1
|
Mao J, Chen J, Yang L, Wang Q, Lin H, Bai Y. Combined impacts of chlorine and pharmaceutical discharge on river periphyton and zoobenthos. J Environ Sci (China) 2025; 156:725-734. [PMID: 40412970 DOI: 10.1016/j.jes.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 05/27/2025]
Abstract
Following the COVID-19 outbreak, a vast array of chlorine disinfectants was used to eliminate the virus, leading to inevitable discharge into aquatic ecosystems. These environments also contain various anthropogenic micropollutants, such as pharmaceuticals, which pose threats to the survival and activities of biological communities. Consequently, the presence of discharged chlorine disinfectants and pharmaceuticals can simultaneously impact the structure and function of aquatic ecosystems. To investigate the combined effects of chlorine disinfectants and pharmaceuticals on the periphyton and zoobenthos (Limnodrilus hoffmeisteri) community composition and function, we conducted a 12-flume reactor experiment using sodium hypochlorite and representative pharmaceuticals (abundant in the Yangtze River) as influents. Results demonstrated that the discharge of chlorine disinfectants further altered the composition of river prokaryotic communities. Eukaryotic organisms within the periphyton exhibited greater resilience to chlorine exposure compared to prokaryotic communities. Metagenomic analysis revealed that prokaryotic communities with different compositions can execute similar functions, while RNA sequencing indicated that co-exposure promoted biological processes such as focal adhesion and ribosome synthesis, but inhibited activities related to nitrogen metabolism and resistance to folate antimicrobials. Additionally, co-exposure induced oxidative stress in L. hoffmeisteri, leading to stronger environmental adaptation.
Collapse
Affiliation(s)
- Jie Mao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Junwen Chen
- Center for Water and Ecology, Tsinghua University, Beijing 100084, China
| | - Lutong Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Qiaojuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Hui Lin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Yaohui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
2
|
Robinson RL, Fisk AT, Crevecoeur S. Temporal and Depth-Driven Variability of Pelagic Bacterial Communities in Lake Erie: Biofilm and Plankton Dynamics. ENVIRONMENTAL MICROBIOLOGY REPORTS 2025; 17:e70079. [PMID: 40116065 PMCID: PMC11926571 DOI: 10.1111/1758-2229.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/23/2025]
Abstract
Despite constituting an important component of freshwater ecosystems, biofilm assemblages have remained relatively understudied compared to plankton, especially in freshwater systems such as the western basin of Lake Erie (WBLE). This study therefore aimed to elucidate temporal and vertical shifts of microbial communities of planktonic and biofilm growth on artificial substrates in the WBLE water column at discrete depths, investigating the overlap of shared taxa between community types. Sequencing of the 16S rRNA gene revealed concurrent biofilm-plankton samples shared a low percentage (~10%) of amplicon sequence variants (ASVs) indicating distinct communities between free-living and substrate-attached bacteria. Plankton communities did not significantly differ between surface and bottom depths (1 and 8 m), whereas biofilm communities differed between upper (1-4 m) and lower (5-8 m) water columns. Temporal variation in community composition was observed in biofilm, with early periods (June-July) showing significant dissimilarity followed by compositional convergence in late summer onwards (August-October). With the expansion of artificial infrastructure in aquatic systems, there is novel substrate material to observe spatiotemporal patterns of microbial colonisation throughout the pelagic zone. These results demonstrate the complexity of bacterial biofilm communities from plankton in freshwater, providing insight into microbial assembly through temporal succession and across depth.
Collapse
Affiliation(s)
| | - Aaron T. Fisk
- School of the EnvironmentUniversity of WindsorWindsorOntarioCanada
| | - Sophie Crevecoeur
- Environment and Climate Change CanadaCanada Centre for Inland WatersBurlingtonOntarioCanada
| |
Collapse
|
3
|
Tao H, Peng J, Chen Y, Zhou L, Lin T. Migration of natural organic matter and Pseudomonas fluorescens-associated polystyrene on natural substrates in aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174997. [PMID: 39053541 DOI: 10.1016/j.scitotenv.2024.174997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
This study investigated the migration behavior of microplastics (MPs) covered with natural organic matter (NOM) and biofilm on three substrates (silica, Pseudomonas fluorescent and Pseudomonas aeruginosa biofilms) in various ionic strengths, focusing on the alterations in surface properties based on surface energy theory that affected their deposition and release processes. Peptone and Pseudomonas fluorescens were employed to generate NOM-attached and biofilm-coated polystyrene (PS) (NOM-PS and Bio-PS). NOM-PS and Bio-PS both exhibited different surface properties, as increased roughness and particle sizes, more hydrophilic surfaces and altered zeta potentials which increased with ionic strength. Although the deposition of NOM-PS on biofilms were enhanced by higher ionic strengths and the addition of Ca2+, while Bio-PS deposited less on biofilms and more on the silica surface. Both types exhibited diffusion-driven adsorption on the silica surface, with Bio-PS also engaging in synergistic and competitive interactions on biofilm surfaces. Release tests revealed that NOM-PS and Bio-PS were prone to release from silica than from biofilms. The Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory furtherly demonstrated that mid-range electrostatic (EL) repulsion had significantly impacts on NOM-PS deposition, and structural properties of extracellular polymeric substances (EPS) and substrate could affect Bio-PS migration.
Collapse
Affiliation(s)
- Hui Tao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Jingtong Peng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yiyang Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lingqin Zhou
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
4
|
Cakin I, Morrissey B, Marcello L, Gaffney PPJ, Pap S, Taggart MA. A comparison between constructed wetland substrates: Impacts on microbial community and wastewater treatment. CHEMOSPHERE 2024; 364:143179. [PMID: 39209035 DOI: 10.1016/j.chemosphere.2024.143179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Constructed wetlands (CWs) can play a crucial role in treating wastewater, and in the context of this study, the distillation byproduct of the whisky industry known as 'spent lees'. Here, we assess several different CW substrates (pea gravel, LECA and Alfagrog), with and without the addition of 20% biochar, in mesocosms set up to treat spent lees. Among the substrates tested, LECA + biochar and gravel + biochar showed promising results, with greater dissolved copper (dissCu) reduction, chemical oxygen demand (COD) removal, organic carbon (OC) reduction, and pH modulation. These findings indicate a potentially beneficial role for biochar in enhancing treatment efficacy, particularly in facilitating dissCu remediation and the removal of organic pollutants. In terms of microbial diversity, mesocosms including biochar generally had reduced bacterial alpha diversity, suggesting that 'fresh' (uncolonized) biochar may negatively affect microbial diversity in wetland ecosystems in the short term. After continuously supplying spent lees to mesocosms for 2-months, microbial diversity in each mesocosm dropped substantially, and moderate levels of bacterial community differentiation and high levels of fungal community differentiation were detected among mesocosms. The bacterial and fungal communities were also found to differ between the substrate and outlet water samples. Among the bacterial classes present in the mesocosms that may play a crucial role in water treatment performance, Gammaproteobacteria, Bacteroidia and Alphaproteobacteria should be further investigated. In terms of fungal classes, the role of Sordariomycetes should be explored in greater depth.
Collapse
Affiliation(s)
- Ilgaz Cakin
- Environmental Research Institute, University of the Highlands and Islands, Castle Street, Thurso, Caithness, KW14 7JD, Scotland, UK.
| | - Barbara Morrissey
- Institute for Biodiversity and Freshwater Conservation, University of the Highlands and Islands, 1 Inverness Campus, Inverness, IV2 5NA, Scotland, UK
| | - Lucio Marcello
- Institute for Biodiversity and Freshwater Conservation, University of the Highlands and Islands, 1 Inverness Campus, Inverness, IV2 5NA, Scotland, UK; Biomathematics and Statistics Scotland, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, Scotland, UK
| | - Paul P J Gaffney
- Environmental Research Institute, University of the Highlands and Islands, Castle Street, Thurso, Caithness, KW14 7JD, Scotland, UK; Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sabolc Pap
- Environmental Research Institute, University of the Highlands and Islands, Castle Street, Thurso, Caithness, KW14 7JD, Scotland, UK
| | - Mark A Taggart
- Environmental Research Institute, University of the Highlands and Islands, Castle Street, Thurso, Caithness, KW14 7JD, Scotland, UK
| |
Collapse
|
5
|
Graca B, Rychter A, Bełdowska M, Wojdasiewicz A. Seasonality of mercury and its fractions in microplastics biofilms -comparison to natural biofilms, suspended particulate matter and bottom sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174814. [PMID: 39032739 DOI: 10.1016/j.scitotenv.2024.174814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Biofilms can enhance the sorption of heavy metals onto microplastic (MP) surfaces. However, most research in this field relies on laboratory experiments and neglects metal fractions and seasonal variations. Further studies of the metal/biofilm interaction in the aquatic environment are essential for assessing the ecological threat that MPs pose. The present study used in situ experiments in an environment conducive to biofouling (Vistula Lagoon, Baltic Sea). The objective was to investigate the sorption of mercury and its fractions (thermodesorption technique) in MP (polypropylene-PP, polystyrene-PS, polylactide-PLA) biofilms and natural matrices across three seasons. After one month of incubation, the Hg concentrations in MP and natural substratum (gravel grains-G) biofilms were similar (MP: 145 ± 45 ng/g d.w.; G: 132 ± 23 ng/g d.w.) and approximately twofold those of suspended particulate matter (SPM) (63 ± 27 ng/g d.w.). Hg concentrations in biofilms and sediments were similar, but labile fractions dominated in biofilms and stable fractions in sediments. Seasonal Hg concentrations in MP biofilms decreased over summer>winter>spring, with significant variation for mineral and loosely bound Hg fractions. Multiple regression analysis revealed that hydrochemical conditions and sediment resuspension played a crucial role in the observed variability. The influence of polymer type and morphology (pellets, fibres, aged MP) on Hg sorption in biofilms was visible only in high summer temperatures. In this season, PP fibres and aged PP pellets encouraged biofilm growth and the accumulation of labile Hg fractions. Additionally, high concentrations of mineral (stable and semi-labile) Hg fractions were found in expanded PS biofilms. These findings suggest that organisms that ingest MPs or feed on the biofilms are exposed to the adverse effects of Hg and the presence of MPs in aquatic ecosystems may facilitate the transfer of mercury within the food chain.
Collapse
Affiliation(s)
- Bożena Graca
- University of Gdansk, Faculty of Oceanography and Geography, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Agata Rychter
- University of Applied Sciences in Elbląg, Ul. Wojska Polskiego 1, 82-300 Elbląg, Poland
| | - Magdalena Bełdowska
- University of Gdansk, Faculty of Oceanography and Geography, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Adriana Wojdasiewicz
- University of Gdansk, Faculty of Oceanography and Geography, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
6
|
Valentine K, Hughes C, Boxall A. Plastic Litter Emits the Foraging Infochemical Dimethyl Sulfide after Submersion in Freshwater Rivers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1485-1496. [PMID: 38661488 DOI: 10.1002/etc.5880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Plastic pollution is widespread throughout aquatic environments globally, with many organisms known to interact with and ingest plastic. In marine environments, microbial biofilms that form on plastic surfaces can produce the odorous compound dimethyl sulfide (DMS), which is a known foraging cue. This has been shown to increase the ingestion of plastic by some invertebrates and therefore act as a biological factor which influences the risks of plastic to marine ecosystems. In freshwater however, the production of DMS has been largely overlooked, despite the known sensitivity of some freshwater species to this compound. To address this gap, the present study analyzed the production of DMS by biofilms which formed on low-density polyethylene and polylactic acid films after 3 and 6 weeks of submersion in either a rural or an urban United Kingdom river. Using gas chromatography-mass spectrometry, the production of DMS by these biofilms was consistently identified. The amount of DMS produced varied significantly across river locations and materials, with surfaces in the urban river generally producing a stronger signal and plastics producing up to seven times more DMS than glass control surfaces. Analysis of biofilm weight and photosynthetic pigment content indicated differences in biofilm composition across conditions and suggested that DMS production was largely driven by nonphotosynthetic taxa. For the first time this work has documented the production of DMS by plastic litter after submersion in freshwater rivers. Further work is now needed to determine if, as seen in marine systems, this production of DMS can encourage the interaction of freshwater organisms with plastic litter and therefore operate as a biological risk factor in the impacts of plastic on freshwater environments. Environ Toxicol Chem 2024;43:1485-1496. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Katey Valentine
- Department of Environment and Geography, University of York, York, United Kingdom
- BeZero Carbon, London, United Kingdom
| | - Claire Hughes
- Department of Environment and Geography, University of York, York, United Kingdom
| | - Alistair Boxall
- Department of Environment and Geography, University of York, York, United Kingdom
| |
Collapse
|
7
|
Javed MA, Ivanovich N, Messinese E, Liu R, Astorga SE, Yeo YP, Idapalapati S, Lauro FM, Wade SA. The Role of Metallurgical Features in the Microbially Influenced Corrosion of Carbon Steel: A Critical Review. Microorganisms 2024; 12:892. [PMID: 38792722 PMCID: PMC11124232 DOI: 10.3390/microorganisms12050892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Microbially influenced corrosion (MIC) is a potentially critical degradation mechanism for a wide range of materials exposed to environments that contain relevant microorganisms. The likelihood and rate of MIC are affected by microbiological, chemical, and metallurgical factors; hence, the understanding of the mechanisms involved, verification of the presence of MIC, and the development of mitigation methods require a multidisciplinary approach. Much of the recent focus in MIC research has been on the microbiological and chemical aspects, with less attention given to metallurgical attributes. Here, we address this knowledge gap by providing a critical synthesis of the literature on the metallurgical aspects of MIC of carbon steel, a material frequently associated with MIC failures and widely used in construction and infrastructure globally. The article begins by introducing the process of MIC, then progresses to explore the complexities of various metallurgical factors relevant to MIC in carbon steel. These factors include chemical composition, grain size, grain boundaries, microstructural phases, inclusions, and welds, highlighting their potential influence on MIC processes. This review systematically presents key discoveries, trends, and the limitations of prior research, offering some novel insights into the impact of metallurgical factors on MIC, particularly for the benefit of those already familiar with other aspects of MIC. The article concludes with recommendations for documenting metallurgical data in MIC research. An appreciation of relevant metallurgical attributes is essential for a critical assessment of a material's vulnerability to MIC to advance research practices and to broaden the collective knowledge in this rapidly evolving area of study.
Collapse
Affiliation(s)
- Muhammad Awais Javed
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC 3122, Australia;
| | - Nicolò Ivanovich
- Asian School of the Environment, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore;
| | - Elena Messinese
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Luigi Mancinelli, 7, 20131 Milan, Italy;
| | - Ruiliang Liu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637751, Singapore; (R.L.); (S.E.A.); (Y.P.Y.)
- Curtin Corrosion Centre, Faculty of Science and Engineering, Western Australia School of Mines (WASM), Curtin University, Perth, WA 6102, Australia
| | - Solange E. Astorga
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637751, Singapore; (R.L.); (S.E.A.); (Y.P.Y.)
| | - Yee Phan Yeo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637751, Singapore; (R.L.); (S.E.A.); (Y.P.Y.)
| | - Sridhar Idapalapati
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Federico M. Lauro
- Asian School of the Environment, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore;
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637751, Singapore; (R.L.); (S.E.A.); (Y.P.Y.)
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, Cleantech ONE, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Scott A. Wade
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC 3122, Australia;
| |
Collapse
|
8
|
Yu Y, Miao L, Adyel TM, Waldschläger K, Wu J, Hou J. Aquatic plastisphere: Interactions between plastics and biofilms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121196. [PMID: 36736560 DOI: 10.1016/j.envpol.2023.121196] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Because of the high production rates, low recycling rates, and poor waste management of plastics, an increasing amount of plastic is entering the aquatic environment, where it can provide new ecological niches for microbial communities and form a so-called plastisphere. Recent studies have focused on the one-way impact of plastic substrata or biofilm communities. However, our understanding of the two-way interactions between plastics and biofilms is still limited. This review first summarizes the formation process and the co-occurrence network analysis of the aquatic plastisphere to comprehensively illustrate the succession pattern of biofilm communities and the potential consistency between keystone taxa and specific environmental behavior of the plastisphere. Furthermore, this review sheds light on mutual interactions between plastics and biofilms. Plastic properties, environmental conditions, and colonization time affect biofilm development. Meanwhile, the biofilm communities, in turn, influence the environmental behaviors of plastics, including transport, contaminant accumulation, and especially the fragmentation and degradation of plastics. Based on a systematic literature review and cross-referencing from these disciplines, the current research focus, and future challenges in exploring aquatic plastisphere development and biofilm-plastic interactions are proposed.
Collapse
Affiliation(s)
- Yue Yu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China; Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zurich, 8093, Switzerland
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China.
| | - Tanveer M Adyel
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne, VIC, 3125, Australia
| | - Kryss Waldschläger
- Hydrology and Quantitative Water Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| |
Collapse
|
9
|
Freixa A, Ortiz-Rivero J, Sabater S. Artificial substrata to assess ecological and ecotoxicological responses in river biofilms: Use and recommendations. MethodsX 2023; 10:102089. [PMID: 36915862 PMCID: PMC10006700 DOI: 10.1016/j.mex.2023.102089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
River biofilms are biological consortia of autotrophs and heterotrophs colonizing most solid surfaces in rivers. Biofilm composition and biomass differ according to the environmental conditions, having different characteristics between systems and even between river habitats. Artificial substrata (AS) are an alternative for in situ or laboratory experiments to handle the natural variability of biofilms. However, specific research goals may require decisions on colonization time or type of substrata. Substrata properties (i.e., texture, roughness, hydrophobicity) and the colonization period and site are selective factors of biofilm characteristics. Here we describe the uses of artificial substrata in the assessment of ecological and ecotoxicological responses and propose a decision tree for the best use of artificial substrata in river biofilm studies. We propose departing from the purpose of the study to define the necessity of obtaining a realistic biofilm community, from which it may be defined the colonization time, the colonization site, and the type of artificial substratum. Having a simple or mature biofilm community should guide our decisions on the colonization time and type of substrata to be selected for the best use of AS in biofilm studies. Tests involving contaminants should avoid adsorbing materials while those ecologically oriented may use any AS mimicking those substrata occurring in the streambed.•We review the utilization of different artificial substrata to colonize biofilm in river ecology and ecotoxicology.•We propose a decision tree to guide on selecting the appropriate artificial substrata and colonization site and duration.•Type of artificial substrata (material, size, shape...) and colonization duration are to be decided according to the specific purpose of the study.
Collapse
Affiliation(s)
- Anna Freixa
- Catalan Institute for Water Research (ICRA-CERCA), Carrer Emili Grahit 101, 17003 Girona, Spain.,University of Girona, Plaça de Sant Domènec 3, 17004, Girona, Spain
| | - Javier Ortiz-Rivero
- Catalan Institute for Water Research (ICRA-CERCA), Carrer Emili Grahit 101, 17003 Girona, Spain.,University of Girona, Plaça de Sant Domènec 3, 17004, Girona, Spain
| | - Sergi Sabater
- Catalan Institute for Water Research (ICRA-CERCA), Carrer Emili Grahit 101, 17003 Girona, Spain.,Institute of Aquatic Ecology, University of Girona, Campus de Montilivi, 17071 Girona, Spain
| |
Collapse
|
10
|
Raya D, Shreya A, Kumar A, Giri SK, Salem DR, Gnimpieba EZ, Gadhamshetty V, Dhiman SS. Molecular regulation of conditioning film formation and quorum quenching in sulfate reducing bacteria. Front Microbiol 2022; 13:1008536. [PMID: 36386676 PMCID: PMC9659907 DOI: 10.3389/fmicb.2022.1008536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/26/2022] [Indexed: 09/19/2023] Open
Abstract
Sensing surface topography, an upsurge of signaling biomolecules, and upholding cellular homeostasis are the rate-limiting spatio-temporal events in microbial attachment and biofilm formation. Initially, a set of highly specialized proteins, viz. conditioning protein, directs the irreversible attachment of the microbes. Later signaling molecules, viz. autoinducer, take over the cellular communication phenomenon, resulting in a mature microbial biofilm. The mandatory release of conditioning proteins and autoinducers corroborated the existence of two independent mechanisms operating sequentially for biofilm development. However, both these mechanisms are significantly affected by the availability of the cofactor, e.g., Copper (Cu). Generally, the Cu concentration beyond threshold levels is detrimental to the anaerobes except for a few species of sulfate-reducing bacteria (SRB). Remarkably SRB has developed intricate ways to resist and thrive in the presence of Cu by activating numerous genes responsible for modifying the presence of more toxic Cu(I) to Cu(II) within the periplasm, followed by their export through the outer membrane. Therefore, the determinants of Cu toxicity, sequestration, and transportation are reconnoitered for their contribution towards microbial adaptations and biofilm formation. The mechanistic details revealing Cu as a quorum quencher (QQ) are provided in addition to the three pathways involved in the dissolution of cellular communications. This review articulates the Machine Learning based data curing and data processing for designing novel anti-biofilm peptides and for an in-depth understanding of QQ mechanisms. A pioneering data set has been mined and presented on the functional properties of the QQ homolog in Oleidesulfovibrio alaskensis G20 and residues regulating the multicopper oxidase properties in SRB.
Collapse
Affiliation(s)
- Dheeraj Raya
- Department of Civil and Environmental Engineering, South Dakota Mines, Rapid City, SD, United States
- 2DBEST Research Center, South Dakota Mines, Rapid City, SD, United States
| | - Aritree Shreya
- Department of Civil and Environmental Engineering, South Dakota Mines, Rapid City, SD, United States
- 2DBEST Research Center, South Dakota Mines, Rapid City, SD, United States
| | - Anil Kumar
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Shiv Kumar Giri
- Department of Biotechnology, Maharaja Agrasen University, Baddi, Himachal Pradesh, India
| | - David R. Salem
- Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
| | - Etienne Z. Gnimpieba
- 2DBEST Research Center, South Dakota Mines, Rapid City, SD, United States
- Department of Biomedical Engineering, University of South Dakota, Vermillion, SD, United States
| | - Venkataramana Gadhamshetty
- Department of Civil and Environmental Engineering, South Dakota Mines, Rapid City, SD, United States
- 2DBEST Research Center, South Dakota Mines, Rapid City, SD, United States
| | - Saurabh Sudha Dhiman
- Department of Civil and Environmental Engineering, South Dakota Mines, Rapid City, SD, United States
- 2DBEST Research Center, South Dakota Mines, Rapid City, SD, United States
- Department of Chemistry, Biology and Health Sciences, South Dakota Mines, Rapid City, SD, United States
| |
Collapse
|
11
|
Kelly MR, Whitworth P, Jamieson A, Burgess JG. Bacterial colonisation of plastic in the Rockall Trough, North-East Atlantic: An improved understanding of the deep-sea plastisphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119314. [PMID: 35447252 DOI: 10.1016/j.envpol.2022.119314] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 05/12/2023]
Abstract
Plastic pollution has now been found within multiple ecosystems across the globe. Characterisation of microbial assemblages associated with marine plastic, or the so-called 'plastisphere', has focused predominantly on plastic in the epipelagic zone. Whether this community includes taxa that are consistently enriched on plastic compared to surrounding non plastic surfaces is unresolved, as are the ecological implications. The deep sea is likely a final sink for most of the plastic entering the ocean, yet there is limited information on microbial colonisation of plastic at depth. The aim of this study was to investigate deep-sea microbial communities associated with polystyrene (PS) and polyurethane (PU) with Bath stone used as a control. The substrates (n = 15) were deployed in the Rockall Trough (Atlantic), and recovered 420 days later from a depth of 1796 m. To characterise the bacterial communities, 16S rRNA genes were sequenced using the Illumina MiSeq platform. A dominant core microbiome (taxa shared across all substrates) comprised 8% of total ASVs (amplicon sequence variant) and accounted for 92% of the total community reads. This suggests that many commonly reported members of the plastisphere are simply opportunistic which freely colonise any hard surface. Transiently associated species consisted of approximately 7% of the total community. Thirty genera were enriched on plastic (P < 0.05), representing 1% of the total community. The discovery of novel deep-sea enriched taxa included Aurantivirga, Algivirga, IheB3-7, Spirosoma, HTCC5015, Ekhidna and Calorithrix on PS and Candidatus Obscuribacter, Haloferula, Marine Methylotrophic Group 3, Aliivibrio, Tibeticola and Dethiosulfatarculus on PU. This small fraction of the microbiome include taxa with unique metabolic abilities and show how bacterial communities can be shaped by plastic pollution at depth. This study outlines a novel approach in categorising the plastisphere to elucidate the ecological implications of enriched taxa that show an affinity for colonising plastic.
Collapse
Affiliation(s)
- Max R Kelly
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| | - Paul Whitworth
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| | - Alan Jamieson
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom; Minderoo-UWA Deep Sea Research Centre, University of Western Australia, Oceans Institute, IOMRC Building, 35 Stirling Highway, Perth, WA, 6009, Australia.
| | - J Grant Burgess
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| |
Collapse
|
12
|
Wang C, Wang L, Ok YS, Tsang DCW, Hou D. Soil plastisphere: Exploration methods, influencing factors, and ecological insights. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128503. [PMID: 35739682 DOI: 10.1016/j.jhazmat.2022.128503] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 06/15/2023]
Abstract
Microplastic (MP), an emerging contaminant, is globally prevalent and poses potential environmental threats and ecological risks to both aquatic and terrestrial ecosystems. When MPs enter into natural environments, they may serve as artificial substrates for microbial colonization and plastisphere formation, providing new ecological niches for microorganisms. Recent studies of the plastisphere have focused on aquatic ecosystems. However, our understanding of the soil plastisphere e.g. its formation process, microbial ecology, co-transport of organic pollutants and heavy metals, and effects on biogeochemical processes is still very limited. This review summarizes latest methods used to explore the soil plastisphere, assesses the factors influencing the microbial ecology of the soil plastisphere, and sheds light on potential ecological risks caused by the soil plastisphere. The formation and succession of soil plastisphere communities can be driven by MP characteristics and soil environmental factors. The soil plastisphere may affect a series of ecological processes, especially the co-transport of environmental contaminants, biodegradation of MPs, and soil carbon cycling. We aim to narrow the knowledge gap between the soil and aquatic plastisphere, and provide valuable guidance for future research on the soil plastisphere in MP-contaminated soils.
Collapse
Affiliation(s)
- Chengqian Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Luo A, Wang F, Sun D, Liu X, Xin B. Formation, Development, and Cross-Species Interactions in Biofilms. Front Microbiol 2022; 12:757327. [PMID: 35058893 PMCID: PMC8764401 DOI: 10.3389/fmicb.2021.757327] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022] Open
Abstract
Biofilms, which are essential vectors of bacterial survival, protect microbes from antibiotics and host immune attack and are one of the leading causes that maintain drug-resistant chronic infections. In nature, compared with monomicrobial biofilms, polymicrobial biofilms composed of multispecies bacteria predominate, which means that it is significant to explore the interactions between microorganisms from different kingdoms, species, and strains. Cross-microbial interactions exist during biofilm development, either synergistically or antagonistically. Although research into cross-species biofilms remains at an early stage, in this review, the important mechanisms that are involved in biofilm formation are delineated. Then, recent studies that investigated cross-species cooperation or synergy, competition or antagonism in biofilms, and various components that mediate those interactions will be elaborated. To determine approaches that minimize the harmful effects of biofilms, it is important to understand the interactions between microbial species. The knowledge gained from these investigations has the potential to guide studies into microbial sociality in natural settings and to help in the design of new medicines and therapies to treat bacterial infections.
Collapse
Affiliation(s)
- Aihua Luo
- Department of Stomatology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Fang Wang
- Department of Pharmacy, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Degang Sun
- Department of Cariology and Endodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xueyu Liu
- Department of Cariology and Endodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China.,Central Laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Bingchang Xin
- Department of Cariology and Endodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China.,Central Laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| |
Collapse
|