deletion of msaABCR enhances weak-acid-dependent cell death, because, in the biofilm microenvironment, this mutant strain consumes glucose and produces acetate and acetoin at higher rates than wild-type USA300 LAC strain. We proposed the increased intracellular acidification leads to increased cell death. MsaB, a dual-function transcription factor and RNA chaperone, is a negative regulator of the cidR regulon, which has been shown to play an important role in overflow metabolism and programmed cell death during biofilm development in S. aureus. We found that MsaB binds directly to the cidR promoter, which represses expression of the cidR regulon and prevents transcription of the cidABC and alsSD operons. In addition, we observed that pyruvate induced expression of the msaABCR operon (MsaB). The results reported here have enabled us to decipher the role of the msaABCR operon in staphylococcal metabolic adaption during biofilm development.
Collapse
Affiliation(s)
- Bibek G C
- Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Gyan S. Sahukhal
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- *Correspondence: Gyan S. Sahukhal,
| | - Mohamed O. Elasri
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
13
|
Comparative Transcriptomic Analysis of Staphylococcus aureus Reveals the Genes Involved in Survival at Low Temperature. Foods 2022; 11:foods11070996. [PMID: 35407083 PMCID: PMC8997709 DOI: 10.3390/foods11070996] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 02/05/2023] Open
Abstract
In food processing, the temperature is usually reduced to limit bacterial reproduction and maintain food safety. However, Staphylococcus aureus can adapt to low temperatures by controlling gene expression and protein activity, although its survival strategies normally vary between different strains. The present study investigated the molecular mechanisms of S. aureus with different survival strategies in response to low temperatures (4 °C). The survival curve showed that strain BA-26 was inactivated by 6.0 logCFU/mL after 4 weeks of low-temperature treatment, while strain BB-11 only decreased by 1.8 logCFU/mL. Intracellular nucleic acid leakage, transmission electron microscopy, and confocal laser scanning microscopy analyses revealed better cell membrane integrity of strain BB-11 than that of strain BA-26 after low-temperature treatment. Regarding oxidative stress, the superoxide dismutase activity and the reduced glutathione content in BB-11 were higher than those in BA-26; thus, BB-11 contained less malondialdehyde than BA-26. RNA-seq showed a significantly upregulated expression of the fatty acid biosynthesis in membrane gene (fabG) in BB-11 compared with BA-26 because of the damaged cell membrane. Then, catalase (katA), reduced glutathione (grxC), and peroxidase (ahpC) were found to be significantly upregulated in BB-11, leading to an increase in the oxidative stress response, but BA-26-related genes were downregulated. NADH dehydrogenase (nadE) and α-glucosidase (malA) were upregulated in the cold-tolerant strain BB-11 but were downregulated in the cold-sensitive strain BA-26, suggesting that energy metabolism might play a role in S. aureus under low-temperature stress. Furthermore, defense mechanisms, such as those involving asp23, greA, and yafY, played a pivotal role in the response of BB-11 to stress. The study provided a new perspective for understanding the survival mechanism of S. aureus at low temperatures.
Collapse
|
14
|
Altwiley D, Brignoli T, Edwards A, Recker M, Lee JC, Massey RC. A functional menadione biosynthesis pathway is required for capsule production by Staphylococcus aureus. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34825882 PMCID: PMC8743628 DOI: 10.1099/mic.0.001108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus is a major human pathogen that utilises a wide array of pathogenic and immune evasion strategies to cause disease. One immune evasion strategy, common to many bacterial pathogens, is the ability of S. aureus to produce a capsule that protects the bacteria from several aspects of the human immune system. To identify novel regulators of capsule production by S. aureus, we applied a genome wide association study (GWAS) to a collection of 300 bacteraemia isolates that represent the two major MRSA clones in UK and Irish hospitals: CC22 and CC30. One of the loci associated with capsule production, the menD gene, encodes an enzyme critical to the biosynthesis of menadione. Mutations in this gene that result in menadione auxotrophy induce the slow growing small-colony variant (SCV) form of S. aureus often associated with chronic infections due to their increased resistance to antibiotics and ability to survive inside phagocytes. Utilising such an SCV, we functionally verified this association between menD and capsule production. Although the clinical isolates with polymorphisms in the menD gene in our collections had no apparent growth defects, they were more resistant to gentamicin when compared to those with the wild-type menD gene. Our work suggests that menadione is involved in the production of the S. aureus capsule, and that amongst clinical isolates polymorphisms exist in the menD gene that confer the characteristic increased gentamicin resistance, but not the major growth defect associated with SCV phenotype.
Collapse
Affiliation(s)
- Dina Altwiley
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK.,University of Jeddah, Saudi Arabia
| | - Tarcisio Brignoli
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Andrew Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Mario Recker
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, TR10 9FE, UK
| | - Jean C Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ruth C Massey
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK.,Schools of Microbiology and Medicine, and APC Microbiome Ireland, University College Cork, Ireland
| |
Collapse
|