1
|
Rani P, Rajak BK, Mahato GK, Rathore RS, Chandra G, Singh DV. Strategic lead compound design and development utilizing computer-aided drug discovery (CADD) to address herbicide-resistant Phalaris minor in wheat fields. PEST MANAGEMENT SCIENCE 2025; 81:2469-2479. [PMID: 39377567 DOI: 10.1002/ps.8455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
Wheat (Triticum aestivum) is a vital cereal crop and a staple food source worldwide. However, wheat grain productivity has significantly declined as a consequence of infestations by Phalaris minor. Traditional weed control methods have proven inadequate owing to the physiological similarities between P. minor and wheat during early growth stages. Consequently, farmers have turned to herbicides, targeting acetyl-CoA carboxylase (ACCase), acetolactate synthase (ALS) and photosystem II (PSII). Isoproturon targeting PSII was introduced in mid-1970s, to manage P. minor infestations. Despite their effectiveness, the repetitive use of these herbicides has led to the development of herbicide-resistant P. minor biotypes, posing a significant challenge to wheat productivity. To address this issue, there is a pressing need for innovative weed management strategies and the discovery of novel herbicide molecules. The integration of computer-aided drug discovery (CADD) techniques has emerged as a promising approach in herbicide research, that facilitates the identification of herbicide targets and enables the screening of large chemical libraries for potential herbicide-like molecules. By employing techniques such as homology modelling, molecular docking, molecular dynamics simulation and pharmacophore modelling, CADD has become a rapid and cost-effective medium to accelerate the herbicide discovery process significantly. This approach not only reduces the dependency on traditional experimental methods, but also enhances the precision and efficacy of herbicide development. This article underscores the critical role of bioinformatics and CADD in developing next-generation herbicides, offering new hope for sustainable weed management and improved wheat cultivation practices. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Priyanka Rani
- Molecular Modelling and Computer-Aided Drug Discovery Laboratory Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, India
| | - Bikash Kumar Rajak
- Molecular Modelling and Computer-Aided Drug Discovery Laboratory Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, India
| | - Gopal Kumar Mahato
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, Gaya, India
| | - Ravindranath Singh Rathore
- Molecular Modelling and Computer-Aided Drug Discovery Laboratory Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, India
| | - Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, Gaya, India
| | - Durg Vijay Singh
- Molecular Modelling and Computer-Aided Drug Discovery Laboratory Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, India
| |
Collapse
|
2
|
Jemli S, da Silva Bruckmann F, Amara FB, Bejar S, Pinto D, Silva LFO, Ahmad N, Mohandoss S, Dotto GL. A novel potato peels waste β-cyclodextrin biocomposite for the efficient uptake of diuron and glyphosate herbicides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58021-58032. [PMID: 39305408 DOI: 10.1007/s11356-024-35046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/14/2024] [Indexed: 10/11/2024]
Abstract
A novel biocomposite (FPPW-β-CD) was prepared by a simple and sustainable method involving fine potato peel waste, β-cyclodextrin (β-CD), and green citric acid through the crosslinking reaction. The polymer was characterized using SEM, FTIR, XRD, TGA, and DSC analyses. The adsorbent performance was evaluated about the glyphosate and diuron adsorption from the aqueous solution. Pesticide removal was investigated regarding the influence of solution pH, temperature, and initial concentration of contaminants. Also, it highlights the main interactions involved in the adsorption phenomenon based on the pH effect and characteristics of adsorbent and adsorbate molecules. The maximum adsorption capacity values according to the Sips model were higher than 2000 µg g-1. The pseudo-second-order and general-order models described the kinetic data well. Thermodynamic parameters indicated that pesticide removal was spontaneous and favorable. The magnitude of enthalpy variation values (27.37 kJ mol-1 and - 100.79 kJ mol-1) revealed that the glyphosate and diuron adsorption occurred through the physisorption and chemisorption, respectively. The novel biocomposite is a promising green adsorbent for the uptake of micropollutant pesticides in aqueous solutions at concentrations of µg L-1.
Collapse
Affiliation(s)
- Sonia Jemli
- Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia
- Department of Biology, Faculty of Sciences of Sfax, University of Sfax, Road of Soukra Km 3.5, 3000, Sfax, Tunisia
| | - Franciele da Silva Bruckmann
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Fakhreddine Ben Amara
- Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia
- Department of Biology, Faculty of Sciences of Sfax, University of Sfax, Road of Soukra Km 3.5, 3000, Sfax, Tunisia
| | - Samir Bejar
- Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia
- Department of Biology, Faculty of Sciences of Sfax, University of Sfax, Road of Soukra Km 3.5, 3000, Sfax, Tunisia
| | - Diana Pinto
- Universidad De La Costa, Calle 58 # 55-66, 080002, Barranquilla, Atlántico, Colombia
| | | | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Guilherme Luiz Dotto
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
3
|
Hu Z, Qian C, Wang H, Sun L, Wu C, Zhang G, Han X, Wang C, Ma T, Yang D. Comprehensive toxicological, metabolomic, and transcriptomic analysis of the biodegradation and adaptation mechanism by Achromobacter xylosoxidans SL-6 to diuron. Front Microbiol 2024; 15:1403279. [PMID: 38912345 PMCID: PMC11192067 DOI: 10.3389/fmicb.2024.1403279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
Biodegradation was considered a promising and environmentally friendly method for treating environmental pollution caused by diuron. However, the mechanisms of biodegradation of diuron required further research. In this study, the degradation process of diuron by Achromobacter xylosoxidans SL-6 was systematically investigated. The results suggested that the antioxidant system of strain SL-6 was activated by adding diuron, thereby alleviating their oxidative stress response. In addition, degradation product analysis showed that diuron in strain SL-6 was mainly degraded by urea bridge cleavage, dehalogenation, deamination, and ring opening, and finally cis, cis-muconic acid was generated. The combined analysis of metabolomics and transcriptomics revealed the biodegradation and adaptation mechanism of strain SL-6 to diuron. Metabolomics analysis showed that after the strain SL-6 was exposed to diuron, metabolic pathways such as tricarboxylic acid cycle (cis, cis-muconic acid), glutathione metabolism (oxidized glutathione), and urea cycle (arginine) were reprogrammed in the cells. Furthermore, diuron could induce the production of membrane transport proteins in strain SL-6 cells and overexpress antioxidant enzyme genes, finally ultimately promoting the up-regulation of genes encoding amide hydrolases and dioxygenases, which was revealed by transcriptomics studies. This work enriched the biodegradation mechanism of phenylurea herbicides and provided guidance for the removal of diuron residues in the environment and promoting agriculture sustainable development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Desong Yang
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, China
| |
Collapse
|
4
|
Raj A, Kumar A, Khare PK. The looming threat of profenofos organophosphate and microbes in action for their sustainable degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14367-14387. [PMID: 38291208 DOI: 10.1007/s11356-024-32159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
Organophosphates are the most extensively used class of pesticides to deal with increasing pest diversity and produce more on limited terrestrial areas to feed the ever-expanding global population. Profenofos, an organophosphate group of non-systematic insecticides and acaricides, is used to combat aphids, cotton bollworms, tobacco budworms, beet armyworms, spider mites, and lygus bugs. Profenofos was inducted into the system as a replacement for chlorpyrifos due to its lower toxicity and half-life. It has become a significant environmental concern due to its widespread presence. It accumulates in various environmental components, contaminating food, water, and air. As a neurotoxic poison, it inhibits acetylcholinesterase receptor activity, leading to dizziness, paralysis, and pest death. It also affects other eukaryotes, such as pollinators, birds, mammals, and invertebrates, affecting ecosystem functioning. Microbes directly expose themselves to profenofos and adapt to these toxic compounds over time. Microbes use these toxic compounds as carbon and energy sources and it is a sustainable and economical method to eliminate profenofos from the environment. This article explores the studies and developments in the bioremediation of profenofos, its impact on plants, pollinators, and humans, and the policies and laws related to pesticide regulation. The goal is to raise awareness about the global threat of profenofos and the role of policymakers in managing pesticide mismanagement.
Collapse
Affiliation(s)
- Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, (M.P), -470003, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, (M.P), -470003, India.
- Metagenomics and Secretomics Research Laboratory, Department of Botany, University of Allahabad (A Central University), Prayagraj, (UP), -211002, India.
| | - Pramod Kumar Khare
- Ecology Laboratory, Department of Botany, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Madhya Pradesh, Sagar, -470003, India
| |
Collapse
|
5
|
Asgari G, Abdipour H, Shadjou AM. A review of novel methods for Diuron removal from aqueous environments. Heliyon 2023; 9:e23134. [PMID: 38144345 PMCID: PMC10746476 DOI: 10.1016/j.heliyon.2023.e23134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Runoff from intensive agriculture, which contains many sources of pollutants, including herbicides, for instance, Diuron, has threatened the environment and human health. The intrusion of these toxins into water sources poses a serious challenge to human society, and the rising release of these toxins has always been of concern to water researchers. The consequences of the release of these toxins into water sources are destructive and debilitating to human life. Today, the contamination of surface water and wastewater by pesticide residues, especially from agricultural activities and pesticide factories, has grown significantly. One of the pesticides commonly applied around the world is Diuron. There are various techniques for removing Diuron, the most important of which are adsorption and advanced oxidation. This review presents the characteristics, mechanisms, and emerging methods of removing Diuron. The use of absorbents, such as sludge-derived modified biochar (SDMBC600) and bottom ash waste (BAW-200), is discussed in detail. Additionally, the main features, benefits, and limitations of new technologies like hydrodynamic cavitation are enumerated. The effectiveness of novel adsorbents in Diuron removal is also discussed.
Collapse
Affiliation(s)
- Ghorban Asgari
- Social Determinants of Health Research Center (SDHRC), Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Abdipour
- Student Research Committee, Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran
| | | |
Collapse
|
6
|
Rebelo D, Antunes SC, Rodrigues S. The Silent Threat: Exploring the Ecological and Ecotoxicological Impacts of Chlorinated Aniline Derivatives and the Metabolites on the Aquatic Ecosystem. J Xenobiot 2023; 13:604-614. [PMID: 37873815 PMCID: PMC10594489 DOI: 10.3390/jox13040038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
The growing concern over the environmental impacts of industrial chemicals on aquatic ecosystems has prompted increased attention and regulation. Aromatic amines have drawn scrutiny due to their potential to disturb aquatic ecosystems. 4-chloroaniline and 3,4-dichloroaniline are chlorinated derivatives of aniline used as intermediates in the synthesis of pharmaceuticals, dyes, pesticides, cosmetics, and laboratory chemicals. While industrial applications are crucial, these compounds represent significant risks to aquatic environments. This article aims to shed light on aromatic amines' ecological and ecotoxicological impacts on aquatic ecosystems, given as examples 4-chloroaniline and 3,4-dichloroaniline, highlighting the need for stringent regulation and management to safeguard water resources. Moreover, these compounds are not included in the current Watch List of the Water Framework Directive, though there is already some information about aquatic ecotoxicity, which raises some concerns. This paper primarily focuses on the inherent environmental problem related to the proliferation and persistence of aromatic amines, particularly 4-chloroaniline and 3,4-dichloroaniline, in aquatic ecosystems. Although significant research underscores the hazardous effects of these compounds, the urgency of addressing this issue appears to be underestimated. As such, we underscore the necessity of advancing detection and mitigation efforts and implementing improved regulatory measures to safeguard the water bodies against these potential threats.
Collapse
Affiliation(s)
- Daniela Rebelo
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4550-208 Matosinhos, Portugal;
- Department of Biology, Faculty of Sciences of the University of Porto (FCUP), Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Sara C. Antunes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4550-208 Matosinhos, Portugal;
- Department of Biology, Faculty of Sciences of the University of Porto (FCUP), Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Sara Rodrigues
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4550-208 Matosinhos, Portugal;
- Department of Biology, Faculty of Sciences of the University of Porto (FCUP), Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| |
Collapse
|
7
|
Bennett C, Ngamrung S, Ano V, Umongno C, Mahatheeranont S, Jakmunee J, Nisoa M, Leksakul K, Sawangrat C, Boonyawan D. Comparison of plasma technology for the study of herbicide degradation. RSC Adv 2023; 13:14078-14088. [PMID: 37197673 PMCID: PMC10184135 DOI: 10.1039/d3ra00459g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023] Open
Abstract
The study aimed to investigate the effects of two different plasma systems, including pinhole plasma jet and gliding arc (GA) plasma, for the degradation of herbicide, diuron, in plasma activated solutions (PAS). In the GA plasma system, air was used to generate plasma, however, Ar, oxygen and nitrogen at different gas compositions were compared in the pinhole plasma jet system. The Taguchi design model was used to study the effects of gas compositions. Results revealed that the pinhole plasma jet system was able to degrade over 50% of the diuron in 60 minutes. The optimal plasma generation condition for the highest degradation of diuron used pure Ar gas. The highest degradation percentage of herbicide in PAS corresponded to the lowest hydrogen peroxide (H2O2) content, nitrite concentration and electrical conductivity (EC) of the PAS. The diuron degradation products were identified as 3,4-dichloro-benzenamine, 1-chloro-3-isocyanato-benzene and 1-chloro-4-isocyanato-benzene via gas chromatography-mass spectrometry (GC-MS). The GA plasma system was not adequate for the degradation of herbicide in PAS.
Collapse
Affiliation(s)
- Chonlada Bennett
- Agriculture and Bio Plasma Technology Center (ABPlas), Science and Technology Park, Chiang Mai University Chiang Mai 50100 Thailand
| | - Sawanya Ngamrung
- Agriculture and Bio Plasma Technology Center (ABPlas), Science and Technology Park, Chiang Mai University Chiang Mai 50100 Thailand
| | - Vithun Ano
- Agriculture and Bio Plasma Technology Center (ABPlas), Science and Technology Park, Chiang Mai University Chiang Mai 50100 Thailand
| | - Chanchai Umongno
- Plasma and Beam Physics Research, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
| | - Sugunya Mahatheeranont
- Department of Chemistry, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University Chiang Mai 50200 Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
- Center of Advanced Materials of Printed Electronics and Sensors, Materials Science Research Center, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
| | - Mudtorlep Nisoa
- School of Science, Walailak University Nakhon Si Thammarat 80160 Thailand
| | - Komgrit Leksakul
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University Chiang Mai 50200 Thailand
| | - Choncharoen Sawangrat
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University Chiang Mai 50200 Thailand
| | - Dheerawan Boonyawan
- Plasma and Beam Physics Research, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
| |
Collapse
|
8
|
Chaurasia PK, Nagraj, Sharma N, Kumari S, Yadav M, Singh S, Mani A, Yadava S, Bharati SL. Fungal assisted bio-treatment of environmental pollutants with comprehensive emphasis on noxious heavy metals: Recent updates. Biotechnol Bioeng 2023; 120:57-81. [PMID: 36253930 DOI: 10.1002/bit.28268] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
In the present time of speedy developments and industrialization, heavy metals are being uncovered in aquatic environment and soil via refining, electroplating, processing, mining, metallurgical activities, dyeing and other several metallic and metal based industrial and synthetic activities. Heavy metals like lead (Pb), mercury (Hg), cadmium (Cd), arsenic (As), Zinc (Zn), Cobalt (Co), Iron (Fe), and many other are considered as seriously noxious and toxic for the aquatic environment, human, and other aquatic lives and have damaging influences. Such heavy metals, which are very tough to be degraded, can be managed by reducing their potential through various processes like removal, precipitation, oxidation-reduction, bio-sorption, recovery, bioaccumulation, bio-mineralization etc. Microbes are known as talented bio-agents for the heavy metals detoxification process and fungi are one of the cherished bio-sources that show noteworthy aptitude of heavy metal sorption and metal tolerance. Thus, the main objective of the authors was to come with a comprehensive review having methodological insights on the novel and recent results in the field of mycoremediation of heavy metals. This review significantly assesses the potential talent of fungi in heavy metal detoxification and thus, in environmental restoration. Many reported works, methodologies and mechanistic sights have been evaluated to explore the fungal-assisted heavy metal remediation. Herein, a compact and effectual discussion on the recent mycoremediation studies of organic pollutants like dyes, petroleum, pesticides, insecticides, herbicides, and pharmaceutical wastes have also been presented.
Collapse
Affiliation(s)
- Pankaj Kumar Chaurasia
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Nagraj
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Nagendra Sharma
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Sunita Kumari
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Mithu Yadav
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Sunita Singh
- Department of Chemistry, Navyug Kanya Mahavidyalaya, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Sudha Yadava
- Department of Chemistry, D. D. U. Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Shashi Lata Bharati
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh, India
| |
Collapse
|
9
|
Wang XD, Zhang CY, Yuan Y, Hua YF, Asami T, Qin Y, Xiong XH, Zhu JL, Lu YC. Molecular Responses and Degradation Mechanisms of the Herbicide Diuron in Rice Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14352-14366. [PMID: 36326728 DOI: 10.1021/acs.jafc.2c05142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Diuron [DU; 3-(3,4-dichlorophenyl)-1,1-dimethylurea], a widely used herbicide for weed control, arouses ecological and health risks due to its environment persistence. Our findings revealed that DU at 0.125-2.0 mg L-1 caused oxidative damage to rice. RNA-sequencing profiles disclosed a globally genetic expression landscape of rice under DU treatment. DU mediated downregulated gene encoding photosynthesis and biosynthesis of protein, fatty acid, and carbohydrate. Conversely, it induced the upregulation of numerous genes involved in xenobiotic metabolism, detoxification, and anti-oxidation. Furthermore, 15 DU metabolites produced by metabolic genes were identified, 7 of which include two Phase I-based and 5 Phase II-based derivatives, were reported for the first time. The changes of resistance-related phytohormones, like JA, ABA, and SA, in terms of their contents and molecular-regulated signaling pathways positively responded to DU stress. Our work provides a molecular-scale perspective on the response of rice to DU toxicity and clarifies the biotransformation and degradation fate of DU in rice crops.
Collapse
Affiliation(s)
- Xiao Dong Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing211816, China
| | - Chen Yi Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing211816, China
| | - Yi Yuan
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming650205, China
| | - Yi Fei Hua
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing211816, China
| | - Tadao Asami
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo113-8657, Japan
| | - Yi Qin
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing211816, China
| | - Xiao Hui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing211816, China
| | - Jian Liang Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing211816, China
| | - Yi Chen Lu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing211816, China
| |
Collapse
|
10
|
Bhatt P, Pandey SC, Joshi S, Chaudhary P, Pathak VM, Huang Y, Wu X, Zhou Z, Chen S. Nanobioremediation: A sustainable approach for the removal of toxic pollutants from the environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128033. [PMID: 34999406 DOI: 10.1016/j.jhazmat.2021.128033] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
In recent years, the proportion of organic and inorganic contaminants has increased rapidly due to growing human interference and represents a threat to ecosystems. The removal of these toxic pollutants from the environment is a difficult task. Physical, chemical and biological methods are implemented for the degradation of toxic pollutants from the environment. Among existing technologies, bioremediation in combination with nanotechnology is the most promising and cost-effective method for the removal of pollutants. Numerous studies have shown that exceptional characteristics of nanomaterials such as improved catalysis and adsorption properties as well as high reactivity have been subjects of great interest. There is an emerging trend of employing bacterial, fungal and algal cultures and their components, extracts or biomolecules as catalysts for the sustainable production of nanomaterials. They can serve as facilitators in the bioremediation of toxic compounds by immobilizing or inducing the synthesis of remediating microbial enzymes. Understanding the association between microorganisms, contaminants and nanoparticles (NPs) is of crucial importance. In this review, we focus on the removal of toxic pollutants using the cumulative effects of nanoparticles with microbial technology and their applications in different domains. Besides, we discuss how this novel nanobioremediation technique is significant and contributes towards sustainability.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Satish Chandra Pandey
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Samiksha Joshi
- School of Agriculture Graphic Era Hill University Bhimtal, 263136, India
| | - Parul Chaudhary
- Department of Microbiology, College of Basic Sciences and Humanities, G.B Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Vinay Mohan Pathak
- Department of Microbiology, University of Delhi, South Campus, 110021, India; Department of Botany & Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand 249404, India
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaozhen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
11
|
Lindane removal in contaminated soil by defined microbial consortia and evaluation of its effectiveness by bioassays and cytotoxicity studies. Int Microbiol 2022; 25:365-378. [PMID: 35032229 DOI: 10.1007/s10123-022-00232-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/05/2021] [Accepted: 12/31/2021] [Indexed: 12/29/2022]
Abstract
Lindane contamination in different environmental matrices has been a global concern for long. Bacterial consortia consisting of Paracoccus sp. NITDBR1, Rhodococcus rhodochrous NITDBS9, Ochrobactrum sp. NITDBR3, NITDBR4 and NITDBR5 were used for the bioremediation of soil artificially contaminated with lindane. The bacteria, Paracoccus sp. NITDBR1 and Rhodococcus rhodochrous NITDBS9, have been selected based on their lindane degrading capacity in liquid culture conditions (~80-90 %). The remaining three bacteria were chosen for their auxiliary properties for plant growth promotion, such as nitrogen fixation, phosphate solubilization, indole-3-acetic acid production and ammonia production under in vitro conditions. In this study, market wastes, mainly vegetable wastes, were added to the soil as a biostimulant to form a biomixture for assisting the degradation of lindane by bioaugmentation. Residual lindane was measured at regular intervals of 7 days to monitor the biodegradation process. It was observed that the consortium could degrade ~80% of 50 mg kg-1 lindane in soil which was further increased in the biomixture after six weeks of incubation. Bioassays performed on plant seeds and cytotoxicity studies performed on human skin fibroblast and HCT116 cell lines revealed that the groups contaminated with lindane and treated with the bacterial consortium showed lower toxicity than their respective controls without any bacteria. Hence, the use of both pesticide degrading and plant growth-promoting bacteria in a consortium can be a promising strategy for improved bioremediation against chemical pesticides, particularly in soil and agricultural fields, simultaneously enhancing crop productivity in those contaminated soil.
Collapse
|
12
|
Wu X, Li J, Zhou Z, Lin Z, Pang S, Bhatt P, Mishra S, Chen S. Environmental Occurrence, Toxicity Concerns, and Degradation of Diazinon Using a Microbial System. Front Microbiol 2021; 12:717286. [PMID: 34790174 PMCID: PMC8591295 DOI: 10.3389/fmicb.2021.717286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/08/2021] [Indexed: 12/07/2022] Open
Abstract
Diazinon is an organophosphorus pesticide widely used to control cabbage insects, cotton aphids and underground pests. The continuous application of diazinon in agricultural activities has caused both ecological risk and biological hazards in the environment. Diazinon can be degraded via physical and chemical methods such as photocatalysis, adsorption and advanced oxidation. The microbial degradation of diazinon is found to be more effective than physicochemical methods for its complete clean-up from contaminated soil and water environments. The microbial strains belonging to Ochrobactrum sp., Stenotrophomonas sp., Lactobacillus brevis, Serratia marcescens, Aspergillus niger, Rhodotorula glutinis, and Rhodotorula rubra were found to be very promising for the ecofriendly removal of diazinon. The degradation pathways of diazinon and the fate of several metabolites were investigated. In addition, a variety of diazinon-degrading enzymes, such as hydrolase, acid phosphatase, laccase, cytochrome P450, and flavin monooxygenase were also discovered to play a crucial role in the biodegradation of diazinon. However, many unanswered questions still exist regarding the environmental fate and degradation mechanisms of this pesticide. The catalytic mechanisms responsible for enzymatic degradation remain unexplained, and ecotechnological techniques need to be applied to gain a comprehensive understanding of these issues. Hence, this review article provides in-depth information about the impact and toxicity of diazinon in living systems and discusses the developed ecotechnological remedial methods used for the effective biodegradation of diazinon in a contaminated environment.
Collapse
Affiliation(s)
- Xiaozhen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|