1
|
Zhang T, Yang J, Gao H, Wu Y, Zhao X, Zhao H, Xie X, Yang L, Li Y, Wu Q. Progress of Infection and Replication Systems of Hepatitis B Virus. ACS Pharmacol Transl Sci 2024; 7:1711-1721. [PMID: 38898948 PMCID: PMC11184603 DOI: 10.1021/acsptsci.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Despite the long-standing availability of effective prophylaxis, chronic hepatitis B virus (HBV) infection remains a formidable public health threat. Antiviral treatments can limit viral propagation, but prolonged therapy is necessary to control HBV replication. Robust in vitro models of HBV infection are indispensable prerequisites for elucidating viral pathogenesis, delineating virus-host interplay and developing novel therapeutic, preventative countermeasures. Buoyed by advances in molecular techniques and tissue culture systems, investigators have engineered numerous in vitro models of the HBV life cycle. However, all current platforms harbor limitations in the recapitulation of natural infection. In this article, we comprehensively review the HBV life cycle, provide an overview of existing in vitro HBV infection and replication systems, and succinctly present the benefits and caveats in each model with the primary objective of constructing refined experimental models that closely mimic native viral infection and offering robust support for the ambitious "elimination of hepatitis by 2030" initiative.
Collapse
Affiliation(s)
- Tiantian Zhang
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Yang
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - He Gao
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuwei Wu
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinyu Zhao
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Zhao
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinqiang Xie
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lingshuang Yang
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ying Li
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
2
|
Herron ICT, Laws TR, Nelson M. Marmosets as models of infectious diseases. Front Cell Infect Microbiol 2024; 14:1340017. [PMID: 38465237 PMCID: PMC10921895 DOI: 10.3389/fcimb.2024.1340017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Animal models of infectious disease often serve a crucial purpose in obtaining licensure of therapeutics and medical countermeasures, particularly in situations where human trials are not feasible, i.e., for those diseases that occur infrequently in the human population. The common marmoset (Callithrix jacchus), a Neotropical new-world (platyrrhines) non-human primate, has gained increasing attention as an animal model for a number of diseases given its small size, availability and evolutionary proximity to humans. This review aims to (i) discuss the pros and cons of the common marmoset as an animal model by providing a brief snapshot of how marmosets are currently utilized in biomedical research, (ii) summarize and evaluate relevant aspects of the marmoset immune system to the study of infectious diseases, (iii) provide a historical backdrop, outlining the significance of infectious diseases and the importance of developing reliable animal models to test novel therapeutics, and (iv) provide a summary of infectious diseases for which a marmoset model exists, followed by an in-depth discussion of the marmoset models of two studied bacterial infectious diseases (tularemia and melioidosis) and one viral infectious disease (viral hepatitis C).
Collapse
Affiliation(s)
- Ian C. T. Herron
- CBR Division, Defence Science and Technology Laboratory (Dstl), Salisbury, United Kingdom
| | | | | |
Collapse
|
3
|
Ye Y, Wang Y, Li H, Liu Y, Meng C, Zhu J, Liu G, Li C. Genetic characterization of duck hepatitis B viruses from Anhui Province, China. Braz J Microbiol 2023; 54:3299-3305. [PMID: 37673839 PMCID: PMC10689712 DOI: 10.1007/s42770-023-01120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
Duck hepatitis B virus (DHBV) infection model was frequently used as the experimental model for human hepatitis B virus (HBV) research. In order to decipher the genetic characteristics of DHBVs from Anhui province of China, 120 duck liver tissue samples were collected and subjected to PCR screening, and 28 samples were detected as DHBV positive. Subsequently, five DHBV-positive samples were selected for genome-wide amplification and a comprehensive analysis. Comparative analysis of complete genome sequences using the MegAlign program showed that five strains of DHBVs shared 94.5-96.3% with each other and 93.2-98.7% with other reference strains in GenBank. The phylogenetic analysis showed that all five DHBV strains belonged to the evolutionary branch of "Chinese DHBV" isolates or DHBV-2. Importantly, three potential intra-genotypic recombination events, between strains AAU-6 and Guilin, strains AAU-1 and GD3, and strains AAU-6 and AAU-1, were respectively found using the RDP and SimPlot softwares and considered the first report in avihepadnaviruses. These results not only improve our understanding for molecular prevalence status of DHBV among ducks, but also provide a reference for recombination mechanism of HBV.
Collapse
Affiliation(s)
- Yumeng Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yong Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Hang Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Yuhan Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Wulumuqi, 830052, China
| | - Chunchun Meng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Jie Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China.
| | - Chuanfeng Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China.
| |
Collapse
|
4
|
Patil VS, Harish DR, Sampat GH, Roy S, Jalalpure SS, Khanal P, Gujarathi SS, Hegde HV. System Biology Investigation Revealed Lipopolysaccharide and Alcohol-Induced Hepatocellular Carcinoma Resembled Hepatitis B Virus Immunobiology and Pathogenesis. Int J Mol Sci 2023; 24:11146. [PMID: 37446321 DOI: 10.3390/ijms241311146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Hepatitis B infection caused by the hepatitis B virus is a life-threatening cause of liver fibrosis, cirrhosis, and hepatocellular carcinoma. Researchers have produced multiple in vivo models for hepatitis B virus (HBV) and, currently, there are no specific laboratory animal models available to study HBV pathogenesis or immune response; nonetheless, their limitations prevent them from being used to study HBV pathogenesis, immune response, or therapeutic methods because HBV can only infect humans and chimpanzees. The current study is the first of its kind to identify a suitable chemically induced liver cirrhosis/HCC model that parallels HBV pathophysiology. Initially, data from the peer-reviewed literature and the GeneCards database were compiled to identify the genes that HBV and seven drugs (acetaminophen, isoniazid, alcohol, D-galactosamine, lipopolysaccharide, thioacetamide, and rifampicin) regulate. Functional enrichment analysis was performed in the STRING server. The network HBV/Chemical, genes, and pathways were constructed by Cytoscape 3.6.1. About 1546 genes were modulated by HBV, of which 25.2% and 17.6% of the genes were common for alcohol and lipopolysaccharide-induced hepatitis. In accordance with the enrichment analysis, HBV activates the signaling pathways for apoptosis, cell cycle, PI3K-Akt, TNF, JAK-STAT, MAPK, chemokines, NF-kappa B, and TGF-beta. In addition, alcohol and lipopolysaccharide significantly activated these pathways more than other chemicals, with higher gene counts and lower FDR scores. In conclusion, alcohol-induced hepatitis could be a suitable model to study chronic HBV infection and lipopolysaccharide-induced hepatitis for an acute inflammatory response to HBV.
Collapse
Affiliation(s)
- Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Sunil S Jalalpure
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Pukar Khanal
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Swarup S Gujarathi
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Harsha V Hegde
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| |
Collapse
|
5
|
Bhat S, Ahanger IA, Kazim SN. Forthcoming Developments in Models to Study the Hepatitis B Virus Replication Cycle, Pathogenesis, and Pharmacological Advancements. ACS OMEGA 2023; 8:14273-14289. [PMID: 37125123 PMCID: PMC10134252 DOI: 10.1021/acsomega.2c07154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/08/2023] [Indexed: 05/03/2023]
Abstract
Hepatitis, liver cirrhosis, and hepatocellular carcinoma are all manifestations of chronic hepatitis B. Its pathogenesis and molecular mechanism remain mysterious. As medical science progresses, different models are being used to study the disease from the physiological and molecular levels. Animal models have played an unprecedented role in achieving in-depth knowledge of the disease while posing no risk of harming humans throughout the study. The scarcity of acceptable animal models has slowed progress in hepatitis B virus (HBV) research and preclinical testing of antiviral medicines since HBV has a narrow species tropism and exclusively infects humans and higher primates. The development of human chimeric mice was supported by a better understanding of the obstacles to interspecies transmission, which has substantially opened the way for HBV research in vivo and the evaluation of possible chronic hepatitis B therapeutics. Animal models are cumbersome to handle, not accessible, and expensive. Hence, it is herculean to investigate the HBV replication cycle in animal models. Therefore, it becomes essential to build a splendid in vitro cell culture system to demonstrate the mechanisms attained by the HBV for its multiplication and sustenance. We also addressed the advantages and caveats associated with different models in examining HBV.
Collapse
Affiliation(s)
- Sajad
Ahmad Bhat
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ishfaq Ahmad Ahanger
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Clinical
Biochemistry University of Kashmir, Srinagar, India
| | - Syed Naqui Kazim
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Phone: +91 9953621758.
| |
Collapse
|
6
|
Relevance of HBx for Hepatitis B Virus-Associated Pathogenesis. Int J Mol Sci 2023; 24:ijms24054964. [PMID: 36902395 PMCID: PMC10003785 DOI: 10.3390/ijms24054964] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The hepatitis B virus (HBV) counts as a major global health problem, as it presents a significant causative factor for liver-related morbidity and mortality. The development of hepatocellular carcinomas (HCC) as a characteristic of a persistent, chronic infection could be caused, among others, by the pleiotropic function of the viral regulatory protein HBx. The latter is known to modulate an onset of cellular and viral signaling processes with emerging influence in liver pathogenesis. However, the flexible and multifunctional nature of HBx impedes the fundamental understanding of related mechanisms and the development of associated diseases, and has even led to partial controversial results in the past. Based on the cellular distribution of HBx-nuclear-, cytoplasmic- or mitochondria-associated-this review encompasses the current knowledge and previous investigations of HBx in context of cellular signaling pathways and HBV-associated pathogenesis. In addition, particular focus is set on the clinical relevance and potential novel therapeutic applications in the context of HBx.
Collapse
|
7
|
The Origin of Capsid-Derived Immune Complexes and Their Impact on HBV-Induced Liver Diseases. Viruses 2022; 14:v14122766. [PMID: 36560770 PMCID: PMC9785824 DOI: 10.3390/v14122766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Over 240 million people worldwide are chronically infected with Hepatitis B Virus (HBV), a hepatotropic DNA virus with an evolutionary root of over 400 million years. Persistent HBV infection exhibits distinct and diverse phases of disease, from minimal liver pathology to fulminant Hepatitis, that vary in duration and severity among individuals. Although huge progress has been made in HBV research which has yielded an effective prophylactic vaccine and potent antiviral therapy, our understanding of its virology and immunobiology is still far from complete. For example, the recent re-discovery of serum HBV RNA in chronic Hepatitis B (CHB) patients has led to the proposal of noncanonical viral particles such as RNA virion and capsid-derived immune complex (Capsid-Antibody-Complexes, CACs) that contradict long-established basic theory. Furthermore, the existence of capsid-derived immune complex may hint at novel mechanism of HBV-induced liver disease. Here, we summarize the past and recent literature on HBV-induced immune complex. We propose that the release of capsid-derived particles by HBV has its deep evolutionary origin, and the associated complement activation serves as an indispensable trigger for intrahepatic damage and a catalyst for further cell-mediated immunopathology.
Collapse
|
8
|
Hassan HM, Li J. Prospect of Animal Models for Acute-on-chronic Liver Failure: A Mini-review. J Clin Transl Hepatol 2022; 10:995-1003. [PMID: 36304511 PMCID: PMC9547251 DOI: 10.14218/jcth.2022.00086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 12/04/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a clinical syndrome that develops in patients with chronic liver diseases following a precipitating event and associated with a high mortality rate due to systemic multiorgan failure. Establishing a suitable and stable animal model to precisely elucidate the molecular basis of ACLF pathogenesis is essential for the development of effective early diagnostic and treatment strategies. In this context, this article provides a concise and inclusive review of breakthroughs in ACLF animal model development.
Collapse
Affiliation(s)
- Hozeifa Mohamed Hassan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Li
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Correspondence to: Jun Li, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, Zhejiang 310003. China. ORCID: https://orcid.org/0000-0002-7236-8088. Tel/Fax: +86-571-87236425, E-mail:
| |
Collapse
|
9
|
Suresh M, Menne S. Recent Drug Development in the Woodchuck Model of Chronic Hepatitis B. Viruses 2022; 14:v14081711. [PMID: 36016334 PMCID: PMC9416195 DOI: 10.3390/v14081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022] Open
Abstract
Infection with hepatitis B virus (HBV) is responsible for the increasing global hepatitis burden, with an estimated 296 million people being carriers and living with the risk of developing chronic liver disease and cancer. While the current treatment options for chronic hepatitis B (CHB), including oral nucleos(t)ide analogs and systemic interferon-alpha, are deemed suboptimal, the path to finding an ultimate cure for this viral disease is rather challenging. The lack of suitable laboratory animal models that support HBV infection and associated liver disease progression is one of the major hurdles in antiviral drug development. For more than four decades, experimental infection of the Eastern woodchuck with woodchuck hepatitis virus has been applied for studying the immunopathogenesis of HBV and developing new antiviral therapeutics against CHB. There are several advantages to this animal model that are beneficial for performing both basic and translational HBV research. Previous review articles have focused on the value of this animal model in regard to HBV replication, pathogenesis, and immune response. In this article, we review studies of drug development and preclinical evaluation of direct-acting antivirals, immunomodulators, therapeutic vaccines, and inhibitors of viral entry, gene expression, and antigen release in the woodchuck model of CHB since 2014 until today and discuss their significance for clinical trials in patients.
Collapse
|
10
|
Pley C, Lourenço J, McNaughton AL, Matthews PC. Spacer Domain in Hepatitis B Virus Polymerase: Plugging a Hole or Performing a Role? J Virol 2022; 96:e0005122. [PMID: 35412348 PMCID: PMC9093120 DOI: 10.1128/jvi.00051-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatitis B virus (HBV) polymerase is divided into terminal protein, spacer, reverse transcriptase, and RNase domains. Spacer has previously been considered dispensable, merely acting as a tether between other domains or providing plasticity to accommodate deletions and mutations. We explore evidence for the role of spacer sequence, structure, and function in HBV evolution and lineage, consider its associations with escape from drugs, vaccines, and immune responses, and review its potential impacts on disease outcomes.
Collapse
Affiliation(s)
- Caitlin Pley
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Anna L. McNaughton
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Nuffield Department of Medicine, University of Oxford Medawar Building, Oxford, United Kingdom
| | - Philippa C. Matthews
- Nuffield Department of Medicine, University of Oxford Medawar Building, Oxford, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
11
|
Niklasch M, Zimmermann P, Nassal M. The Hepatitis B Virus Nucleocapsid-Dynamic Compartment for Infectious Virus Production and New Antiviral Target. Biomedicines 2021; 9:1577. [PMID: 34829806 PMCID: PMC8615760 DOI: 10.3390/biomedicines9111577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) is a small enveloped DNA virus which replicates its tiny 3.2 kb genome by reverse transcription inside an icosahedral nucleocapsid, formed by a single ~180 amino acid capsid, or core, protein (Cp). HBV causes chronic hepatitis B (CHB), a severe liver disease responsible for nearly a million deaths each year. Most of HBV's only seven primary gene products are multifunctional. Though less obvious than for the multi-domain polymerase, P protein, this is equally crucial for Cp with its multiple roles in the viral life-cycle. Cp provides a stable genome container during extracellular phases, allows for directed intracellular genome transport and timely release from the capsid, and subsequent assembly of new nucleocapsids around P protein and the pregenomic (pg) RNA, forming a distinct compartment for reverse transcription. These opposing features are enabled by dynamic post-transcriptional modifications of Cp which result in dynamic structural alterations. Their perturbation by capsid assembly modulators (CAMs) is a promising new antiviral concept. CAMs inappropriately accelerate assembly and/or distort the capsid shell. We summarize the functional, biochemical, and structural dynamics of Cp, and discuss the therapeutic potential of CAMs based on clinical data. Presently, CAMs appear as a valuable addition but not a substitute for existing therapies. However, as part of rational combination therapies CAMs may bring the ambitious goal of a cure for CHB closer to reality.
Collapse
Affiliation(s)
| | | | - Michael Nassal
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany; (M.N.); (P.Z.)
| |
Collapse
|
12
|
Tsuge M. Are Humanized Mouse Models Useful for Basic Research of Hepatocarcinogenesis through Chronic Hepatitis B Virus Infection? Viruses 2021; 13:v13101920. [PMID: 34696350 PMCID: PMC8541657 DOI: 10.3390/v13101920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a global health problem that can lead to liver dysfunction, including liver cirrhosis and hepatocellular carcinoma (HCC). Current antiviral therapies can control viral replication in patients with chronic HBV infection; however, there is a risk of HCC development. HBV-related proteins may be produced in hepatocytes regardless of antiviral therapies and influence intracellular metabolism and signaling pathways, resulting in liver carcinogenesis. To understand the mechanisms of liver carcinogenesis, the effect of HBV infection in human hepatocytes should be analyzed. HBV infects human hepatocytes through transfer to the sodium taurocholate co-transporting polypeptide (NTCP). Although the NTCP is expressed on the hepatocyte surface in several animals, including mice, HBV infection is limited to human primates. Due to this species-specific liver tropism, suitable animal models for analyzing HBV replication and developing antivirals have been lacking since the discovery of the virus. Recently, a humanized mouse model carrying human hepatocytes in the liver was developed based on several immunodeficient mice; this is useful for analyzing the HBV life cycle, antiviral effects of existing/novel antivirals, and intracellular signaling pathways under HBV infection. Herein, the usefulness of human hepatocyte chimeric mouse models in the analysis of HBV-associated hepatocarcinogenesis is discussed.
Collapse
Affiliation(s)
- Masataka Tsuge
- Natural Science Center for Basic Research and Development, Department of Biomedical Science, Research and Development Division, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; ; Tel.: +81-82-257-1510
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
- Research Center for Hepatology and Gastroenterology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|