1
|
Wang S, Xu T, Tao Y, Lei L, Zhang X, Yin Y, Zheng Y. The global transcriptional regulator MgaSpn affects the virulence of Streptococcus pneumoniae by regulating PcpA. BMC Microbiol 2025; 25:340. [PMID: 40437371 PMCID: PMC12117962 DOI: 10.1186/s12866-025-04047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 05/14/2025] [Indexed: 06/01/2025] Open
Abstract
The global transcriptional regulator MgaSpn is a significant virulence factor of Streptococcus pneumoniae. In our previous study, we found that MgaSpn is a regulator of bacterial virulence by modulating the levels of phosphorylcholine (ChoP) and capsular polysaccharides (CPS) on the surface of S. pneumoniae. Here, we report for the first time that pcpA expression was significantly increased in mgaSpn deletion strains and significantly decreased when mgaSpn was overexpressed. Electrophoretic mobility-shift and DNase I footprinting assays confirmed that MgaSpn interacts with the pcpA promoter (PpcpA) at two specific binding sites. Virulence experiments demonstrated that the interaction between MgaSpn and PcpA is necessary for pneumococcal colonization and invasive infection. Western blot analysis indicated that iron concentration can influences the regulation of PcpA expression via MgaSpn. In summary, these results revealed that MgaSpn regulates PcpA and plays a significant role in pneumococcal pathogenesis.
Collapse
Affiliation(s)
- Shuhui Wang
- Department of Laboratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, People's Republic of China
- Dujiangyan People's Hospital, Chengdu, China
| | - Tianyi Xu
- Department of Laboratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, People's Republic of China
| | - Ye Tao
- Department of Laboratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, People's Republic of China
| | - Li Lei
- Department of Laboratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, People's Republic of China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yuqiang Zheng
- Department of Laboratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, People's Republic of China.
| |
Collapse
|
2
|
Oh MH, Islam MM, Kim N, Choi CH, Shin M, Shin WS, Lee JC. AbOmpA in Acinetobacter baumannii: exploring virulence mechanisms of outer membrane-integrated and outer membrane vesicle-associated AbOmpA and developing anti-infective agents targeting AbOmpA. J Biomed Sci 2025; 32:53. [PMID: 40426208 PMCID: PMC12108004 DOI: 10.1186/s12929-025-01147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Acinetobacter baumannii is notorious for its antimicrobial resistance and its potential to cause epidemics in hospital settings, which pose a global health threat. Although this microorganism is traditionally considered a low-virulence pathogen, extensive research has been conducted on its virulence and pathogenesis in recent years. Advances in understanding the virulence mechanisms of A. baumannii have prompted a shift in the development of anti-infective agents. The outer membrane protein A (AbOmpA) of A. baumannii is a key virulence factor both in vitro and in vivo. AbOmpA exists in three forms: outer membrane-integrated AbOmpA, outer membrane vesicle (OMV)-associated AbOmpA, and free proteins. Given that outer membrane-integrated AbOmpA has been implicated in the virulence and antimicrobial resistance of A. baumannii, many studies have focused on outer membrane-integrated AbOmpA as a therapeutic target for combating drug-resistant A. baumannii, and have led to the discovery of small molecules, polypeptides, and antimicrobial peptides targeting AbOmpA. However, the pathophysiological role of OMV-associated AbOmpA and its impact on AbOmpA-targeting agents remain unclear. This review summarizes the current knowledge of AbOmpA and critically discusses OMV-associated AbOmpA in relation to virulence and its potential impact on AbOmpA-targeted therapies to provide a better understanding of AbOmpA for the development of novel therapeutics against A. baumannii.
Collapse
Affiliation(s)
- Man Hwan Oh
- Department of Microbiology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Md Minarul Islam
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nayeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Chul Hee Choi
- Department of Microbiology, School of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
3
|
Lu Q, Wu X, Fang Y, Wang Y, Zhang B. Antibacterial activity and mechanism of X33 antimicrobial oligopeptide against Acinetobacter baumannii. Synth Syst Biotechnol 2024; 9:312-321. [PMID: 38545458 PMCID: PMC10965436 DOI: 10.1016/j.synbio.2024.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/20/2024] [Accepted: 03/05/2024] [Indexed: 01/03/2025] Open
Abstract
Acinetobacter baumannii is a pathogenic bacterium widespread in human environments, especially in intensive care units, and is associated with high morbidity and infection rates. Multiple drug resistance in A. baumannii frequently leads to the death of patients, making the development of multi-effect antibacterial agents against this bacterium a research hotspot. We have previously found that the X33 antimicrobial oligopeptide can effectively inhibit the growth of Penicillium digitatum and Candida albicans. Herein, we evaluated the antibacterial activity of X33 antimicrobial oligopeptide against A. baumannii by determining the minimum inhibitory concentration, inhibition zone, and growth curve. The increase in extracellular alkaline phosphatase and the leakage of intracellular compounds confirmed the effect of X33 antimicrobial oligopeptide on the cell wall and membrane. Changes in reactive oxygen species, malondialdehyde, ATP, reducing sugar, soluble protein, and pyruvate content demonstrated that the incubation with X33 antimicrobial oligopeptide affected energy metabolism and oxidative stress. Consistent with the physiological characteristics, transcriptomics analysis indicated that incubation with X33 antimicrobial oligopeptide significantly induced changes in the expression of 2339 genes, including 1262 upregulated and 1077 downregulated genes, which participate in oxidative phosphorylation, ribosome, quorum sensing, fatty acid degradation, glycolysis/gluconeogenesis, and citrate cycle pathways. These results provide a fundamental basis for investigating the mechanism of X33 antimicrobial oligopeptide as a potential drug against A. baumannii.
Collapse
Affiliation(s)
- Qunlin Lu
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, 330045, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, 330045, China
| | - Xiaoyu Wu
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, 330045, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, 330045, China
| | - Yuan Fang
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, 330045, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, 330045, China
| | - Yuanxiu Wang
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, 330045, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, 330045, China
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, 330045, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, 330045, China
| |
Collapse
|
4
|
Zhou J, Feng D, Li X, Chen Y, Zhang M, Wu W, Zhu J, Li H, Peng X, Zhang T. L-Serine enables reducing the virulence of Acinetobacter baumannii and modulating the SIRT1 pathway to eliminate the pathogen. Microbiol Spectr 2024; 12:e0322623. [PMID: 38240573 PMCID: PMC10913490 DOI: 10.1128/spectrum.03226-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/14/2023] [Indexed: 03/07/2024] Open
Abstract
The emergence of high-virulent Acinetobacter baumannii strains increases the mortality of patients and seriously affects their prognosis, which motivates us to explore novel ways to control such infections. In this study, gas chromatography-mass spectrometry was adopted to explore the metabolic difference between high- and low-virulent A. baumannii strains, and the decreased L-serine levels were identified as the most crucial biomarker in low-virulent A. baumannii strains. In vitro, L-serine reduced the virulence of A. baumannii to Beas 2B cells and inhibited the activation of NLRP3 inflammasome via decreasing the generation of ROS and mtROS and the release of inflammatory cytokines (IL-18 and IL-1β) through upregulating SIRT1. In vivo, the Galleria mellonella model was adopted. L-serine downregulated the levels of virulence genes (ompA, carO, and omp33-36), reduced the mortality of A. baumannii to G. mellonella, and decreased the blacking speed as well as the degree of G. mellonella after infection. Taken together, we found that L-serine can reduce the virulence of A. baumannii and enhance the host's defense against the pathogen, providing a novel strategy for the treatment of infections caused by A. baumannii.IMPORTANCEAcinetobacter baumannii has become one of the most common and severe opportunistic pathogens in hospitals. The high-virulent A. baumannii strains pose a great threat to patients and increase the risk of nosocomial infection. However, the mechanism of virulence in A. baumannii is still not well understood. In the present study, we identified potential biomarkers in low-virulent A. baumannii strains. Our analysis revealed the effect of L-serine on reducing the virulence of A.baumannii. This discovery suggests that targeting L-serine could be a promising strategy for the treatment or adjunctive treatment of A. baumannii infections. The development of treatments targeting virulence may provide a substitute for the increasingly failed traditional antibacterial treatment.
Collapse
Affiliation(s)
- Jianxia Zhou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Dingyun Feng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xia Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yuetao Chen
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Min Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Wenbin Wu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jiaxin Zhu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hui Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xuanxian Peng
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Tiantuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
5
|
Yao Y, Chen Q, Zhou H. Virulence Factors and Pathogenicity Mechanisms of Acinetobacter baumannii in Respiratory Infectious Diseases. Antibiotics (Basel) 2023; 12:1749. [PMID: 38136783 PMCID: PMC10740465 DOI: 10.3390/antibiotics12121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) has become a notorious pathogen causing nosocomial and community-acquired infections, especially ventilator-associated pneumonia. This opportunistic pathogen is found to possess powerful genomic plasticity and numerous virulence factors that facilitate its success in the infectious process. Although the interactions between A. baumannii and the pulmonary epitheliums have been extensively studied, a complete and specific description of its overall pathogenic process is lacking. In this review, we summarize the current knowledge of the antibiotic resistance and virulence factors of A. baumannii, specifically focusing on the pathogenic mechanisms of this detrimental pathogen in respiratory infectious diseases. An expansion of the knowledge regarding A. baumannii pathogenesis will contribute to the development of effective therapies based on immunopathology or intracellular signaling pathways to eliminate this harmful pathogen during infections.
Collapse
Affiliation(s)
| | | | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Y.Y.); (Q.C.)
| |
Collapse
|
6
|
Holley CL, Dhulipala V, Maurakis SA, Greenawalt AN, Read TD, Cornelissen CN, Shafer WM. Transcriptional activation of ompA in Neisseria gonorrhoeae mediated by the XRE family member protein NceR. mBio 2023; 14:e0124423. [PMID: 37387605 PMCID: PMC10470515 DOI: 10.1128/mbio.01244-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 07/01/2023] Open
Abstract
Increasing antibiotic resistance of Neisseria gonorrhoeae, the causative agent of gonorrhea, is a growing global concern that has renewed vaccine development efforts. The gonococcal OmpA protein was previously identified as a vaccine candidate due to its surface exposure, conservation, stable expression, and involvement in host-cell interactions. We previously demonstrated that the transcription of ompA can be activated by the MisR/MisS two-component system. Interestingly, earlier work suggested that the availability of free iron also influences ompA expression, which we confirmed in this study. In the present study, we found that iron regulation of ompA was independent of MisR and searched for additional regulators. A DNA pull-down assay with the ompA promoter from gonococcal lysates obtained from bacteria grown in the presence or absence of iron identified an XRE (Xenobiotic Response Element) family member protein encoded by NGO1982. We found that an NGO1982 null mutant of N. gonorrhoeae strain FA19 displayed a reduced level of ompA expression compared to the wild-type (WT) parent strain. Given this regulation, and the capacity of this XRE-like protein to regulate a gene involved in peptidoglycan biosynthesis (ltgA), along with its presence in other Neisseria sp., we termed the NGO1982-encoded protein as NceR (Neisseria cell envelope regulator). Critically, results from DNA-binding studies indicated that NceR regulates ompA through a direct mechanism. Thus, ompA expression is subject to both iron-dependent (NceR) and -independent (MisR/MisS) pathways. Hence, levels of the vaccine antigen candidate OmpA in circulating gonococcal strains could be influenced by transcriptional regulatory systems and the availability of iron. IMPORTANCE Herein, we report that the gene encoding a conserved gonococcal surface-exposed vaccine candidate (OmpA) is activated by a heretofore undescribed XRE family transcription factor, which we term NceR. We report that NceR regulation of ompA expression in N. gonorrhoeae is mediated by an iron-dependent mechanism, while the previously described MisR regulatory system is iron-independent. Our study highlights the importance of defining the complexity of coordinated genetic and physiologic systems that regulate genes encoding vaccine candidates to better understand their availability during infection.
Collapse
Affiliation(s)
- Concerta L. Holley
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vijaya Dhulipala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stavaros A. Maurakis
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | | | - Timothy D. Read
- Department of Medicine (Division of Infectious Diseases), Emory University School of Medicine, Atlanta, Georgia, USA
- The Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - William M. Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Medicine (Division of Infectious Diseases), Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
7
|
Schmitt BL, Leal BF, Leyser M, de Barros MP, Trentin DS, Ferreira CAS, de Oliveira SD. Increased ompW and ompA expression and higher virulence of Acinetobacter baumannii persister cells. BMC Microbiol 2023; 23:157. [PMID: 37246220 DOI: 10.1186/s12866-023-02904-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Acinetobacter baumannii is one of the main causes of healthcare-associated infections that threaten public health, and carbapenems, such as meropenem, have been a therapeutic option for these infections. Therapeutic failure is mainly due to the antimicrobial resistance of A. baumannii, as well as the presence of persister cells. Persisters constitute a fraction of the bacterial population that present a transient phenotype capable of tolerating supra-lethal concentrations of antibiotics. Some proteins have been suggested to be involved in the onset and/or maintenance of this phenotype. Thus, we investigated the mRNA levels of the adeB (AdeABC efflux pump component), ompA, and ompW (outer membrane proteins) in A. baumannii cells before and after exposure to meropenem. RESULTS We found a significant increase (p-value < 0.05) in the expression of ompA (> 5.5-fold) and ompW (> 10.5-fold) in persisters. However, adeB did not show significantly different expression levels when comparing treated and untreated cells. Therefore, we suggest that these outer membrane proteins, especially OmpW, could be part of the mechanism of A. baumannii persisters to deal with the presence of high doses of meropenem. We also observed in the Galleria mellonella larvae model that persister cells are more virulent than regular ones, as evidenced by their LD50 values. CONCLUSIONS Taken together, these data contribute to the understanding of the phenotypic features of A. baumannii persisters and their relation to virulence, as well as highlight OmpW and OmpA as potential targets for drug development against A. baumannii persisters.
Collapse
Affiliation(s)
- Brenda Landvoigt Schmitt
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Bruna Ferreira Leal
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Mariana Leyser
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Muriel Primon de Barros
- Laboratório de Bacteriologia e Modelos Experimentais Alternativos, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, R. Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil
| | - Danielle Silva Trentin
- Laboratório de Bacteriologia e Modelos Experimentais Alternativos, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, R. Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil
| | - Carlos Alexandre Sanchez Ferreira
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
| | - Sílvia Dias de Oliveira
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
| |
Collapse
|
8
|
Wu HJ, Xiao ZG, Lv XJ, Huang HT, Liao C, Hui CY, Xu Y, Li HF. Drug‑resistant Acinetobacter baumannii: From molecular mechanisms to potential therapeutics (Review). Exp Ther Med 2023; 25:209. [PMID: 37090073 PMCID: PMC10119666 DOI: 10.3892/etm.2023.11908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/24/2023] [Indexed: 04/25/2023] Open
Abstract
Bacterial drug resistance is increasingly becoming an important problem that needs to be solved urgently in modern clinical practices. Infection caused by Acinetobacter baumannii is a serious threat to the life and health of patients. The drug resistance rate of Acinetobacter baumannii strains is increasing, thus research on the drug resistance of Acinetobacter baumannii has also seen an increase. When patients are infected with drug-resistant Acinetobacter baumannii, the availability of suitable antibiotics commonly used in clinical practices is becoming increasingly limited and the prognosis of patients is worsening. Studying the molecular mechanism of the drug resistance of Acinetobacter baumannii is fundamental to solving the problem of drug-resistant Acinetobacter baumannii and potentially other 'super bacteria'. Drug resistance mechanisms primarily include enzymes, membrane proteins, efflux pumps and beneficial mutations. Research on the underlying mechanisms provides a theoretical basis for the use and development of antibiotics and the development of novel treatment methods.
Collapse
Affiliation(s)
- Hao-Jia Wu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Zhi-Gang Xiao
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Xiao-Juan Lv
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Hai-Tang Huang
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Chu Liao
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Chen-Yang Hui
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Yue Xu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Heng-Fei Li
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
- Correspondence to: Professor Heng-Fei Li, Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Room 4, Garden Hill, Wuchang, Wuhan, Hubei 430061, P.R. China
| |
Collapse
|
9
|
Tan H, Cao L. Acinetobacter baumannii outer membrane protein A induces autophagy in bone marrow-derived dendritic cells involving the PI3K/mTOR pathway. Immun Inflamm Dis 2023; 11:e830. [PMID: 37102650 PMCID: PMC10091376 DOI: 10.1002/iid3.830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Outer membrane protein A (OmpA) is the major virulence factor of Acinetobacter baumannii and plays a wide role in the pathogenesis and antimicrobial resistance of A. baumannii. Dendritic cells (DCs) are the most effective antigen-presenting cells and play a crucial role in regulating the immune response to multiple antigens and immune sentries. We aimed to study the role and molecular mechanisms of OmpA-induced mouse bone marrow-derived dendritic cells (BMDCs) autophagy in the immune response of A. baumannii. METHODS First, purified A. baumannii OmpA was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot. OmpA effect on BMDCs viability was evaluated by MTT assay. BMDCs were pretreated with autophagy inhibitor chloroquine or transfected with overexpression plasmids (oe-NC or oe-PI3K). Then BMDCs apoptosis, inflammatory cytokines, protein kinase B (PI3K)/mammalian target of rapamycin (mTOR) pathway, and autophagy-related factors levels were evaluated. RESULTS SDS-PAGE and western blot verified the successful purification of OmpA. BMDCs viability repressed gradually with the increase of OmpA concentration. OmpA treatment of BMDCs led to apoptosis and inflammation in BMDCs. OmpA caused incomplete autophagy in BMDCs, and light chain 3 (LC3), Beclin1, P62, and LC3II/I levels were significantly elevated with the increase of the time and concentration of OmpA treatment. Chloroquine reversed OmpA effects on autophagy in BMDCs, that was, LC3, Beclin1, and LC3II/I levels were reduced, while P62 level was elevated. Furthermore, chloroquine reversed OmpA effects on apoptosis and inflammation in BMDCs. PI3K/mTOR pathway-related factor expression was affected by OmpA treatment of BMDCs. After overexpression of PI3K, these effects were reversed. CONCLUSIONS A. baumannii OmpA induced autophagy in BMDCs involving the PI3K/mTOR pathway. Our study may provide a novel therapeutic target and theoretical basis for treating infections caused by A. baumannii.
Collapse
Affiliation(s)
- Hongyi Tan
- Department of Pulmonary and Critical Care Medicine, Huizhou Central People's HospitalGuangdong Medical UniversityHuizhouChina
| | - Liyan Cao
- Department of Healthcare Associated Affection ManagementChangsha Central HospitalChangshaChina
| |
Collapse
|