1
|
Jiang H, Qi J, Wang J, Chen J, Feng D, Yang J, Liu X, Liu M, Zhou X, An Z, Lu Y, Ge C, Wang Y. Terramide A: a novel ironophore targeting Acinetobacter baumannii with mechanistic insights into bacterial iron deprivation. J Antibiot (Tokyo) 2025; 78:295-313. [PMID: 40164737 DOI: 10.1038/s41429-025-00816-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/01/2025] [Accepted: 03/15/2025] [Indexed: 04/02/2025]
Abstract
Acetobacter baumannii poses escalating clinical challenges due to its exceptional adaptability, demanding innovative antimicrobial strategies. This study pioneers an investigation into the antibacterial efficacy and molecular mechanism of Terramide A, a hydroxamate siderophore isolated from Aspergillus terreus, against notorious A. baumannii. Employing a multidisciplinary approach integrating phenotypic characterization with mechanistic interrogation, we demonstrate that Terramide A exerts significant inhibitory effects against A. baumannii and P. aeruginosa, pathogens critically dependent on siderophore-mediated iron acquisition for survival and virulence. Structural characterization underlines the hydroxamate moieties of Terramide A presumably supports its hypothesized role as a fungal siderophore, involving competitive iron sequestration and bacterial homeostasis. Subsequently, multi-omics investigation of susceptible strain AB19606 delineated a metabolic collapse cascade due to iron acquisition competition: (1) impairment of central metabolism and energy production through oxidative phosphorylation (OXPHO) inhibitions; (2) compromised stress adaptation and bacterial flexibility; (3) compensatory overactivation of siderophores biosynthesis and transportation, depleting metabolic intermediates and exacerbating stress; (4) coordinated suppression of virulence determinants, such as secretory systems and biofilm formation. These molecular derangements translated into phenotypic deficits, including quorum sensing, diminished autoinducer peptides production, and morphological/functional abnormalities. In vivo evaluation in a rat skin wound infection model further demonstrated that Terramide A promotes wound healing and mitigates inflammation, supporting its antibacterial efficacy. These findings establish Terramide A as a promising antibacterial agent and provide critical insights into iron-competitive antimicrobial strategies to exploit micro-nutrient deprivation and metabolic dysfunction. However, further research is needed to optimize the siderophore-based scaffold, clarify its mechanisms, and assess therapeutic potential.
Collapse
Affiliation(s)
- Hanxiang Jiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiangfeng Qi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiwen Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiaqin Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Dong Feng
- Nanjing Southern Pharmaceutical Technology Co. Ltd., Nanjing, China
| | - Junbiao Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xinna Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Mengqun Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xvzhe Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zhilong An
- Nanjing Southern Pharmaceutical Technology Co. Ltd., Nanjing, China
| | - Yuanyuan Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chun Ge
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China.
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Ying Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
2
|
Liu L, Li H, Ma C, Liu J, Zhang Y, Xu D, Xiong J, He Y, Yang H, Chen H. Effect of anti-biofilm peptide CRAMP-34 on the biofilms of Acinetobacter lwoffii derived from dairy cows. Front Cell Infect Microbiol 2024; 14:1406429. [PMID: 39211795 PMCID: PMC11358070 DOI: 10.3389/fcimb.2024.1406429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Dairy mastitis is one of the most common diseases in dairy farming, and the formation of pathogenic bacteria biofilms may be an important reason why traditional antibiotic therapy fails to resolve some cases of dairy mastitis. We isolated and identified three strains of A. lwoffii were with strong biofilm forming ability from dairy cow mastitis samples from Chongqing dairy farms in China. In order to investigate the effect of novel anti-biofilm peptide CRAMP-34 on A.lwoffii biofilms, the anti-biofilm effect was evaluated by crystal violet staining, biofilms viable bacteria counting and confocal laser scanning microscopy (CLSM). In addition, transcriptome sequencing analysis, qRT-PCR and phenotypic verification were used to explore the mechanism of its action. The results showed that CRAMP-34 had a dose-dependent eradicating effect on A. lwoffii biofilms. Transcriptome sequencing analysis showed that 36 differentially expressed genes (11 up-regulated and 25 down-regulated) were detected after the intervention with the sub-inhibitory concentration of CRAMP-34. These differentially expressed genes may be related to enzyme synthesis, fimbriae, iron uptake system, capsular polysaccharide and other virulence factors through the functional analysis of differential genes. The results of subsequent bacterial motility and adhesion tests showed that the motility of A.lwoffii were enhanced after the intervention of CRAMP-34, but there was no significant change in adhesion. It was speculated that CRAMP-34 may promote the dispersion of biofilm bacteria by enhancing the motility of biofilm bacteria, thereby achieving the effect of eradicating biofilms. Therefore, these results, along with our other previous findings, suggest that CRAMP-34 holds promise as a new biofilm eradicator and deserves further research and development.
Collapse
Affiliation(s)
- Lin Liu
- College of Veterinary Medicine, Southwest University, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Hui Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Chengjun Ma
- College of Veterinary Medicine, Southwest University, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Jingjing Liu
- College of Veterinary Medicine, Southwest University, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Yang Zhang
- National Center of Technology Innovation for Pigs, Chongqing, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Dengfeng Xu
- National Center of Technology Innovation for Pigs, Chongqing, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jing Xiong
- National Center of Technology Innovation for Pigs, Chongqing, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Yuzhang He
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Hongzao Yang
- College of Veterinary Medicine, Southwest University, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Traditional Chinese Veterinary Research Institute, Southwest University, Chongqing, China
| | - Hongwei Chen
- College of Veterinary Medicine, Southwest University, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
- Traditional Chinese Veterinary Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Liu M, Ding Y, Ye Q, Wu S, Gu Q, Chen L, Zhang Y, Wei X, Deng M, Zhang J, Wu Q, Wang J. Cold-tolerance mechanisms in foodborne pathogens: Escherichia coli and Listeria monocytogenes as examples. Crit Rev Food Sci Nutr 2024; 65:2031-2045. [PMID: 38441497 DOI: 10.1080/10408398.2024.2322141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
The cold chain is an integral part of the modern food industry. Low temperatures can effectively alleviate food loss and the transmission of foodborne diseases caused by microbial reproduction. However, recent reports have highlighted shortcomings in the current cold chain technology's ability to prevent and control cold-tolerant foodborne pathogens. Furthermore, it has been observed that certain cold-chain foods have emerged as new sources of infection for foodborne disease outbreaks. Consequently, there is a pressing need to enhance control measures targeting cold-tolerant pathogens within the existing cold chain system. This paper aims to review the recent advancements in understanding the cold tolerance mechanisms of key model organisms, identify key issues in current research, and explore the potential of utilizing big data and omics technology in future studies.
Collapse
Affiliation(s)
- Ming Liu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Qinghua Ye
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Shi Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Qihui Gu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Ling Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Youxiong Zhang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Xianhu Wei
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Meiqing Deng
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Jumei Zhang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Choi E, Huh A, Hwang J. Novel rRNA transcriptional activity of NhaR revealed by its growth recovery for the bipA-deleted Escherichia coli at low temperature. Front Mol Biosci 2023; 10:1175889. [PMID: 37152896 PMCID: PMC10157491 DOI: 10.3389/fmolb.2023.1175889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
The BipA protein is a universally conserved GTPase in bacterial species and is structurally similar to translational GTPases. Despite its wide distribution, BipA is dispensable for growth under optimal growth conditions but is required under stress conditions. In particular, bipA-deleted cells (ESC19) have been shown to display a variety of phenotypic changes in ribosome assembly, capsule production, lipopolysaccharide (LPS) synthesis, biofilm formation, and motility at low temperature, suggesting its global regulatory roles in cold adaptation. Here, through genomic library screening, we found a suppressor clone containing nhaR, which encodes a Na+-responsive LysR-type transcriptional regulator and whose gene product partially restored the growth of strain ESC19 at 20°C. The suppressed cells showed slightly reduced capsule production and improved biofilm-forming ability at 20°C, whereas the defects in the LPS core and swimming motility were not restored but aggravated by overexpression of nhaR. Notably, the overexpression partially alleviated the defects in 50S ribosomal subunit assembly and rRNA processing of ESC19 cells by enhancing the overall transcription of rRNA. Electrophoretic mobility shift assay revealed the association of NhaR with the promoter of seven rrn operons, suggesting that NhaR directly regulates rRNA transcription in ESC19 at 20°C. The suppressive effects of NhaR on ribosomes, capsules, and LPS were dependent on its DNA-binding activity, implying that NhaR might be a transcriptional factor involved in regulating these genes at 20°C. Furthermore, we found that BipA may be involved in adaptation to salt stress, designating BipA as a global stress-responsive regulator, as the deletion of bipA led to growth defects at 37°C and high Na+ concentrations without ribosomal defects.
Collapse
Affiliation(s)
- Eunsil Choi
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
| | - Ahhyun Huh
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
- *Correspondence: Jihwan Hwang,
| |
Collapse
|
5
|
Yan L, Jin Y, Zhang B, Xu Y, Peng X, Qin S, Chen L. Diverse Aquatic Animal Matrices Play a Key Role in Survival and Potential Virulence of Non-O1/O139 Vibrio cholerae Isolates. Front Microbiol 2022; 13:896767. [PMID: 35801116 PMCID: PMC9255913 DOI: 10.3389/fmicb.2022.896767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrio cholerae can cause pandemic cholera in humans. The waterborne bacterium is frequently isolated from aquatic products worldwide. However, current literature on the impact of aquatic product matrices on the survival and pathogenicity of cholerae is rare. In this study, the growth of eleven non-O1/0O139 V. cholerae isolates recovered from eight species of commonly consumed fish and shellfish was for the first time determined in the eight aquatic animal matrices, most of which highly increased the bacterial biomass when compared with routine trypsin soybean broth (TSB) medium. Secretomes of the V. cholerae isolates (draft genome size: 3,852,021–4,144,013 bp) were determined using two-dimensional gel electrophoresis (2DE-GE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques. Comparative secretomic analyses revealed 74 differential extracellular proteins, including several virulence- and resistance-associated proteins secreted by the V. cholerae isolates when grown in the eight matrices. Meanwhile, a total of 8,119 intracellular proteins were identified, including 83 virulence- and 8 resistance-associated proteins, of which 61 virulence-associated proteins were absent from proteomes of these isolates when grown in the TSB medium. Additionally, comparative genomic and proteomic analyses also revealed several strain-specific proteins with unknown functions in the V. cholerae isolates. Taken, the results in this study demonstrate that distinct secretomes and proteomes induced by the aquatic animal matrices facilitate V. cholerae resistance in the edible aquatic animals and enhance the pathogenicity of the leading waterborne pathogen worldwide.
Collapse
Affiliation(s)
- Lili Yan
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yinzhe Jin
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Beiyu Zhang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yingwei Xu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xu Peng
- Department of Biology, Archaea Centre, University of Copenhagen, Copenhagen, Denmark
| | - Si Qin
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
- *Correspondence: Si Qin
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Lanming Chen
| |
Collapse
|
6
|
Babu VMP, Sankari S, Ghosal A, Walker GC. A Mutant Era GTPase Suppresses Phenotypes Caused by Loss of Highly Conserved YbeY Protein in Escherichia coli. Front Microbiol 2022; 13:896075. [PMID: 35663862 PMCID: PMC9159920 DOI: 10.3389/fmicb.2022.896075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 12/03/2022] Open
Abstract
Ribosome assembly is a complex fundamental cellular process that involves assembling multiple ribosomal proteins and several ribosomal RNA species in a highly coordinated yet flexible and resilient manner. The highly conserved YbeY protein is a single-strand specific endoribonuclease, important for ribosome assembly, 16S rRNA processing, and ribosome quality control. In Escherichia coli, ybeY deletion results in pleiotropic phenotypes including slow growth, temperature sensitivity, accumulation of precursors of 16S rRNA, and impaired formation of fully assembled 70S subunits. Era, an essential highly conserved GTPase protein, interacts with many ribosomal proteins, and its depletion results in ribosome assembly defects. YbeY has been shown to interact with Era together with ribosomal protein S11. In this study, we have analyzed a suppressor mutation, era(T99I), that can partially suppress a subset of the multiple phenotypes of ybeY deletion. The era(T99I) allele was able to improve 16S rRNA processing and ribosome assembly at 37°C. However, it failed to suppress the temperature sensitivity and did not improve 16S rRNA stability. The era(T99I) allele was also unable to improve the 16S rRNA processing defects caused by the loss of ribosome maturation factors. We also show that era(T99I) increases the GroEL levels in the 30S ribosome fractions independent of YbeY. We propose that the mechanism of suppression is that the changes in Era's structure caused by the era(T99I) mutation affect its GTP/GDP cycle in a way that increases the half-life of RNA binding to Era, thereby facilitating alternative processing of the 16S RNA precursor. Taken together, this study offers insights into the role of Era and YbeY in ribosome assembly and 16S rRNA processing events.
Collapse
Affiliation(s)
| | | | | | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|