1
|
Jia Y, Huang Q, Song R, Tang Y, Feng M, Lu J. Effects of fermented bamboo fiber on intestinal health and fecal pollutants in weaned piglets. Front Nutr 2025; 12:1538560. [PMID: 40236635 PMCID: PMC11998670 DOI: 10.3389/fnut.2025.1538560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/07/2025] [Indexed: 04/17/2025] Open
Abstract
Introduction Weaning stress adversely affects piglet growth and development, thereby reducing the economic efficiency of pig farming operations. Furthermore, pig feces are a major source of environmental pollution, underscoring the need for effective strategies to mitigate fecal output at its source. Methods This study investigated the effects of dietary supplementation with fermented bamboo fiber (FBF) on growth performance, intestinal barrier integrity, gut microbiota composition, and fecal pollutant levels in weaned piglets. A total of 144 Duroc × Landrace × Yorkshire piglets, weaned at 21 days of age, were randomly assigned to 4 groups, with six replicates per group and 6 piglets per replicate. The control group (CON) received a basal diet, while the three treatment groups were fed the basal diet supplemented with 1, 1.5, and 2% FBF, respectively. The trial lasted 30 days. Results The findings revealed that FBF supplementation fortified the intestinal barrier, modulated colonic microbial communities, and decreased fecal pollutant levels. Among the treatment groups, supplementation with 1.5% FBF produced the most significant improvements in piglets' growth performance and intestinal barrier function, as well as the strongest microbial interactions and the greatest reduction in fecal pollutants. Discussion These results suggest that FBF supplementation can alleviate weaning stress and mitigate the environmental impact of pig feces, with 1.5% identified as the optimal supplementation level.
Collapse
Affiliation(s)
- Yubiao Jia
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Qiuming Huang
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Rui Song
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yanling Tang
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Mengxin Feng
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jianjun Lu
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Liu Y, Huang X, Li C, Deng P, Zhang X, Hu Y, Dai Q. Effects of Ferulic Acid on Lipopolysaccharide-Induced Oxidative Stress and Gut Microbiota Imbalance in Linwu Ducks. Antioxidants (Basel) 2024; 13:1190. [PMID: 39456444 PMCID: PMC11504935 DOI: 10.3390/antiox13101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Oxidative stress is a major factor that limits the development of the poultry industry. Ferulic acid (FA) has an antioxidant effect in birds, but the mechanism is not fully understood. In this study, we stimulated oxidative stress in 28-day-old female Linwu ducks by lipopolysaccharide (LPS) and fed them a diet supplemented with FA for 28 days. Results showed that FA alleviated LPS-induced growth performance regression, oxidative stress, and microbiota imbalance in ducks. An integrated metagenomics and metabolomics analysis revealed that s_Blautia_obeum, s_Faecalibacterium_prausnitzii, s_gemmiger_formicilis, and s_Ruminococcaceae_bacterium could be the biomarkers in the antioxidant effect of FA, which interacted with dihydro-3-coumaric acid, L-phenylalanine, and 13(S)-HODE, and regulated the phenylalanine metabolism and PPAR signaling pathway. This study revealed the mechanism of the antioxidant effect of FA, which provided evidence of applying FA as a new antioxidant in commercial duck production.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiuzhong Dai
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha 410131, China; (Y.L.); (X.H.); (C.L.); (P.D.); (X.Z.); (Y.H.)
| |
Collapse
|
3
|
Wang H, Wu J, Hu M, Zhang H, Zhou X, Yang S, He K, Yan F, Jin H, Chen S, Zhao A. Effects of dietary supplement of ε-polylysine hydrochloride on laying performance, egg quality, serum parameters, organ index, intestinal morphology, gut microbiota and volatile fatty acids in laying hens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3069-3079. [PMID: 38072654 DOI: 10.1002/jsfa.13198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/05/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND ε-polylysine hydrochloride (ε-PLH) is a naturally occurring antimicrobial peptide extensively utilized in the food and medical industries. However, its impact on animal husbandry remains to be further explored. Therefore, the present study aimed to determine the effect of ε-PLH on laying hens' health and laying performance. RESULTS Dietary supplementation with ε-PLH to the diet significantly increased average egg weight during weeks 1-8. Meanwhile, compared with the control group, supplementation with ε-PLH decreased the feed egg ratio during weeks 9-12 and egg breakage rate during weeks 9-16 ,whereas it increased eggshell strength during weeks 1-4 and 13-16 . The ε-PLH 0.05% group increased yolk percentage during weeks 5-8 and yolk color during weeks 1-4 . Furthermore, ε-PLH supplementation significantly increased the concentrations of total protein, albumin, globulin and reproductive hormones estradiol, as well as decreased interleukin-1 beta and malondialdehyde in the serum. Compared with the control group, supplementation with 0.05% ε-PLH significantly increased the relative abundance of Cyanobacteria and Gastranaerophilales and decreased the abundance of Desulfovibrio and Streptococcus in the cecum microbiota. In addition, ε-PLH 0.1% supplementation also increased acetic acid content in the cecum. CONCLUSION Dietary supplementation with ε-PLH has a positive impact on both productive performance and egg quality in laying hens. Furthermore, ε-PLH can also relieve inflammation by promoting the immunity and reducing oxidative damage during egg production. ε-PLH has been shown to improve intestinal morphology, gut microbial diversity and intestinal health. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Jianqing Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Moran Hu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Haoxin Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Ke He
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Feifei Yan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Hangfeng Jin
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Shaojie Chen
- Zhejiang Silver-Elephant Bio-Engineering Co., Ltd, Taizhou, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
4
|
Xu Y, Yin F, Wang J, Wu P, Qiu X, He X, Xiao Y, Gan S. Effect of tea polyphenols on intestinal barrier and immune function in weaned lambs. Front Vet Sci 2024; 11:1361507. [PMID: 38435366 PMCID: PMC10904598 DOI: 10.3389/fvets.2024.1361507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction The purpose of this study was to explore the effects of tea polyphenols on growth performance, cytokine content, intestinal antioxidant status and intestinal barrier function of lambs, in order to provide reference for intestinal health of ruminants. Methods Thirty weaned lambs (average initial weight 9.32 ± 1.72 kg) were randomly divided into five groups with six lambs in each group. The control group did not add anything but the basic diet mainly composed of Pennisetum and Corn, and the other four groups added 2, 4, 6 g/kg tea polyphenols and 50 mg/kg chlortetracycline to the basic diet, respectively. The experiment lasted for 42 days. Results Dietary tea polyphenols improved the growth and stress response and reduced intestinal permeability of lambs (p > 0.05), while CTC did not affect the final lamb weight (p > 0.05). Both tea phenols and CTC significantly reduced inflammatory factors and enhanced the immune system (p > 0.05). Dietary tea polyphenols increased villus height, villus height/crypt depth, secretory immunoglobulin A (p > 0.05), and antioxidant enzymes, while decreasing MDA and apoptosis in the intestine (p > 0.05). However, compared with other groups, the content of T-AOC in jejunum did not change significantly (p > 0.05). Tea polyphenols also increased claudin-1 levels in the duodenum, jejunum, and ileum more than CTC (p > 0.05). CTC had a limited effect on the mRNA expression of Occludin and ZO-1, while tea polyphenols increased these in both the duodenum and ileum (p > 0.05). Conclusion This study demonstrated that tea polyphenols can effectively improve the intestinal barrier of weaned lambs, and that they have anti-inflammatory and antioxidant effects similar to those of antibiotics. Thus, tea polyphenols could be used to replace antibiotics in ensuring safety of livestock products and in achieving the sustainable development of modern animal husbandry.
Collapse
Affiliation(s)
- Yuewen Xu
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Fuquan Yin
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Jialin Wang
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Pengxin Wu
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoyuan Qiu
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Xiaolin He
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
| | - Yimei Xiao
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
| | - Shangquan Gan
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
5
|
Zhou G, Liang X, He X, Li J, Tian G, Liu Y, Wang X, Chen Y, Yang Y. Compound enzyme preparation supplementation improves the production performance of goats by regulating rumen microbiota. Appl Microbiol Biotechnol 2023; 107:7287-7299. [PMID: 37750915 DOI: 10.1007/s00253-023-12804-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
Enzyme preparation is one of the widely used additives in ruminant production. However, a suitable method of adding compound enzyme preparation (CEP) to the feeds is still lacking. This study investigated the effect of adding CEP on the diet of goats. Twenty 4-month-old Boer goats were randomly assigned to four groups. The dietary treatments contained different CEPs (Saccharomyces cerevisiae cells, cellulase, xylanase, β-glucanase amylase, and protease) at the concentrations of 0, 0.25, 0.50, and 0.75 g/kg of feed provided for a period of 56 days. Adding CEP in goat feed significantly increased average daily gain (ADG) during the entire test period. The oxidative indices, hormones, and immune cells did not differ significantly among the different groups. CEP significantly increased the content of total volatile fatty acids measured at the end of the experiment on day 56 of the final normal feeding phase. 16S rDNA sequencing revealed that CEP increased the abundance of Ruminococcaceae in the rumen and g__norank_f__Eubacterium_coprostanoligenes_group, Oscillibacter g__unclassified_f__Ruminococcaceae, and g__unclassified_o__Oscillospirales in fecal matter collected on day 56 of the final normal feeding phase. However, CEP decreased the abundance of unclassified_f__Lachnospiraceae, norank_f__UCG-010, Butyrivibrio, and Saccharofermentans in the rumen. The abundance of Ruminococcaceae in the rumen and propionic acid was positively correlated with ADG. Function prediction showed that carbon fixation, carbohydrate digestion and absorption pathways were significantly enriched in rumen microbiota in the treatment group. The findings indicated that supplementation with 0.5 g CEP/kg of feed for 56 days significantly improves the production performance of goats without adverse health effects. KEY POINTS: • Feeding with compound enzyme preparation for 56 days significantly improved the productive performance but did not affect the antioxidative capacity and immunity of goats. • Supplementing compound enzyme preparation in diet could increase the relative abundance of Ruminococcus to increase the levels of short-chain fatty acids produced. • The most appropriate supplemental amount of compound enzyme preparation per kilogram of the diet was 0.5 g.
Collapse
Affiliation(s)
- Guangchen Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xuhui Liang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ximeng He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Junda Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Guangjie Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yuyang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaoyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
- Research Center for the Qinling Giant Panda, Shaanxi Academy of Forestry, Xi'an, 710082, Shaanxi, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yuxin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
6
|
Lorenzo-Rebenaque L, Casto-Rebollo C, Diretto G, Frusciante S, Rodríguez JC, Ventero MP, Molina-Pardines C, Vega S, Marin C, Marco-Jiménez F. Modulation of Caecal Microbiota and Metabolome Profile in Salmonella-Infected Broilers by Phage Therapy. Int J Mol Sci 2023; 24:15201. [PMID: 37894882 PMCID: PMC10607084 DOI: 10.3390/ijms242015201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Bacteriophage therapy is considered one of the most promising tools to control zoonotic bacteria, such as Salmonella, in broiler production. Phages exhibit high specificity for their targeted bacterial hosts, causing minimal disruption to the niche microbiota. However, data on the gut environment's response to phage therapy in poultry are limited. This study investigated the influence of Salmonella phage on host physiology through caecal microbiota and metabolome modulation using high-throughput 16S rRNA gene sequencing and an untargeted metabolomics approach. We employed 24 caecum content samples and 24 blood serum samples from 4-, 5- and 6-week-old broilers from a previous study where Salmonella phages were administered via feed in Salmonella-infected broilers, which were individually weighed weekly. Phage therapy did not affect the alpha or beta diversity of the microbiota. Specifically, we observed changes in the relative abundance of 14 out of the 110 genera using the PLS-DA and Bayes approaches. On the other hand, we noted changes in the caecal metabolites (63 up-accumulated and 37 down-accumulated out of the 1113 caecal metabolites). Nevertheless, the minimal changes in blood serum suggest a non-significant physiological response. The application of Salmonella phages under production conditions modulates the caecal microbiome and metabolome profiles in broilers without impacting the host physiology in terms of growth performance.
Collapse
Affiliation(s)
- Laura Lorenzo-Rebenaque
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Calle Santiago Ramón y Cajal 20, Alfara del Patriarca, 45115 Valencia, Spain; (L.L.-R.); (S.V.); (C.M.)
| | - Cristina Casto-Rebollo
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Gianfranco Diretto
- Italian Agency for New Technologies, Energy and Sustainable Development (ENEA), Biotechnology Laboratory, Centro Ricerche Casaccia, Via Anguillarese, 301, Santa Maria di Galeria, 00123 Rome, Italy; (G.D.); (S.F.)
| | - Sarah Frusciante
- Italian Agency for New Technologies, Energy and Sustainable Development (ENEA), Biotechnology Laboratory, Centro Ricerche Casaccia, Via Anguillarese, 301, Santa Maria di Galeria, 00123 Rome, Italy; (G.D.); (S.F.)
| | - Juan Carlos Rodríguez
- Microbiology Department, Dr. Balmis University General Hospital, Microbiology Division, Miguel Hernández University, ISABIAL, 03010 Alicante, Spain;
| | - María-Paz Ventero
- Microbiology Department, Dr. Balmis University General Hospital, ISABIAL, 03010 Alicante, Spain; (M.-P.V.); (C.M.-P.)
| | - Carmen Molina-Pardines
- Microbiology Department, Dr. Balmis University General Hospital, ISABIAL, 03010 Alicante, Spain; (M.-P.V.); (C.M.-P.)
| | - Santiago Vega
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Calle Santiago Ramón y Cajal 20, Alfara del Patriarca, 45115 Valencia, Spain; (L.L.-R.); (S.V.); (C.M.)
| | - Clara Marin
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Calle Santiago Ramón y Cajal 20, Alfara del Patriarca, 45115 Valencia, Spain; (L.L.-R.); (S.V.); (C.M.)
| | - Francisco Marco-Jiménez
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain;
| |
Collapse
|
7
|
Sguizzato M, Ferrara F, Drechsler M, Baldisserotto A, Montesi L, Manfredini S, Valacchi G, Cortesi R. Lipid-Based Nanosystems for the Topical Application of Ferulic Acid: A Comparative Study. Pharmaceutics 2023; 15:1940. [PMID: 37514126 PMCID: PMC10385185 DOI: 10.3390/pharmaceutics15071940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, we examined and compared two different lipid-based nanosystems (LBNs), namely Transferosomes (TFs) and Monoolein Aqueous Dispersions (MADs), as delivery systems for the topical application of Ferulic Acid (FA), an antioxidant molecule derived from natural sources. Our results, as demonstrated through Franz-cell experiments, indicate that the LBNs produced with poloxamer 188 in their composition create a multilamellar system. This system effectively controls the release of the drug. Nonetheless, we found that the type of non-ionic surfactant can impact the drug release rate. Regarding FA diffusion from the MAD, this showed a lower diffusion rate compared with the TF. In terms of an in vivo application, patch tests revealed that all LBN formulations tested were safe when applied under occlusive conditions for 48 h. Additionally, human skin biopsies were used to determine whether FA-containing formulations could influence skin tissue morphology or provide protection against O3 exposure. Analyses suggest that treatment with TFs composed of poloxamer 188 and MAD formulations might protect against structural skin damage (as observed in hematoxylin/eosin staining) and the development of an oxidative environment (as indicated by 4-hyroxinonenal (4HNE) expression levels) induced by O3 exposure. In contrast, formulations without the active ingredient did not offer protection against the detrimental effects of O3 exposure.Inizio modulo.
Collapse
Affiliation(s)
- Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI) Keylab "Electron and Optical Microscopy", University of Bayreuth, D-95440 Bayreuth, Germany
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Leda Montesi
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Plants for Human Health Institute, Department of Animal Science, NC Research Campus Kannapolis, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
| |
Collapse
|
8
|
Effects of Dietary Ferulic Acid on Intestinal Health and Ileal Microbiota of Tianfu Broilers Challenged with Lipopolysaccharide. Molecules 2023; 28:molecules28041720. [PMID: 36838708 PMCID: PMC9967589 DOI: 10.3390/molecules28041720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Lipopolysaccharide (LPS) has been considered the primary agent to establish animal models of inflammation, immunological stress, and organ injury. Previous studies have demonstrated that LPS impaired gastrointestinal development and disrupted intestinal microbial composition and metabolism. Ferulic acid (FA) isolated from multiple plants exhibits multiple biological activities. This study investigated whether FA ameliorated intestinal function and microflora in LPS-challenged Tianfu broilers. The results showed that LPS challenge impaired intestinal function, as evidenced by decreased antioxidant functions (p < 0.05), disrupted morphological structure (p < 0.05), and increased intestinal permeability (p < 0.05); however, these adverse effects were improved by FA supplementation. Additionally, FA supplementation preserved sIgA levels (p < 0.05), increased mRNA expression levels of CLDN and ZO-1 (p < 0.05), and enhanced epithelial proliferation (p < 0.05) in the ileal mucosa in LPS-challenged chickens. Moreover, FA supplementation rectified the ileal microflora disturbances in the LPS-challenged broilers. The results demonstrate that dietary FA supplementation decreased LPS-induced intestinal damage by enhancing antioxidant capacity and maintaining intestinal integrity. Furthermore, FA supplementation protects intestinal tight junctions (TJs), elevates secretory immunoglobulin A (sIgA) levels, and modulates ileal microflora composition in LPS-challenged broilers.
Collapse
|
9
|
Niosomes for Topical Application of Antioxidant Molecules: Design and In Vitro Behavior. Gels 2023; 9:gels9020107. [PMID: 36826277 PMCID: PMC9956392 DOI: 10.3390/gels9020107] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
In the present study, gels based on xanthan gum and poloxamer 407 have been developed and characterized in order to convey natural antioxidant molecules included in niosomes. Specifically, the studies were conducted to evaluate how the vesicular systems affect the release of the active ingredient and which formulation is most suitable for cutaneous application. Niosomes, composed of Span 20 or Tween 20, were produced through the direct hydration method, and therefore, borate buffer or a micellar solution of poloxamer 188 was used as the aqueous phase. The niosomes were firstly characterized in terms of morphology, dimensional and encapsulation stability. Afterwards, gels based on poloxamer 407 or xanthan gum were compared in terms of spreadability and adhesiveness. It was found to have greater spreadability for gels based on poloxamer 407 and 100% adhesiveness for those based on xanthan gum. The in vitro diffusion of drugs studied using Franz cells associated with membranes of mixed cellulose esters showed that the use of a poloxamer micellar hydration phase determined a lower release as well as the use of Span 20. The thickened niosomes ensured controlled diffusion of the antioxidant molecules. Lastly, the in vivo irritation test confirmed the safeness of niosomal gels after cutaneous application.
Collapse
|
10
|
Xu X, Huang P, Cui X, Li X, Sun J, Ji Q, Wei Q, Huang Y, Li Z, Bao G, Liu Y. Effects of Dietary Coated Lysozyme on the Growth Performance, Antioxidant Activity, Immunity and Gut Health of Weaned Piglets. Antibiotics (Basel) 2022; 11:antibiotics11111470. [PMID: 36358125 PMCID: PMC9686649 DOI: 10.3390/antibiotics11111470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to evaluate the effects of dietary coated lysozyme on growth performance, serum biochemical indexes, antioxidant activity, digestive enzyme activity, intestinal permeability, and the cecal microbiota in weaned piglets. In total, 144 weaned Large White × Landrace piglets were divided into six treatment groups, with 3 replicates and 8 piglets per replicate: CN, a basal diet; CL-L, CL-M, and CL-H, basal diet supplemented with 100, 150, 500 mg/kg coated lysozyme; UL, basal diet supplemented with 150 mg/kg lysozyme; and Abs, basal diet supplemented with 150 mg/kg guitaromycin for 6 weeks. Compared with the CN and UL diets, dietary CL-H inclusion increased the average daily gain (ADG) and decreased the feed/gain (F/G) ratio of piglets (p < 0.05). The addition of 500 mg/kg coated lysozyme to the diet significantly increased the total protein (TP) and globulin (Glob) plasma levels of weaned piglets (p < 0.05). Supplementation with 500 mg/kg coated lysozyme significantly increased the serum IgM concentration and increased lipase activity in the duodenum (p < 0.05). The addition of coated lysozyme and lysozyme significantly decreased the malondialdehyde (MDA) content, while the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) levels all increased (p < 0.05). High-throughput sequencing results showed that CL-H treatment effectively improved the intestinal microbiome. The relative abundance of Terrisporobacter in the CL-H and CL-M groups was significantly lower than that in the other groups (p < 0.05). LEfSe analysis results showed that the relative abundance of Coprococcus_3 was higher in the CL-M treatment group. The marker species added to the CL-H treatment group was Anaerofilum. In summary, as a potential substitute for feed antibiotics, lysozyme is directly used as a dietary additive, which is inefficient. Therefore, we used palm oil as the main coating material to coat lysozyme. Lysozyme after coating can more effectively improve the growth performance of piglets by improving the intestinal flora, improving the activity of digestive enzymes, reducing the damage to intestinal permeability and oxidative stress in piglets caused by weaning stress, and improving the immunity of piglets.
Collapse
Affiliation(s)
- Xiangfei Xu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Animal Science and Technology·College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Pan Huang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xuemei Cui
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xuefeng Li
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiaying Sun
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Quanan Ji
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiang Wei
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yee Huang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhefeng Li
- Hangzhou King Techina Technology Company Academic Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou 311199, China
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Animal Science and Technology·College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
- Correspondence: (G.B.); (Y.L.); Tel.: +86-057186419022 (Y.L.)
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (G.B.); (Y.L.); Tel.: +86-057186419022 (Y.L.)
| |
Collapse
|
11
|
Chen Q, Wang Z, Shao D, Shi S. Effects of heat stress on the intestinal microorganisms in poultry and its nutritional regulations: a review. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2106344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Qingyi Chen
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou, China
- Huanan Agricultural University, Guangzhou, China
| | - Zhenxin Wang
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou, China
| | - Dan Shao
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou, China
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou, China
- Center of Effective Evaluation of Feed and Feed Additive (Poultry Institute) Ministry of Agriculture, Yangzhou, China
| |
Collapse
|
12
|
Chen J, Shu Y, Chen Y, Ge Z, Zhang C, Cao J, Li X, Wang Y, Sun C. Evaluation of Antioxidant Capacity and Gut Microbiota Modulatory Effects of Different Kinds of Berries. Antioxidants (Basel) 2022; 11:1020. [PMID: 35624885 PMCID: PMC9137550 DOI: 10.3390/antiox11051020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 12/19/2022] Open
Abstract
Berries are fairly favored by consumers. Phenolic compounds are the major phytochemicals in berries, among which anthocyanins are one of the most studied. Phenolic compounds are reported to have prebiotic-like effects. In the present study, we identified the anthocyanin profiles, evaluated and compared the antioxidant capacities and gut microbiota modulatory effects of nine common berries, namely blackberry, black goji berry, blueberry, mulberry, red Chinese bayberry, raspberry, red goji berry, strawberry and white Chinese bayberry. Anthocyanin profiles were identified by UPLC-Triple-TOF/MS. In vitro antioxidant capacity was evaluated by four chemical assays (DPPH, ABTS, FRAP and ORAC). In vivo antioxidant capacity and gut microbiota modulatory effects evaluation was carried out by treating healthy mice with different berry extracts for two weeks. The results show that most berries could improve internal antioxidant status, reflected by elevated serum or colonic T-AOC, GSH, T-SOD, CAT, and GSH-PX levels, as well as decreased MDA content. All berries significantly altered the gut microbiota composition. The modulatory effects of the berries were much the same, namely by the enrichment of beneficial SCFAs-producing bacteria and the inhibition of potentially harmful bacteria. Our study shed light on the gut microbiota modulatory effect of different berries and may offer consumers useful consumption guidance.
Collapse
Affiliation(s)
- Jiebiao Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
| | - Yichen Shu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
| | - Yanhong Chen
- Laboratory Animal Center of Zhejiang University, Zijingang Campus, Hangzhou 310058, China;
| | - Zhiwei Ge
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China;
| | - Changfeng Zhang
- Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Shandong Institute of Commerce and Technology, Jinan 250103, China;
- National Engineering Research Center for Agricultural Products Logistics, Jinan 250103, China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
| | - Xian Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
| | - Yue Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
| |
Collapse
|
13
|
Peng W, Li YH, Yang G, Duan JL, Yang LY, Chen LX, Hou SL, Huang XG. Oral administration of Lactobacillus delbrueckii enhances intestinal immunity through inducing dendritic cell activation in suckling piglets. Food Funct 2022; 13:2570-2580. [PMID: 35166282 DOI: 10.1039/d1fo03864h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lactobacillus delbrueckii (LAB) has been demonstrated to exert versatile beneficial effects on modulating intestinal immunity, increasing gut microbial diversity, promoting growth performance, and even preventing disease onset in pigs. However, the underlying mechanism of LAB-mediated gut immunity regulation in piglets remains unclear. In this study, we found that supplementation of LAB significantly increases serum TNF-α, ileum IL-4, and IL-10 levels compared with the control group. Meanwhile, oral supplementation of LAB-modified gut microbial communities was evidenced by the increased abundance of the Lactobacillus genus in the colon. Mechanistically, LAB induced dendritic cell (DC) maturation and activation, which may be relevant to the activation of NF-κB and MAPK signaling pathways. Moreover, we found that oral administration of LAB during the suckling period shows long-lasting immunomodulatory impacts on intestinal immunity after weaning. Collectively, this study uncovers the mechanism of LAB in regulating the intestinal immunity of piglets, suggesting that LAB can be developed as an immunoenhancing biological agent during the suckling period.
Collapse
Affiliation(s)
- Wei Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
- Engineering Research Center for Feed Safety and Efficient Utilization of Education, Changsha, Hunan 410128, China
| | - Ying-Hui Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
- Engineering Research Center for Feed Safety and Efficient Utilization of Education, Changsha, Hunan 410128, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Jie-Lin Duan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
- Engineering Research Center for Feed Safety and Efficient Utilization of Education, Changsha, Hunan 410128, China
| | - Ling-Yuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
- Engineering Research Center for Feed Safety and Efficient Utilization of Education, Changsha, Hunan 410128, China
| | - Li-Xiang Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
- Engineering Research Center for Feed Safety and Efficient Utilization of Education, Changsha, Hunan 410128, China
| | - Shu-Ling Hou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
- Engineering Research Center for Feed Safety and Efficient Utilization of Education, Changsha, Hunan 410128, China
| | - Xing-Guo Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
- Engineering Research Center for Feed Safety and Efficient Utilization of Education, Changsha, Hunan 410128, China
| |
Collapse
|