1
|
Snyder CD, Bedrossian M, Barr C, Deming JW, Lindensmith CA, Stenner C, Nadeau JL. Extant life detection using label-free video microscopy in analog aquatic environments. PLoS One 2025; 20:e0318239. [PMID: 40073001 PMCID: PMC11902266 DOI: 10.1371/journal.pone.0318239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/13/2025] [Indexed: 03/14/2025] Open
Abstract
The ability of microbial active motion, morphology, and optical properties to serve as biosignatures was investigated by in situ video microscopy in a wide range of extreme field sites where such imaging had not been performed previously. These sites allowed for sampling seawater, sea ice brines, cryopeg brines, hypersaline pools and seeps, hyperalkaline springs, and glaciovolcanic cave ice. In all samples except the cryopeg brine, active motion was observed without any sample treatment. Active motion was observed in the cryopeg brines when samples were subjected to a temperature gradient above in situ. In general, levels of motility were low in the field samples collected at temperatures < 4ºC. Non-motile cells could be distinguished from microminerals by differences in passive motion (e.g., density measured by sinking/floating), refractive index and/or absorbance, or morphology in the case of larger eukaryotes. Dramatic increases in the fraction of motile cells were seen with simple stimuli such as warming or the addition of L-serine. Chemotaxis and thermotaxis were also observed in select samples. An open-source, autonomous software package with computational requirements that can be scaled to spaceflight computers was used to classify the data. These results demonstrate the utility of volumetric light microscopy for life detection, but also suggest the importance of developing methods to stimulate cells in situ and process data using the restrictions imposed by mission bandwidth, as well as instruments to capture cell-like objects for detailed chemical analysis.
Collapse
Affiliation(s)
- Carl D. Snyder
- Department of Physics, Portland State University, Portland, Oregon, United States of America
| | - Manuel Bedrossian
- Department of Medical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Casey Barr
- Department of Earth Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Jody W. Deming
- School of Oceanography, University of Washington, Seattle, Washington, United States of America
| | - Chris A. Lindensmith
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, United States of America
| | | | - Jay L. Nadeau
- Department of Physics, Portland State University, Portland, Oregon, United States of America
| |
Collapse
|
2
|
Salinas-García MÁ, Fernbach J, Rinnan R, Priemé A. Extreme smells-microbial production of volatile organic compounds at the limits of life. FEMS Microbiol Rev 2025; 49:fuaf004. [PMID: 39880796 PMCID: PMC11837334 DOI: 10.1093/femsre/fuaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 01/31/2025] Open
Abstract
Microbial volatile organic compounds (MVOCs) are diverse molecules produced by microorganisms, ranging from mere waste byproducts to important signalling molecules. While the interest in MVOCs has been increasing steadily, there is a significant gap in our knowledge of MVOCs in extreme environments with e.g. extreme temperatures or acidity. Microorganisms in these conditions are subjected to additional stress compared to their counterparts in moderate environments and in many cases have evolved unique adaptations, including the production of specialized MVOCs. This review highlights the diversity of MVOCs identified in extreme environments or produced by isolated extremophiles. Furthermore, we explore potential applications already investigated and discuss broader implications for biotechnology, environmental biology, and astrobiology.
Collapse
Affiliation(s)
- Miguel Ángel Salinas-García
- Centre for Exolife Sciences (CELS), Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5, DK-1350 Copenhagen, Denmark
- Center for Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Jonas Fernbach
- Centre for Exolife Sciences (CELS), Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5, DK-1350 Copenhagen, Denmark
| | - Riikka Rinnan
- Center for Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Anders Priemé
- Centre for Exolife Sciences (CELS), Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5, DK-1350 Copenhagen, Denmark
- Center for Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
3
|
Zhong J, Osborn T, Del Rosario Hernández T, Kyrysyuk O, Tully BJ, Anderson RE. Increasing transposase abundance with ocean depth correlates with a particle-associated lifestyle. mSystems 2024; 9:e0006724. [PMID: 38380923 PMCID: PMC10949469 DOI: 10.1128/msystems.00067-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
Transposases are mobile genetic elements that move within and between genomes, promoting genomic plasticity in microorganisms. In marine microbial communities, the abundance of transposases increases with depth, but the reasons behind this trend remain unclear. Our analysis of metagenomes from the Tara Oceans and Malaspina Expeditions suggests that a particle-associated lifestyle is the main covariate for the high occurrence of transposases in the deep ocean, and this trend holds true for individual genomes as well as in a community-wide sense. We observed a strong and depth-independent correlation between transposase abundance and the presence of biofilm-associated genes, as well as the prevalence of secretory enzymes. This suggests that mobile genetic elements readily propagate among microbial communities within crowded biofilms. Furthermore, we show that particle association positively correlates with larger genome size, which is in turn associated with higher transposase abundance. Cassette sequences associated with transposons are enriched with genes related to defense mechanisms, which are more highly expressed in the deep sea. Thus, while transposons spread at the expense of their microbial hosts, they also introduce novel genes and potentially benefit the hosts in helping to compete for limited resources. Overall, our results suggest a new understanding of deep ocean particles as highways for gene sharing among defensively oriented microbial genomes.IMPORTANCEGenes can move within and between microbial genomes via mobile genetic elements, which include transposases and transposons. In the oceans, there is a puzzling increase in transposase abundance in microbial genomes as depth increases. To gain insight into this trend, we conducted an extensive analysis of marine microbial metagenomes and metatranscriptomes. We found a significant correlation between transposase abundance and a particle-associated lifestyle among marine microbes at both the metagenome and genome-resolved levels. We also observed a link between transposase abundance and genes related to defense mechanisms. These results suggest that as microbes become densely packed into crowded particles, mobile genes are more likely to spread and carry genetic material that provides a competitive advantage in crowded habitats. This may enable deep sea microbes to effectively compete in such environments.
Collapse
Affiliation(s)
- Juntao Zhong
- Carleton College, Northfield, Minnesota, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Troy Osborn
- Carleton College, Northfield, Minnesota, USA
| | - Thais Del Rosario Hernández
- Carleton College, Northfield, Minnesota, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Oleksandr Kyrysyuk
- Carleton College, Northfield, Minnesota, USA
- Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Benjamin J. Tully
- Marine & Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
4
|
Goldman AL, Fulk EM, Momper LM, Heider C, Mulligan J, Osburn M, Masiello CA, Silberg JJ. Microbial sensor variation across biogeochemical conditions in the terrestrial deep subsurface. mSystems 2024; 9:e0096623. [PMID: 38059636 PMCID: PMC10805038 DOI: 10.1128/msystems.00966-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023] Open
Abstract
Microbes can be found in abundance many kilometers underground. While microbial metabolic capabilities have been examined across different geochemical settings, it remains unclear how changes in subsurface niches affect microbial needs to sense and respond to their environment. To address this question, we examined how microbial extracellular sensor systems vary with environmental conditions across metagenomes at different Deep Mine Microbial Observatory (DeMMO) subsurface sites. Because two-component systems (TCSs) directly sense extracellular conditions and convert this information into intracellular biochemical responses, we expected that this sensor family would vary across isolated oligotrophic subterranean environments that differ in abiotic and biotic conditions. TCSs were found at all six subsurface sites, the service water control, and the surface site, with an average of 0.88 sensor histidine kinases (HKs) per 100 genes across all sites. Abundance was greater in subsurface fracture fluids compared with surface-derived fluids, and candidate phyla radiation (CPR) bacteria presented the lowest HK frequencies. Measures of microbial diversity, such as the Shannon diversity index, revealed that HK abundance is inversely correlated with microbial diversity (r2 = 0.81). Among the geochemical parameters measured, HK frequency correlated most strongly with variance in dissolved organic carbon (r2 = 0.82). Taken together, these results implicate the abiotic and biotic properties of an ecological niche as drivers of sensor needs, and they suggest that microbes in environments with large fluctuations in organic nutrients (e.g., lacustrine, terrestrial, and coastal ecosystems) may require greater TCS diversity than ecosystems with low nutrients (e.g., open ocean).IMPORTANCEThe ability to detect extracellular environmental conditions is a fundamental property of all life forms. Because microbial two-component sensor systems convert information about extracellular conditions into biochemical information that controls their behaviors, we evaluated how two-component sensor systems evolved within the deep Earth across multiple sites where abiotic and biotic properties vary. We show that these sensor systems remain abundant in microbial consortia at all subterranean sampling sites and observe correlations between sensor system abundances and abiotic (dissolved organic carbon variation) and biotic (consortia diversity) properties. These results suggest that multiple environmental properties may drive sensor protein evolution and highlight the need for further studies of metagenomic and geochemical data in parallel to understand the drivers of microbial sensor evolution.
Collapse
Affiliation(s)
| | - Emily M. Fulk
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, Texas, USA
| | - Lily M. Momper
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois, USA
| | - Clinton Heider
- Rice University, Center for Research Computing, Houston, Texas, USA
| | - John Mulligan
- Rice University, Center for Research Computing, Houston, Texas, USA
| | - Magdalena Osburn
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois, USA
| | - Caroline A. Masiello
- Department of Biosciences, Rice University, Houston, Texas, USA
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, Texas, USA
| | - Jonathan J. Silberg
- Department of Biosciences, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
5
|
Zhong ZP, Vik D, Rapp JZ, Zablocki O, Maughan H, Temperton B, Deming JW, Sullivan MB. Lower viral evolutionary pressure under stable versus fluctuating conditions in subzero Arctic brines. MICROBIOME 2023; 11:174. [PMID: 37550784 PMCID: PMC10405475 DOI: 10.1186/s40168-023-01619-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/12/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Climate change threatens Earth's ice-based ecosystems which currently offer archives and eco-evolutionary experiments in the extreme. Arctic cryopeg brine (marine-derived, within permafrost) and sea ice brine, similar in subzero temperature and high salinity but different in temporal stability, are inhabited by microbes adapted to these extreme conditions. However, little is known about their viruses (community composition, diversity, interaction with hosts, or evolution) or how they might respond to geologically stable cryopeg versus fluctuating sea ice conditions. RESULTS We used long- and short-read viromics and metatranscriptomics to study viruses in Arctic cryopeg brine, sea ice brine, and underlying seawater, recovering 11,088 vOTUs (~species-level taxonomic unit), a 4.4-fold increase of known viruses in these brines. More specifically, the long-read-powered viromes doubled the number of longer (≥25 kb) vOTUs generated and recovered more hypervariable regions by >5-fold compared to short-read viromes. Distribution assessment, by comparing to known viruses in public databases, supported that cryopeg brine viruses were of marine origin yet distinct from either sea ice brine or seawater viruses, while 94% of sea ice brine viruses were also present in seawater. A virus-encoded, ecologically important exopolysaccharide biosynthesis gene was identified, and many viruses (~half of metatranscriptome-inferred "active" vOTUs) were predicted as actively infecting the dominant microbial genera Marinobacter and Polaribacter in cryopeg and sea ice brines, respectively. Evolutionarily, microdiversity (intra-species genetic variations) analyses suggested that viruses within the stable cryopeg brine were under significantly lower evolutionary pressures than those in the fluctuating sea ice environment, while many sea ice brine virus-tail genes were under positive selection, indicating virus-host co-evolutionary arms races. CONCLUSIONS Our results confirmed the benefits of long-read-powered viromics in understanding the environmental virosphere through significantly improved genomic recovery, expanding viral discovery and the potential for biological inference. Evidence of viruses actively infecting the dominant microbes in subzero brines and modulating host metabolism underscored the potential impact of viruses on these remote and underexplored extreme ecosystems. Microdiversity results shed light on different strategies viruses use to evolve and adapt when extreme conditions are stable versus fluctuating. Together, these findings verify the value of long-read-powered viromics and provide foundational data on viral evolution and virus-microbe interactions in Earth's destabilized and rapidly disappearing cryosphere. Video Abstract.
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Dean Vik
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Josephine Z Rapp
- Department of Biology, Université Laval, Québec, QC, Canada
- Center for Northern Studies (CEN), Université Laval, Québec, QC, Canada
| | - Olivier Zablocki
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | | | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, Devon, UK
| | - Jody W Deming
- School of Oceanography and Astrobiology Program, University of Washington, Seattle, WA, USA.
| | - Matthew B Sullivan
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA.
- Department of Microbiology, Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Kanaan G, Hoehler TM, Iwahana G, Deming JW. Modeled energetics of bacterial communities in ancient subzero brines. Front Microbiol 2023; 14:1206641. [PMID: 37564288 PMCID: PMC10411740 DOI: 10.3389/fmicb.2023.1206641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Cryopeg brines are isolated volumes of hypersaline water in subzero permafrost. The cryopeg system at Utqiaġvik, Alaska, is estimated to date back to 40 ka BP or earlier, a remnant of a late Pleistocene Ocean. Surprisingly, the cryopeg brines contain high concentrations of organic carbon, including extracellular polysaccharides, and high densities of bacteria. How can these physiologically extreme, old, and geologically isolated systems support such an ecosystem? This study addresses this question by examining the energetics of the Utqiaġvik cryopeg brine ecosystem. Using literature-derived assumptions and new measurements on archived borehole materials, we first estimated the quantity of organic carbon when the system formed. We then considered two bacterial growth trajectories to calculate the lower and upper bounds of the cell-specific metabolic rate of these communities. These bounds represent the first community estimates of metabolic rate in a subzero hypersaline environment. To assess the plausibility of the different growth trajectories, we developed a model of the organic carbon cycle and applied it to three borehole scenarios. We also used dissolved inorganic carbon and nitrogen measurements to independently estimate the metabolic rate. The model reconstructs the growth trajectory of the microbial community and predicts the present-day cell density and organic carbon content. Model input included measured rates of the in-situ enzymatic conversion of particulate to dissolved organic carbon under subzero brine conditions. A sensitivity analysis of model parameters was performed, revealing an interplay between growth rate, cell-specific metabolic rate, and extracellular enzyme activity. This approach allowed us to identify plausible growth trajectories consistent with the observed bacterial densities in the cryopeg brines. We found that the cell-specific metabolic rate in this system is relatively high compared to marine sediments. We attribute this finding to the need to invest energy in the production of extracellular enzymes, for generating bioavailable carbon from particulate organic carbon, and the production of extracellular polysaccharides for cryoprotection and osmoprotection. These results may be relevant to other isolated systems in the polar regions of Earth and to possible ice-bound brines on worlds such as Europa, Enceladus, and Mars.
Collapse
Affiliation(s)
- Georges Kanaan
- School of Oceanography and Astrobiology Program, University of Washington, Seattle, WA, United States
| | | | - Go Iwahana
- International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Jody W. Deming
- School of Oceanography and Astrobiology Program, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Valadez-Cano C, Reyes-Prieto A, Beach DG, Rafuse C, McCarron P, Lawrence J. Genomic characterization of coexisting anatoxin-producing and non-toxigenic Microcoleus subspecies in benthic mats from the Wolastoq, New Brunswick, Canada. HARMFUL ALGAE 2023; 124:102405. [PMID: 37164558 DOI: 10.1016/j.hal.2023.102405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 05/12/2023]
Abstract
The presence of toxigenic benthic cyanobacteria in riverine ecosystems is an increasing concern around the world. In 2018, the death of three dogs along the Wolastoq (also known as the Saint John River) in New Brunswick, Canada, was attributed to anatoxin exposure after they ingested benthic microbial mats found along the shore. Here, we shotgun sequenced the DNA of 15 non-axenic cyanobacterial isolates derived from four anatoxin-containing benthic mat samples associated with the dog deaths. Anatoxins were produced by some of the isolates, but not all. We retrieved near-complete Microcoleus metagenome-assembled genomes (MAGs) from the isolates that are closely related to anatoxin-producing Microcoleus from the Cardrona River (New Zealand), although the Microcoleus MAGs from the Wolastoq varied in the presence/absence of the anatoxin-a biosynthesis cluster. Sequence similarity at the genomic level suggests that toxigenic and non-toxigenic Microcoleus MAGs from the Wolastoq belong to the same species but are separate subspecies. The toxigenic and nontoxic Wolastoq Microcoleus subspecies coexisted in the mat samples in similar relative abundance. Overall genomic comparisons revealed that toxigenic Microcoleus MAGs are longer and code for more accessory genes than their non-toxigenic relatives, suggesting a differential responsiveness to changing environments, stress conditions and nutrient availability.
Collapse
Affiliation(s)
- Cecilio Valadez-Cano
- Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Adrian Reyes-Prieto
- Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Daniel G Beach
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia, B3H 3Z1, Canada
| | - Cheryl Rafuse
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia, B3H 3Z1, Canada
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia, B3H 3Z1, Canada
| | - Janice Lawrence
- Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, New Brunswick, E3B 5A3, Canada.
| |
Collapse
|
8
|
Cooper ZS, Rapp JZ, Shoemaker AMD, Anderson RE, Zhong ZP, Deming JW. Evolutionary Divergence of Marinobacter Strains in Cryopeg Brines as Revealed by Pangenomics. Front Microbiol 2022; 13:879116. [PMID: 35733954 PMCID: PMC9207381 DOI: 10.3389/fmicb.2022.879116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Marinobacter spp. are cosmopolitan in saline environments, displaying a diverse set of metabolisms that allow them to competitively occupy these environments, some of which can be extreme in both salinity and temperature. Here, we introduce a distinct cluster of Marinobacter genomes, composed of novel isolates and in silico assembled genomes obtained from subzero, hypersaline cryopeg brines, relic seawater-derived liquid habitats within permafrost sampled near Utqiaġvik, Alaska. Using these new genomes and 45 representative publicly available genomes of Marinobacter spp. from other settings, we assembled a pangenome to examine how the new extremophile members fit evolutionarily and ecologically, based on genetic potential and environmental source. This first genus-wide genomic analysis revealed that Marinobacter spp. in general encode metabolic pathways that are thermodynamically favored at low temperature, cover a broad range of organic compounds, and optimize protein usage, e.g., the Entner–Doudoroff pathway, the glyoxylate shunt, and amino acid metabolism. The new isolates contributed to a distinct clade of subzero brine-dwelling Marinobacter spp. that diverged genotypically and phylogenetically from all other Marinobacter members. The subzero brine clade displays genomic characteristics that may explain competitive adaptations to the extreme environments they inhabit, including more abundant membrane transport systems (e.g., for organic substrates, compatible solutes, and ions) and stress-induced transcriptional regulatory mechanisms (e.g., for cold and salt stress) than in the other Marinobacter clades. We also identified more abundant signatures of potential horizontal transfer of genes involved in transcription, the mobilome, and a variety of metabolite exchange systems, which led to considering the importance of this evolutionary mechanism in an extreme environment where adaptation via vertical evolution is physiologically rate limited. Assessing these new extremophile genomes in a pangenomic context has provided a unique view into the ecological and evolutionary history of the genus Marinobacter, particularly with regard to its remarkable diversity and its opportunism in extremely cold and saline environments.
Collapse
Affiliation(s)
- Zachary S. Cooper
- School of Oceanography, University of Washington, Seattle, WA, United States
- Astrobiology Program, University of Washington, Seattle, WA, United States
- *Correspondence: Zachary S. Cooper, , orcid.org/0000-0001-6515-7971
| | - Josephine Z. Rapp
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Center for Northern Studies (CEN), Université Laval, Québec, QC, Canada
- Institute of Integrative Biology and Systems (IBIS), Université Laval, Québec, QC, Canada
| | - Anna M. D. Shoemaker
- Department of Earth Sciences, Montana State University, Bozeman, MT, United States
| | - Rika E. Anderson
- Department of Biology, Carleton College, Northfield, MN, United States
| | - Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, United States
- Department of Microbiology, Ohio State University, Columbus, OH, United States
- Center of Microbiome Science, Ohio State University, Columbus, OH, United States
| | - Jody W. Deming
- School of Oceanography, University of Washington, Seattle, WA, United States
- Astrobiology Program, University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
Abstract
Water is the cellular milieu, drives all biochemistry within Earth's biosphere and facilitates microbe-mediated decay processes. Instead of reviewing these topics, the current article focuses on the activities of water as a preservative-its capacity to maintain the long-term integrity and viability of microbial cells-and identifies the mechanisms by which this occurs. Water provides for, and maintains, cellular structures; buffers against thermodynamic extremes, at various scales; can mitigate events that are traumatic to the cell membrane, such as desiccation-rehydration, freeze-thawing and thermal shock; prevents microbial dehydration that can otherwise exacerbate oxidative damage; mitigates against biocidal factors (in some circumstances reducing ultraviolet radiation and diluting solute stressors or toxic substances); and is effective at electrostatic screening so prevents damage to the cell by the intense electrostatic fields of some ions. In addition, the water retained in desiccated cells (historically referred to as 'bound' water) plays key roles in biomacromolecular structures and their interactions even for fully hydrated cells. Assuming that the components of the cell membrane are chemically stable or at least repairable, and the environment is fairly constant, water molecules can apparently maintain membrane geometries over very long periods provided these configurations represent thermodynamically stable states. The spores and vegetative cells of many microbes survive longer in the presence of vapour-phase water (at moderate-to-high relative humidities) than under more-arid conditions. There are several mechanisms by which large bodies of water, when cooled during subzero weather conditions remain in a liquid state thus preventing potentially dangerous (freeze-thaw) transitions for their microbiome. Microbial life can be preserved in pure water, freshwater systems, seawater, brines, ice/permafrost, sugar-rich aqueous milieux and vapour-phase water according to laboratory-based studies carried out over periods of years to decades and some natural environments that have yielded cells that are apparently thousands, or even (for hypersaline fluid inclusions of mineralized NaCl) hundreds of millions, of years old. The term preservative has often been restricted to those substances used to extend the shelf life of foods (e.g. sodium benzoate, nitrites and sulphites) or those used to conserve dead organisms, such as ethanol or formaldehyde. For living microorganisms however, the ultimate preservative may actually be water. Implications of this role are discussed with reference to the ecology of halophiles, human pathogens and other microbes; food science; biotechnology; biosignatures for life and other aspects of astrobiology; and the large-scale release/reactivation of preserved microbes caused by global climate change.
Collapse
Affiliation(s)
- John E. Hallsworth
- Institute for Global Food SecuritySchool of Biological SciencesQueen’s University Belfast19 Chlorine GardensBelfastBT9 5DLUK
| |
Collapse
|