1
|
Li L, Li Q, Xiao A, Li C, Li Y. Regulation of soil properties by amendments and their impact on Cd fractions and bacterial community structure: Exploring the mechanism of inhibition on Cd phytoavailability. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118033. [PMID: 40107216 DOI: 10.1016/j.ecoenv.2025.118033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/19/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
The application of soil amendments is crucial for mitigating cadmium (Cd) phytoavailability in Cd-contaminated paddy fields, thereby promoting safer rice production. However, the mechanisms through which these amendments influence phytoavailable Cd by modifying soil properties have not yet been fully elucidated. A pot experiment was conducted to evaluate the effects of three soil amendments-sepiolite (SE), wollastonite (WO), and a composite (YY)-on the Cd concentrations in brown rice, soil Cd fractions, soil properties, and bacterial community structure. Additionally, the relationships among brown rice Cd concentration, soil properties, Cd speciation, and bacterial diversity were explored. The findings demonstrated that the YY, SE, and WO amendments significantly increased the soil pH, cation exchange capacity (CEC), and concentrations of exchangeable calcium (ExCa), magnesium (ExMg), and available silicon (ASi), facilitating the transformation of water-soluble and acid-extractable forms of Cd into reducible fractions and facilitating the formation of low-solubility Cd compounds, thereby significantly lowering the levels of CaCl2-extractable Cd and DTPA-extractable Cd. The YY amendment also increased available potassium (AK) and available phosphorus (AP) while simplifying the bacterial community structure, notably increasing the abundance of Firmicutes and Bacteroidota. In contrast, SE amendment increased the abundance of Acidobacteriota. Both the YY and SE amendments reduced Cd phytoavailability by modifying Cd speciation and optimizing soil bacterial communities, whereas WO primarily lowered Cd phytoavailability by altering Cd speciation alone. These results underscore the regulatory role of soil amendments in modifying soil properties, influencing Cd speciation, and reshaping bacterial communities, ultimately reducing Cd accumulation in brown rice. This study enhances our understanding of the mechanisms by which amendments alter soil properties to reduce Cd phytoavailability, offering insights for developing in situ passivation technologies for Cd-contaminated soils.
Collapse
Affiliation(s)
- Linfeng Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China; Guangdong Engineering Research Center for Monitoring and Prevention of Agricultural Non-point Source Pollution, Guangzhou 510640, China
| | - Qi Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China; Guangdong Engineering Research Center for Monitoring and Prevention of Agricultural Non-point Source Pollution, Guangzhou 510640, China
| | - Anwen Xiao
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China; Guangdong Engineering Research Center for Monitoring and Prevention of Agricultural Non-point Source Pollution, Guangzhou 510640, China
| | - Chonghua Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China; Guangdong Engineering Research Center for Monitoring and Prevention of Agricultural Non-point Source Pollution, Guangzhou 510640, China
| | - YiChun Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China; Guangdong Engineering Research Center for Monitoring and Prevention of Agricultural Non-point Source Pollution, Guangzhou 510640, China.
| |
Collapse
|
2
|
Schmidt JE, Lewis CA, Firl AJ, Umaharan P. Microbial bioindicators associated with cadmium uptake in sixteen genotypes of Theobroma cacao. Heliyon 2025; 11:e41890. [PMID: 39897789 PMCID: PMC11783012 DOI: 10.1016/j.heliyon.2025.e41890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
Recent regulatory limits on concentrations of cadmium (Cd), an element of concern for human health, have made Cd reduction a key issue in the global chocolate industry. Research into Cd minimization has investigated soil management, cacao genetic variation, and postharvest processing, but has overlooked the cacao-associated microbiome despite promising evidence in other crops that root-associated microorganisms could help reduce Cd uptake. A novel approach combining both amplicon and metagenomic sequencing identified microbial bioindicators associated with leaf and stem Cd accumulation in sixteen field-grown genotypes of Theobroma cacao. Sequencing highlighted over 200 amplicon sequence variants (ASVs) whose relative abundance was related to cacao leaf and stem Cd content or concentration. The two highest-accumulating genotypes, PA 32 and TRD 94, showed enrichment of four ASVs belonging to the genus Haliangium, the family Gemmataceae, and the order Polyporales. ASVs whose relative abundance was most negatively associated with plant Cd were identified as Paenibacillus sp. (β = -2.21), Candidatus Koribacter (β = -2.17), and Candidatus Solibacter (β = -2.03) for prokaryotes, and Eurotiomycetes (β = -4.58) and two unidentified ASVs (β = -4.32, β = -3.43) for fungi. Only two ASVs were associated with both leaf and stem Cd, both belonging to the Ktedonobacterales. Of 5543 C d-associated gene families, 478 could be assigned to GO terms, including 68 genes related to binding and transport of divalent heavy metals. Screening for Cd-related bioindicators prior to planting or developing microbial bioamendments could complement existing strategies to minimize the presence of Cd in the global cacao supply.
Collapse
Affiliation(s)
| | - Caleb A. Lewis
- Cocoa Research Centre, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago
| | | | - Pathmanathan Umaharan
- Cocoa Research Centre, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago
| |
Collapse
|
3
|
Wang M, Zhao J, Gu Y, Wu Y, Liu Y, Tang Z, Xu Y, Mao X, Zhang J, Tian W. Deciphering the mechanism of rhizosphere microecosystem in modulating rice cadmium accumulation via integrating metabolomics and metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178181. [PMID: 39729842 DOI: 10.1016/j.scitotenv.2024.178181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
Cadmium (Cd) accumulation in rice poses significant risks to human health. The Cd accumulation levels vary widely among cultivars and are strongly associated with the rhizosphere microecosystem. However, the underlying mechanisms remain poorly understood. Here, we conducted a field experiment in Cd-contaminated areas with 24 popular regional cultivars. These cultivars were categorized into high Cd accumulation (HA) and low Cd accumulation (LA) groups based on their grain Cd content. Rhizosphere soil physicochemical properties were monitored, and key metabolites, microbiomes, and their interaction contributing to Cd accumulation were analyzed using omics-sequencing technologies and bioinformatics analysis. Metabolomic analysis identified distinct rhizosphere metabolite profiles between the HA and LA groups, with key metabolites showing strong correlations with Cd accumulation. Key metabolites in the LA group were linked to reduced Cd uptake and enhanced antioxidant defense mechanisms, while those in the HA group were associated with increased Cd mobility and uptake. Metagenomic analysis of the rhizosphere soil showed that the LA group harbored a more diverse and interconnected microbial community, with tax such as Syntrophaceae, Anaerolineae, Thermoflexales, and Syntrophales, along with metabolite such as disopyramide, playing central roles in Cd immobilization and detoxification. Additionally, the enhanced carbon, nitrogen, and phosphorus cycling in the LA group suggests a more robust nutrient assimilation process that supports plant growth and reduces Cd uptake. This study highlights the critical role of the rhizosphere microecosystem in regulating Cd accumulation and underscores the potential of selecting rice cultivars with favorable rhizosphere traits as a strategy for reducing Cd uptake.
Collapse
Affiliation(s)
- Mengmeng Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Jiayin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Yongjing Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Yuncheng Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Yu Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Zhaoyang Tang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Yu Xu
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Yuhua District, Shijiazhuang 050021, China.; Hebei Provincial Academy of Ecological and Environmental Sciences, 30 Yaqing Road, Yuhua District, Shijiazhuang 050037, China
| | - Xinyu Mao
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China.
| | - Jibing Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Wei Tian
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China.
| |
Collapse
|
4
|
Ding H, Liu J, Liu Q, Guo L, Hang Q, Zhang Y, Jia J, Tao T, Liu Q, Ding C. Risk assessment and source tracing of heavy metals in major rice-producing provinces of Yangtze River Basin. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136206. [PMID: 39432933 DOI: 10.1016/j.jhazmat.2024.136206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
Heavy metal contamination in rice constitutes a global concern, its migration is influenced by environmental factors as well as socioeconomic activities. However, tracing its origins within complex context remains a significant challenge. The concentrations of five heavy metals (HMs) in 1754 samples from major rice-producing provinces were analyzed, and their pollution characteristics, associated health risks and temporal-spatial variations were discussed. Potential sources were classified by positive matrix factorization (PMF) models, considering correlations with human activities, climatic conditions, and interaction within ecosystems. The results showed that cadmium (Cd) and arsenic (As) were the primary contributors to pollution risk, with the borders between Hunan and central Jiangxi, as well as northeast Jiangxi and northwest Anhui, identified as critical areas for risk management. PMF serves as an effective methodology for identifying the sources of HMs in rice. Industrial activities, particularly mining and transportation, represent the predominant sources of Cd and lead (Pb), accounting for 75.6 % of the total pollution. Conversely, agricultural practices and natural factors constitute the primary sources of As, contributing to the remaining 24.4 %. It is noteworthy that the rapid industrial development has facilitated the expansion of the freight industry, consequently increasing the risk associated with Pb. Furthermore, effective governmental policy management can mitigate the risks related to HMs. Our research highlights the influence of industrial development on HMs risk in various regions and the moderating role of policy formulation. SYNOPSIS: Minimal research exists on the impact of regional economic development on heavy metals in rice. This study reports mining and transportation activities increase carcinogenic risks caused by Cd and Pb in rice during industrialization.
Collapse
Affiliation(s)
- Haizhen Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China; National Engineering Research Center of Grain Storage and Logistics, Nanjing, China
| | - Jiwei Liu
- Nantong Branch of Jiangsu Agricultural Reclamation Rice Industry Group Co., LTD., Nantong, China
| | - Qin Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Liping Guo
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Qianyu Hang
- Department of Biological and Agricultural Engineering, North Carolina State University, Carolina, USA
| | - Yi Zhang
- Jiangsu Provincial Grain and Oil Quality Testing Center, Nanjing, China
| | - Jirong Jia
- Jiangsu Provincial Grain and Oil Quality Testing Center, Nanjing, China
| | - Tingting Tao
- College of Tea and Food Technology, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Qiang Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China; National Engineering Research Center of Grain Storage and Logistics, Nanjing, China.
| | - Chao Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China; National Engineering Research Center of Grain Storage and Logistics, Nanjing, China.
| |
Collapse
|
5
|
Zhou Y, Lan W, Yang F, Zhou Q, Liu M, Li J, Yang H, Xiao Y. Invasive Amaranthus spp. for heavy metal phytoremediation: Investigations of cadmium and lead accumulation and soil microbial community in three zinc mining areas. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117040. [PMID: 39270476 DOI: 10.1016/j.ecoenv.2024.117040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Amaranthus spp. are a group of strongly invasive and vigorous plants, and heavy metal phytoremediation using alien invasive Amaranthus spp. has been a popular research topic. In this study, the bioconcentration factor (BCF) and translocation factor (TF) of Amaranthus spp. were evaluated, focusing on the accumulation potential of cadmium (Cd) and lead (Pb) by plants from three different zinc mining areas, namely Huayuan (HYX), Yueyang (LYX), and Liuyang (LYX). The HYX area has the most severe Cd contamination, while the LYX area has the most apparent Pb contamination. The results showed that Amaranthus spp. had a strong Cd and Pb enrichment capacity in low-polluted areas. To elucidate the underlying mechanisms, we used high-throughput sequencing of 16S rRNA and internal transcribed spacer (ITS) regions to analyze rhizosphere bacterial and fungal communities in three areas. The results showed significant differences in the structure, function, and composition of microbial communities and complex interactions between plants and their microbes. The correlation analysis revealed that some key microorganisms (e.g., Amycolatopsis, Bryobacterium, Sphingomonas, Flavobacterium, Agaricus, Nigrospora, Humicola) could regulate several soil factors such as soil pH, organic matter (OM), available nitrogen (AN), and available phosphorus (AP) to affect the heavy metal enrichment capacity of plants. Notably, some enzymes (e.g., P-type ATPases, Cysteine synthase, Catalase, Acid phosphatase) and genes (e.g., ZIP gene family, and ArsR, MerR, Fur, NikR transcription regulators) have been found to be involved in promoting Cd and Pb accumulation in Amaranthus spp. This study can provide new ideas for managing heavy metal-contaminated soils and new ways for the ecological resource utilization of invasive plants in phytoremediation.
Collapse
Affiliation(s)
- Yu Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Wendi Lan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Fan Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qingfan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Analysis Technology Department, Xiangxi Ecological Environment Monitoring Center, Jishou 416000, China
| | - Mingxin Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jian Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Hua Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China.
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China.
| |
Collapse
|
6
|
Min F, Wang X, Li L, Xin Z, Li X, Zhang T, Sun X, You H. Effects of silicate stabilizers on cadmium reduction and the quality of rice grains in acidic paddy soil. Sci Rep 2024; 14:20551. [PMID: 39232064 PMCID: PMC11374993 DOI: 10.1038/s41598-024-71741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Silicate has been proven to be highly-effective at immobilizing soil heavy metals, but the effects of silicate stabilizers on rice grain cadmium (Cd) reduction and rice quality under field conditions are not clear. In this study, a field experiment was conducted over three consecutive years was conducted to examine the Cd reduction in rice grains and to reveal the potential effects of silicate stabilizers on rice grain nutrients, by setting different amounts of bentonite (B), silica‒calcium fertilizer (SC) and zeolite powder (ZP). The results revealed that the application of the B, SC and ZP significantly decreased the soil CaCl2‒Cd concentration (> 39%) and significantly reduced the grain Cd concentration in both early rice (> 70%) and late rice (> 18%) under field conditions; the silicate stabilizers reduced the soil available iron (Fe) but did not limit rice grain Fe nutrition. Additionally, the three silicates promoted rice yield and improved the rice grain Ca and Mg contents; and the application of B increased the amylose concentration of the late rice grains. In conclusion, high amounts of silicate stabilizers did not adversely influence the soil conventional nutrient indices, rice minerals or rice taste, but changes in rice selenium content need attention. Overall, in comparison with lime, silicate stabilizers can improve not only the safety of rice but also the nutritional and taste qualities of rice and are more eco-friendly for long-term use in soil.
Collapse
Affiliation(s)
- Fangfang Min
- Development Research Institute of Testing and Certification Technology, Jiangxi General Institute of Testing and Certification, Nanchang, 330029, China
| | - Xiyang Wang
- Jiangxi Engineering and Technology Research Center of Eco-Remediation of Heavy Metal Pollution, Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China.
| | - Liang Li
- Jiangxi Engineering and Technology Research Center of Eco-Remediation of Heavy Metal Pollution, Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China.
| | - Zaijun Xin
- Jiangxi Engineering and Technology Research Center of Eco-Remediation of Heavy Metal Pollution, Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Xiaohui Li
- Jiangxi Engineering and Technology Research Center of Eco-Remediation of Heavy Metal Pollution, Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Tao Zhang
- Jiangxi Engineering and Technology Research Center of Eco-Remediation of Heavy Metal Pollution, Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Xiaoyan Sun
- Jiangxi Engineering and Technology Research Center of Eco-Remediation of Heavy Metal Pollution, Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Hailin You
- Jiangxi Engineering and Technology Research Center of Eco-Remediation of Heavy Metal Pollution, Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| |
Collapse
|
7
|
Tian Y, Li P, Chen X, He J, Tian M, Zheng Z, Hu R, Fu Z, Yi Z, Li J. R3 strain and Fe-Mn modified biochar reduce Cd absorption capacity of roots and available Cd content of soil by affecting rice rhizosphere and endosphere key flora. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116418. [PMID: 38696873 DOI: 10.1016/j.ecoenv.2024.116418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
Microorganisms have a significant role in regulating the absorption and transportation of Cd in the soil-plant system. However, the mechanism by which key microbial taxa play a part in response to the absorption and transportation of Cd in rice under Cd stress requires further exploration. In this study, the cadmium-tolerant endophytic bacterium Herbaspirillum sp. R3 (R3) and Fe-Mn-modified biochar (Fe-Mn) were, respectively, applied to cadmium-contaminated rice paddies to investigate the effects of key bacterial taxa in the soil-rice system on the absorption and transportation of Cd in rice under different treatments. The results showed that both R3 and Fe-Mn treatments considerably decreased the content of cadmium in roots, stems and leaves of rice at the peak tillering stage by 17.24-49.28% in comparison to the control (CK). The cadmium content reduction effect of R3 treatment is better than that of Fe-Mn treatment. Further analysis revealed that the key bacterial taxa in rice roots under R3 treatment were Sideroxydans and Actinobacteria, and that their abundance showed a substantial positive correlation and a significant negative correlation with the capacity of rice roots to assimilate Cd from the surroundings, respectively. The significant increase in soil pH under Fe-Mn treatment, significant reduction in the relative abundances of Acidobacteria, Verrucomicrobia, Subdivision3 genera incertae sedis, Sideroxydans, Geobacter, Gp1, and Gp3, and the significant increase in the relative abundance of Thiobacillus among the soil bacterial taxa may be the main reasons for the decrease in available Cd content of the soil. In addition, both the R3 and Fe-Mn treatments showed some growth-promoting effects on rice, which may be related to their promotion of transformations of soil available nutrients. This paper describes the possible microbial mechanisms by which strain R3 and Fe-Mn biochar reduce Cd uptake in rice, providing a theoretical basis for the remediation of Cd contamination in rice and soil by utilizing key microbial taxa.
Collapse
Affiliation(s)
- Yunhe Tian
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Peng Li
- Hunan Soil and Fertilizer Institute, Hunan Academy of Agricultural Sciences, 410125, China
| | - Xinyu Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Jing He
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Meijie Tian
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Zhongyi Zheng
- College of Education, Hunan Agricultural University, Changsha 410128, China
| | - Ruiwen Hu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhiqiang Fu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
8
|
Kuang X, Hu Y, Chen S, Ge Y, Hu Y, Song H, Song K, Peng L. Ecological responses and functional significance of paddy crust in the southern Chinese environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123908. [PMID: 38570157 DOI: 10.1016/j.envpol.2024.123908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Paddy Crusts (PC) play a pivotal role in the migration and transformation of heavy metals within paddy ecosystems, situated at the critical intersection of air, water, and soil. This study focused on PC samples from heavy metal-contaminated rice paddies in six southern Chinese provinces. It's the first time we've screened and quantified the impact of nutrition, physicochemical properties, and heavy metals on bacterial diversity in PC. Our results highlight the significant influence of zinc, total nitrogen, and soil manganese on bacterial diversity. Using structural equation models, we identified the pathways through which these three types of environmental factors shape bacterial diversity. Heavy metal indicators and physical and chemical indicators exerted a direct negative effect on bacterial diversity in PC, while nutritional indicators had a direct and significant positive effect on bacterial diversity. Variance partitioning analysis revealed heavy metals had the most significant impact, accounting for 7.77% of the total effect. Moreover, the influence of heavy metals on bacterial diversity increased as diversity decreased, ranging from 3.81% to 42.09%. To remediate specific heavy metal pollution, our proposed method involves cultivating indigenous bacteria by controlling these environmental factors, based on an analysis of the interplay among bacterial diversity, environmental variables, and heavy metal bioconcentration factors. These findings enhance our understanding of PC and provide insights into rice field heavy metal pollution mitigation.
Collapse
Affiliation(s)
- Xiaolin Kuang
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha, 410128, China
| | - Yiyi Hu
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha, 410128, China
| | - Shaoning Chen
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha, 410128, China
| | - Yili Ge
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha, 410128, China
| | - Yiling Hu
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha, 410128, China
| | - Huijuan Song
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha, 410128, China
| | - Ke Song
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha, 410128, China
| | - Liang Peng
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
9
|
Jing H, Wang H, Wang G, Liu G, Cheng Y. The mechanism effects of root exudate on microbial community of rhizosphere soil of tree, shrub, and grass in forest ecosystem under N deposition. ISME COMMUNICATIONS 2023; 3:120. [PMID: 37985715 PMCID: PMC10662252 DOI: 10.1038/s43705-023-00322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Forests are composed of various plant species, and rhizosphere soil microbes are driven by root exudates. However, the interplay between root exudates, microbial communities in the rhizosphere soil of canopy trees, understory shrubs, grasses, and their responses to nitrogen (N) deposition remains unclear. Pinus tabulaeformis, Rosa xanthina, and Carex lancifolia were used to investigate root exudates, rhizosphere soil microbial communities, and their responses to N application in forest ecosystem. Root exudate abundances of P. tabulaeformis were significantly higher than that of R. xanthina and C. lancifolia, with carbohydrates dominating P. tabulaeformis and R. xanthina root exudates, fatty acids prevailing in C. lancifolia root exudates. Following N application, root exudate abundances of P. tabulaeformis and R. xanthina initially increased before decreasing, whereas those of C. lancifolia decreased. Microbial number of rhizosphere soil of C. lancifolia was higher than that of P. tabulaeformis and R. xanthina, but there was insignificant variation of rhizosphere soil microbial diversity among plant species. N application exerted promotional and inhibitory impacts on bacterial and fungal numbers, respectively, while bacterial and fungal diversities were increased by N application. Overall, N application had negative effects on root exudates of P. tabulaeformis, inhibiting rhizosphere soil microbial populations. N application suppressed rhizosphere soil microbial populations by increasing root exudates of R. xanthina. Conversely, N application elevated nutrient content in the rhizosphere soil of C. lancifolia, reducing root exudates and minimally promoting microbial populations. This study highlights the importance of understory vegetation in shaping soil microbial communities within forests under N deposition.
Collapse
Affiliation(s)
- Hang Jing
- School of Geography, Nanjing Normal University, 210023, Nanjing, China
| | - Huiling Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, 712100, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, 712100, Yangling, China
| | - Guoliang Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, 712100, Yangling, China.
- Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, 712100, Yangling, China.
| | - Guobin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, 712100, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, 712100, Yangling, China
| | - Yi Cheng
- School of Geography, Nanjing Normal University, 210023, Nanjing, China
| |
Collapse
|
10
|
Chen S, Xu J, Peng L, Cheng Z, Kuang X, Li D, Peng C, Song H. Cadmium accumulation in rice grains is mitigated by duckweed-like hydrophyte through adsorption and increased ammonia nitrogen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 890:164510. [PMID: 37257595 DOI: 10.1016/j.scitotenv.2023.164510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Although increasing attention has been paid to agronomic measures for reducing the heavy metal load in rice grain, the effects of duckweed-paddy co-cropping technology on the accumulation of cadmium (Cd) in rice grains remain unclear. To investigate its specific effects on Cd accumulation in paddy fields, three types of duckweed-like hydrophyte (DH), Azolla imbricata, Spirodela polyrrhiza, and Lemna minor were chosen for study. Their use resulted in a reduction of Cd content in rice grains from 0.40 mg/kg to <0.20 mg/kg, with A. imbricata yielding the best results (0.15 mg/kg). The three types of DH reduced the available Cd content in the soil by 10 % to 35 % after the paddy tillering stage. The reduction of available Cd content was attributed to the absorption, high pH, and increase of relative abundance of special bacteria of immobilizing Cd. In addition, DH could regulate soil nitrogen leading to ammonium nitrogen increased from 75 mg/kg to 100 mg/kg, while nitrate nitrogen decreased from 0.55 to 0.1-0.3 mg/kg. The increase of ammonium nitrogen content might induce the low Cd transfer ability in rice plant and then low Cd content in rice grain. This study demonstrated that DH has a good effect on the reduction of the Cd concentration in rice grains. Consequently, duckweed-paddy co-cropping technology offers a potential solution to heavy metal pollution and agricultural non-point source pollution, as it not only reduces Cd levels in rice plants, but also fixes nitrogen, reducing the need for nitrogen application.
Collapse
Affiliation(s)
- Shaoning Chen
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Junhui Xu
- Agriculture and Rural Bureau of Heshan District, Yiyang City, Hunan Province Yiyang 413002, PR China
| | - Liang Peng
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China.
| | - Ziyi Cheng
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Xiaolin Kuang
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Dan Li
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Cheng Peng
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Huijuan Song
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| |
Collapse
|