1
|
Bardy P, MacDonald CIW, Kirchberger PC, Jenkins HT, Botka T, Byrom L, Alim NTB, Traore DAK, Koenig HC, Nicholas TR, Chechik M, Hart SJ, Turkenburg JP, Blaza JN, Beatty JT, Fogg PCM, Antson AA. Penton blooming, a conserved mechanism of genome delivery used by disparate microviruses. mBio 2025; 16:e0371324. [PMID: 40105351 PMCID: PMC11980548 DOI: 10.1128/mbio.03713-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/29/2025] [Indexed: 03/20/2025] Open
Abstract
Microviruses are single-stranded DNA viruses infecting bacteria, characterized by T = 1 shells made of single jelly-roll capsid proteins. To understand how microviruses infect their host cells, we have isolated and studied an unusually large microvirus, Ebor. Ebor belongs to the proposed "Tainavirinae" subfamily of Microviridae and infects the model Alphaproteobacterium Rhodobacter capsulatus. Using cryogenic electron microscopy, we show that the enlarged capsid of Ebor is the result of an extended C-terminus of the major capsid protein. The extra packaging space accommodates genes encoding a lytic enzyme and putative methylase, both absent in microviruses with shorter genomes. The capsid is decorated with protrusions at its 3-fold axes, which we show to recognize lipopolysaccharides on the host surface. Cryogenic electron tomography shows that during infection, Ebor attaches to the host cell via five such protrusions. This attachment brings a single pentameric capsomer into close contact with the cell membrane, creating a special vertex through which the genome is ejected. Both subtomogram averaging and single particle analysis identified two intermediates of capsid opening, showing that the interacting penton opens from its center via the separation of individual capsomer subunits. Structural comparison with the model Bullavirinae phage phiX174 suggests that this genome delivery mechanism may be widely present across Microviridae. IMPORTANCE Tailless Microviridae bacteriophages are major components of the global virosphere. Notably, microviruses are prominent members of the mammalian gut virome, and certain compositions have been linked to serious health disorders; however, a molecular understanding of how they initiate infection of their host remains poorly characterized. We demonstrate that trimeric protrusions located at the corners of a single microvirus capsomer mediate host cell attachment. This interaction triggers opening of the capsomer, driven by separation of subunits from its center, much like flower petals open during blooming. This extensive opening explains how the genome translocation apparatus, along with the genome itself, is able to exit the capsid. "Penton blooming" likely represents a conserved mechanism shared by diverse viruses possessing similar capsid architectures.
Collapse
Affiliation(s)
- Pavol Bardy
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Conor I. W. MacDonald
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, United Kingdom
| | - Paul C. Kirchberger
- Department of Microbiology & Molecular Genetics, Oklahoma State University, Tulsa, USA
| | - Huw T. Jenkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Tibor Botka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Lewis Byrom
- York Biomedical Research Institute, University of York, York, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Nawshin T. B. Alim
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Daouda A. K. Traore
- Materials and Structural Analysis, Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Hannah C. Koenig
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Tristan R. Nicholas
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Maria Chechik
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Samuel J. Hart
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, United Kingdom
| | - Johan P. Turkenburg
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, United Kingdom
| | - James N. Blaza
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - J. Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Paul C. M. Fogg
- York Biomedical Research Institute, University of York, York, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Alfred A. Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
2
|
Li WT, Teng XF, He L, Guan B, He CL, Liu JJ, Chen KL, Zheng Z, He J. Analysis of the Distribution Pattern and Prophage Types in Candidatus Liberibacter Asiaticus 'Cuimi' Kumquat. PLANTS (BASEL, SWITZERLAND) 2024; 14:94. [PMID: 39795354 PMCID: PMC11722820 DOI: 10.3390/plants14010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
The 'Cuimi' kumquat is a unique citrus cultivar known for its thin, crisp pulp and sweet, aromatic flavor. In addition to its use in fresh consumption and processing, this variety exhibits certain medicinal properties. This study aims to investigate the genetic diversity of the Huanglongbing (HLB) bacterium across different tissues of the 'Cuimi' kumquat, offering a theoretical basis for understanding the HLB epidemic in Dechang County, Sichuan. The research focuses on the absolute quantification of the HLB bacterium in seven specific tissues of the 'Cuimi' kumquat, including new leaves, upper phloem of branches, fruit peduncle, pith, fruit axis, old leaves, and lower phloem of branches. Additionally, the types and contents of prophages were identified in these tissues. In the same diseased branch group, Candidatus Liberibacter asiaticus (CLas) exhibited an uneven distribution, with the highest concentration detected in the pith, significantly surpassing levels found in the stem and leaf tissues (new leaves, upper phloem of branches, old leaves, lower phloem of branches). Infected fruit peduncles and pith slices showed noticeable shrinkage and collapse in the phloem. Prophage analysis indicated that multiple types of prophages could be simultaneously detected within the same infected 'Cuimi' kumquat branch. New shoot tissues contained both Type 2 and Type 4 prophages, with a relatively higher abundance of Type 4 and a lower abundance of Type 2. The relative abundance of Type 1 prophage in the fruit tissues was generally higher than in other tissues. CLas primarily accumulates in the fruit tissues of the 'Cuimi' kumquat, and the situation in Dechang County suggests that individual trees may be infected with multiple prophage strains simultaneously.
Collapse
Affiliation(s)
- Wen-Ting Li
- National-Local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (W.-T.L.); (K.-L.C.)
| | - Xiao-Feng Teng
- Agricultural Bureau of Dechang County, Liangshan Yi Autonomous Prefecture, Dechang 615500, China
| | - Li He
- National-Local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (W.-T.L.); (K.-L.C.)
| | - Bin Guan
- National-Local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (W.-T.L.); (K.-L.C.)
| | - Cui-Ling He
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| | - Jian-Jun Liu
- National-Local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (W.-T.L.); (K.-L.C.)
| | - Ke-Ling Chen
- National-Local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (W.-T.L.); (K.-L.C.)
| | - Zheng Zheng
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| | - Jian He
- National-Local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (W.-T.L.); (K.-L.C.)
| |
Collapse
|
3
|
Dutra MFS, Silva PA, Chen J, Wulff NA. The complete genome sequence of " Candidatus Liberibacter asiaticus" strain 9PA and the characterization of field strains in the Brazilian citriculture. mSphere 2024; 9:e0037624. [PMID: 39526760 DOI: 10.1128/msphere.00376-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
"Candidatus Liberibacter asiaticus" (CLas) is associated with citrus huanglongbing, a severe disease with global importance that affects citrus production in Brazil. This study reports the first complete genome of a Brazilian strain of CLas. The genomic structure comparison of strain 9PA with those of 13 complete CLas genomes revealed 9,091 mismatches and 992 gaps/insertions, highlighting eight locally colinear blocks, among which six are in the prophage region. Phylogenetic analysis categorized 13 CLas genomes into two clusters with 9PA clustered with strains from China and the United States. Whole-genomic comparison identified diverse hypervariable genomic regions (HGRs). Three HGRs in the chromosomal region and three in the prophage region were selected and investigated by polymerase chain reaction. HGRs assessed from 68 samples, from medium- to high-huanglongbing incidence areas in Sao Paulo state, were grouped into haplotypes A to P. Haplotype A, which includes strain 9PA, is the second most prevalent, representing 19.1% of the samples. Haplotype B, the most common, accounts for 42.6%. Together with haplotype C, these make up 72% of the evaluated samples. The 9PA strain has prophage P-9PA-1, both integrated and circularized, and P-9PA-3, only found in a circularized form. Prophages show high identity with SC1 (83%) and P-JXGC-3 (98%). Co-occurrence of both type 1 and 3 prophages was observed in field samples. The approach employed provides insights into the Brazilian CLas population, providing markers for population studies and highlighting the prevalence of type 1 and 3 prophages in the population. IMPORTANCE CLas is a destructive pathogen responsible for causing the severe citrus disease known as huanglongbing. Our study presents the first fully sequenced Brazilian strain of CLas, designated as 9PA, and includes an analysis of two prophages occurring in this strain. The main objective of our research was to compare the genome features of this Brazilian strain with other fully sequenced genomes and to identify its hypervariable genetic regions. These regions were subsequently used to assess genomic variability within both the chromosomal and prophage regions in Brazilian isolates of CLas. Our findings offer valuable insights into the diversified adaptation of CLas.
Collapse
Affiliation(s)
- Michele F S Dutra
- Universidade Estadual Paulista (UNESP), Instituto de Química, Araraquara, Sao Paulo, Brazil
- Departamento de Pesquisa e Desenvolvimento, Fundo de Defesa da Citricultura-Fundecitrus, Araraquara, Sao Paulo, Brazil
| | - Priscila A Silva
- Universidade Estadual de Campinas, Genomics for Climate Change Research Center, Cidade Universitária Zeferino Vaz, Campinas, Sao Paulo, Brazil
| | - Jianchi Chen
- United States Department of Agriculture-Agricultural Research Service, San Joaquín Valley Agricultural Sciences Center, Parlier, California, USA
| | - Nelson A Wulff
- Universidade Estadual Paulista (UNESP), Instituto de Química, Araraquara, Sao Paulo, Brazil
- Departamento de Pesquisa e Desenvolvimento, Fundo de Defesa da Citricultura-Fundecitrus, Araraquara, Sao Paulo, Brazil
| |
Collapse
|
4
|
You P, Zhou J, Muhammad Bilal A, Bao M, Yang J, Fang S, Li X, Yi L. Potential habitat suitability of Candidatus Liberibacter asiaticus and genetic diversity of its prophages across China. Microbiol Spectr 2024; 12:e0063324. [PMID: 39315790 PMCID: PMC11537051 DOI: 10.1128/spectrum.00633-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/18/2024] [Indexed: 09/25/2024] Open
Abstract
Huanglongbing (HLB) is a severe citrus disease in China caused by Candidatus Liberibacter asiaticus (CLas). Since its initial identification, the pathogen has spread to 10 mainland provinces in China and caused devastating loss. Three distinct prophage types have been identified in CLas; however, their distribution and diversity in China remain inadequately understood. In this study, we collected 500 CLas samples from 10 provinces in China, employing three specific genomic loci to identify prophage types. Subsequently, Sanger sequencing was employed to analyze the genetic diversity of prophage within populations of CLas in China. In addition, the MaxEnt model optimized by the ENMeval software package, was used to predict the habitat suitability of populations of CLas and assess the potential impact of future climate change on its distribution in China. Our analysis revealed that type 2 prophage is the most prevalent, accounting for 55% in China. Among the 10 provinces tested, CLas populations in Yunnan and Sichuan demonstrated higher genetic diversity. Further analysis reveals that CLas populations harboring type 1 prophage remain relatively stable, whereas those carrying type 2 and type 3 prophages undergo population expansion. Furthermore, our predictive models indicate that the presently suitable habitat for CLas populations is concentrated in the southern and certain central regions of China, with an anticipated expansion under future climate change conditions. Presently, the center of populations of CLas characterized by favorable living conditions is situated in Zunyi City, Guizhou Province. Nevertheless, a projected trend indicates a shift toward the northeast, particularly targeting Tongren City in the foreseeable future. IMPORTANCE This study offers significant insights into the distribution and genetic diversity of three types of prophages associated with Candidatus Liberibacter asiaticus (CLas) in China. Our predictions underscore the implications of climate change on the future distribution of CLas. These findings contribute to a better understanding of Huanglongbing management strategies and can facilitate the development of effective measures to control the spread of this devastating disease within the citrus industry.
Collapse
Affiliation(s)
- Ping You
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Jun Zhou
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| | - Amir Muhammad Bilal
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Minli Bao
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| | - Jin Yang
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Shujie Fang
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Xiang Li
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Long Yi
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| |
Collapse
|
5
|
Zheng Y, Li J, Zheng M, Li Y, Deng X, Zheng Z. Whole genome sequences of 135 "Candidatus Liberibacter asiaticus" strains from China. Sci Data 2024; 11:1018. [PMID: 39300139 PMCID: PMC11413205 DOI: 10.1038/s41597-024-03855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
"Candidatus Liberibacter asiaticus" (CLas) is a phloem-limited alpha-proteobacteria causing Citrus Huanglongbing, the destructive disease currently threatening global citrus industry. Genomic analyses of CLas provide insights into its evolution and biology. Here, we sequenced and assembled whole genomes of 135 CLas strains originally from 20 citrus cultivars collected at ten citrus-growing provinces in China. The resulting dataset comprised 135 CLas genomes ranging from 1,221,309 bp to 1,308,521 bp, with an average coverage of 675X. Prophage typing showed that 44 strains contained Type 1 prophage, 89 strains contained Type 2 prophage, 44 strains contained Type 3 prophage, and 34 of them contained more than one type of prophage/phage. The SNP calling identified a total of 5,090 SNPs. Genome-based phylogenetic analysis revealed two major clades among CLas strains, with Clade I dominated by CLas strains containing Type 1 prophage (79/95) and Clade II dominated by CLas strains containing Type 1 or Type 3 prophage (80/95). This CLas genome dataset provides valuable resources for studying genetic diversity and evolutionary pattern of CLas strains.
Collapse
Affiliation(s)
- Yongqin Zheng
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Jiaming Li
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Mingxin Zheng
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - You Li
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fujian, China
| | - Xiaoling Deng
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China.
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.
| | - Zheng Zheng
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China.
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
6
|
Bardy P, MacDonald CI, Kirchberger PC, Jenkins HT, Botka T, Byrom L, Alim NT, Traore DA, König HC, Nicholas TR, Chechik M, Hart SJ, Turkenburg JP, Blaza JN, Beatty JT, Fogg PC, Antson AA. A stargate mechanism of Microviridae genome delivery unveiled by cryogenic electron tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598214. [PMID: 38915634 PMCID: PMC11195240 DOI: 10.1101/2024.06.11.598214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Single-stranded DNA bacteriophages of the Microviridae family are major components of the global virosphere. Microviruses are highly abundant in aquatic ecosystems and are prominent members of the mammalian gut microbiome, where their diversity has been linked to various chronic health disorders. Despite the clear importance of microviruses, little is known about the molecular mechanism of host infection. Here, we have characterized an exceptionally large microvirus, Ebor, and provide crucial insights into long-standing mechanistic questions. Cryogenic electron microscopy of Ebor revealed a capsid with trimeric protrusions that recognise lipopolysaccharides on the host surface. Cryogenic electron tomography of the host cell colonized with virus particles demonstrated that the virus initially attaches to the cell via five such protrusions, located at the corners of a single pentamer. This interaction triggers a stargate mechanism of capsid opening along the 5-fold symmetry axis, enabling delivery of the virus genome. Despite variations in specific virus-host interactions among different Microviridae family viruses, structural data indicate that the stargate mechanism of infection is universally employed by all members of the family. Startlingly, our data reveal a mechanistic link for the opening of relatively small capsids made out of a single jelly-roll fold with the structurally unrelated giant viruses.
Collapse
Affiliation(s)
- Pavol Bardy
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom. YO10 5NG
| | - Conor I.W. MacDonald
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Paul C. Kirchberger
- Department of Microbiology & Molecular Genetics, Oklahoma State University, US
| | - Huw T. Jenkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom. YO10 5NG
| | - Tibor Botka
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Lewis Byrom
- York Biomedical Research Institute, University of York, York, United Kingdom. YO10 5NG
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Nawshin T.B. Alim
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, V6T 1Z3, BC, Canada
| | - Daouda A.K. Traore
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG, Eindhoven, The Netherlands
| | - Hannah C. König
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, V6T 1Z3, BC, Canada
| | - Tristan R. Nicholas
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom. YO10 5NG
| | - Maria Chechik
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom. YO10 5NG
| | - Samuel J. Hart
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Johan P. Turkenburg
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - James N. Blaza
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom. YO10 5NG
| | - J. Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, V6T 1Z3, BC, Canada
| | - Paul C.M. Fogg
- York Biomedical Research Institute, University of York, York, United Kingdom. YO10 5NG
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Alfred A. Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom. YO10 5NG
| |
Collapse
|
7
|
De Leon VS, Chen J, McCollum G, Park JW, Louzada ES, Setamou M, Kunta M. Diversity of ' Candidatus Liberibacter asiaticus' Strains in Texas Revealed by Prophage Sequence Analyses. PLANT DISEASE 2024; 108:1455-1460. [PMID: 38252141 DOI: 10.1094/pdis-09-23-1994-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Prophages/phages are important components of the genome of 'Candidatus Liberibacter asiaticus' (CLas), an unculturable alphaproteobacterium associated with citrus huanglongbing (HLB) disease. Phage variations have significant contributions to CLas strain diversity research, which provide critical information for HLB management. In this study, prophage variations among selected CLas strains from southern Texas were studied. The CLas strains were collected from three different CLas inhabitant environments: citrus leaf, citrus root, and Asian citrus psyllid (ACP), the vector of CLas. Regardless of the different habitats and time span, more than 80% of CLas strains consistently had both Type 1 and Type 2 prophages, the same prophage type profile as in CLas strains from Florida but different to those reported in California and China. Further studies were performed on prophage type diversity. Analyses on Type 1-specific PCR amplicon sequences (encoding an endolysin protein) revealed the presence of two groups: Type 1-A, clustered around prophage SC1 originating from Florida, and Type 1-B, clustered with prophage P-SGCA5-1 originating in California. Type 1-B strains were mostly from ACP of nearby citrus orchards. On the other hand, analyses on Type 2-specific PCR amplicon sequences (encoding a putative hypothetical protein) showed a single group clustering around prophage SC2 originated from Florida, although a different Type 2 prophage has been reported in California. The presence of two distinct Type 1 prophage groups suggested the possibility of two different CLas introductions in southern Texas. The results from this study provide an initial baseline of information on genomic and population diversity of CLas in Texas.
Collapse
Affiliation(s)
| | - Jianchi Chen
- San Joaquín Valley Agricultural Sciences Center, USDA-ARS, Parlier, CA 93648
| | - Greg McCollum
- Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL 34945
| | - Jong-Won Park
- Texas A&M University Kingsville Citrus Center, Weslaco, TX 78599
| | | | - Mamoudou Setamou
- Texas A&M University Kingsville Citrus Center, Weslaco, TX 78599
| | | |
Collapse
|
8
|
Li Y, Ma R, Gao C, Li Z, Zheng Y, Fang F, Wang C, Li G, Du X, Xu C, Xu M, Liu R, Deng X, Zheng Z. Integrated bacterial transcriptome and host metabolome analysis reveals insights into " Candidatus Liberibacter asiaticus" population dynamics in the fruit pith of three citrus cultivars with different tolerance. Microbiol Spectr 2024; 12:e0405223. [PMID: 38440971 PMCID: PMC10986616 DOI: 10.1128/spectrum.04052-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 03/06/2024] Open
Abstract
"Candidatus Liberibacter asiaticus" (CLas), the causal agent of citrus Huanglongbing (HLB), is able to multiply to a high abundance in citrus fruit pith. However, little is known about the biological processes and phytochemical substances that are vital for CLas colonization and growth in fruit pith. In this study, CLas-infected fruit pith of three citrus cultivars ("Shatangju" mandarin, "Guanxi" pomelo, and "Shatian" pomelo) exhibiting different tolerance to CLas were collected and used for dual RNA-Seq and untargeted metabolome analysis. Comparative transcriptome analysis found that the activation of the CLas noncyclic TCA pathway and pathogenic-related effectors could contribute to the colonization and growth of CLas in fruit pith. The pre-established Type 2 prophage in the CLas genome and the induction of its CRISPR/cas system could enhance the phage resistance of CLas and, in turn, facilitate CLas population growth in fruit pith. CLas infection caused the accumulation of amino acids that were correlated with tolerance to CLas. The accumulation of most sugars and organic acids in CLas-infected fruit pith, which could be due to the phloem blockage caused by CLas infection, was thought to be beneficial for CLas growth in localized phloem tissue. The higher levels of flavonoids and terpenoids in the fruit pith of CLas-tolerant cultivars, particularly those known for their antimicrobial properties, could hinder the growth of CLas. This study advances our understanding of CLas multiplication in fruit pith and offers novel insight into metabolites that could be responsible for tolerance to CLas or essential to CLas population growth.IMPORTANCECitrus Huanglongbing (HLB, also called citrus greening disease) is a highly destructive disease currently threatening citrus production worldwide. HLB is caused by an unculturable bacterial pathogen, "Candidatus Liberibacter asiaticus" (CLas). However, the mechanism of CLas colonization and growth in citrus hosts is poorly understood. In this study, we utilized the fruit pith tissue, which was able to maintain the CLas at a high abundance, as the materials for dual RNA-Seq and untargeted metabolome analysis, aiming to reveal the biological processes and phytochemical substances that are vital for CLas colonization and growth. We provided a genome-wide CLas transcriptome landscape in the fruit pith of three citrus cultivars with different tolerance and identified the important genes/pathways that contribute to CLas colonization and growth in the fruit pith. Metabolome profiling identified the key metabolites, which were mainly affected by CLas infection and influenced the population dynamic of CLas in fruit pith.
Collapse
Affiliation(s)
- Yun Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Ruifeng Ma
- Institute of Fruit Tree Research, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou, Guangdong, China
| | - Chenying Gao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Ziyi Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yongqin Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Fang Fang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Cheng Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Guohua Li
- Institute of Fruit Tree Research, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou, Guangdong, China
| | - Xiaozhen Du
- Institute of Fruit Tree Research, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou, Guangdong, China
| | - Changbao Xu
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Meirong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Rui Liu
- Institute of Fruit Tree Research, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou, Guangdong, China
| | - Xiaoling Deng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zheng Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Zheng Y, Li Y, Xu P, Liu C, Chen J, Deng X, Zheng Z. Genome sequence resource for "Candidatus Liberibacter asiaticus" strain GDCZ from a historical HLB endemic region in China. BMC Genom Data 2023; 24:63. [PMID: 37923990 PMCID: PMC10625202 DOI: 10.1186/s12863-023-01160-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/19/2023] [Indexed: 11/06/2023] Open
Abstract
OBJECTIVES "Candidatus Liberibacter asiaticus" (CLas) is an un-culturable α-proteobacterium that caused citrus Huanglongbing (HLB), a destructive disease threatening citrus production worldwide. In China, the presence of HLB was first reported in Chaoshan region of Guangdong province, China around a century ago. Thus, whole genome information of CLas strains from Chaoshan area become the most important resource to understand the population diversity and evaluation of CLas in China. DATA DESCRIPTION CLas strain GDCZ was originally from Chaozhou city (Chaoshan area) and sequenced using PacBio Sequel long-read sequencing and Illumina short-read sequencing. The genome of strain GDCZ comprised of 1,230,507 bp with an average G + C content of 36.4%, along with a circular CLasMV1 phage: CLasMV1_GDCZ (8,869 bp). The CLas strain GDCZ contained a Type 2 prophage (37,452 bp) and encoded a total of 1,057 open reading frames and 53 RNA genes. The whole genome sequence of CLas strain GDCZ from the historical HLB endemic region in China will serve as a useful resource for further analyses of CLas evolution and HLB epidemiology in China and world.
Collapse
Affiliation(s)
- Yongqin Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yun Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Pengbin Xu
- Chaozhou Fruit Research Institute, Chaozhou, Guangdong, China
| | - Chaoji Liu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
- Chaozhou Fruit Research Institute, Chaozhou, Guangdong, China
| | - Jianchi Chen
- San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, CA, USA
| | - Xiaoling Deng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China.
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Zheng Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China.
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Abstract
Two decades of metagenomic analyses have revealed that in many environments, small (∼5 kb), single-stranded DNA phages of the family Microviridae dominate the virome. Although the emblematic microvirus phiX174 is ubiquitous in the laboratory, most other microviruses, particularly those of the gokushovirus and amoyvirus lineages, have proven to be much more elusive. This puzzling lack of representative isolates has hindered insights into microviral biology. Furthermore, the idiosyncratic size and nature of their genomes have resulted in considerable misjudgments of their actual abundance in nature. Fortunately, recent successes in microvirus isolation and improved metagenomic methodologies can now provide us with more accurate appraisals of their abundance, their hosts, and their interactions. The emerging picture is that phiX174 and its relatives are rather rare and atypical microviruses, and that a tremendous diversity of other microviruses is ready for exploration.
Collapse
Affiliation(s)
- Paul C Kirchberger
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA;
| | - Howard Ochman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
11
|
Zheng Y, Zhang J, Li Y, Liu Y, Liang J, Wang C, Fang F, Deng X, Zheng Z. Pathogenicity and Transcriptomic Analyses of Two " Candidatus Liberibacter asiaticus" Strains Harboring Different Types of Phages. Microbiol Spectr 2023; 11:e0075423. [PMID: 37071011 PMCID: PMC10269750 DOI: 10.1128/spectrum.00754-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/31/2023] [Indexed: 04/19/2023] Open
Abstract
"Candidatus Liberibacter asiaticus" is one of the putative causal agents of citrus Huanglongbing (HLB), a highly destructive disease threatening the global citrus industry. Several types of phages had been identified in "Ca. Liberibacter asiaticus" strains and found to affect the biology of "Ca. Liberibacter asiaticus." However, little is known about the influence of phages in "Ca. Liberibacter asiaticus" pathogenicity. In this study, two "Ca. Liberibacter asiaticus" strains, PYN and PGD, harboring different types of phages were collected and used for pathogenicity analysis in periwinkle (Catharanthus roseus). Strain PYN carries a type 1 phage (P-YN-1), and PGD harbors a type 2 phage (P-GD-2). Compared to strain PYN, strain PGD exhibited a faster reproduction rate and higher virulence in periwinkle: leaf symptoms appeared earlier, and there was a stronger inhibition in the growth of new flush. Estimation of phage copy numbers by type-specific PCR indicated that there are multiple copies of phage P-YN-1 in strain PYN, while strain PGD carries only a single copy of phage P-GD-2. Genome-wide gene expression profiling revealed the lytic activity of P-YN-1 phage, as evidenced by the unique expression of genes involved in lytic cycle, which may limit the propagation of strain PYN and lead to a delayed infection in periwinkle. However, the activation of genes involved in lysogenic conversion of phage P-GD-1 indicated it could reside within the "Ca. Liberibacter asiaticus" genome as a prophage form in strain PGD. Comparative transcriptome analysis showed that the significant differences in expression of virulence factor genes, including genes associated with pathogenic effectors, transcriptional factors, the Znu transport system, and the heme biosynthesis pathway, could be another major determinant of virulence variation between two "Ca. Liberibacter asiaticus" strains. This study expanded our knowledge of "Ca. Liberibacter asiaticus" pathogenicity and provided new insights into the differences in pathogenicity between "Ca. Liberibacter asiaticus" strains. IMPORTANCE Citrus Huanglongbing (HLB), also called citrus greening disease, is a highly destructive disease threatening citrus production worldwide. "Candidatus Liberibacter asiaticus" is one of the most common putative causal agents of HLB. Phages of "Ca. Liberibacter asiaticus" have recently been identified and found to affect "Ca. Liberibacter asiaticus" biology. Here, we found that "Ca. Liberibacter asiaticus" strains harboring different types of phages (type 1 or type 2) showed different levels of pathogenicity and multiplication patterns in the periwinkle plant (Catharanthus roseus). Transcriptome analysis revealed the possible lytic activity of type 1 phage in a "Ca. Liberibacter asiaticus" strain, which could limit the propagation of "Ca. Liberibacter asiaticus" and lead to the delayed infection in periwinkle. The heterogeneity in the transcriptome profiles, particularly the significant differences in expression of virulence factors genes, could be another major determinant of difference in virulence observed between the two "Ca. Liberibacter asiaticus" strains. These findings improved our understanding of "Ca. Liberibacter asiaticus"-phage interaction and provided insight into "Ca. Liberibacter asiaticus" pathogenicity.
Collapse
Affiliation(s)
- Yongqin Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jingxue Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yun Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yaoxin Liu
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Jiayin Liang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Cheng Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Fang Fang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaoling Deng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zheng Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Li H, Wang H, Ju H, Lv J, Yang S, Zhang W, Lu H. Comparison of gut viral communities in children under 5 years old and newborns. Virol J 2023; 20:52. [PMID: 36973710 PMCID: PMC10045071 DOI: 10.1186/s12985-023-02013-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
OBJECTIVES The gut virome of humans is mainly composed of bacteriophages and their role in shaping the gut microbiome and influencing human health is increasingly recognized. However, little is known about the dynamic changes of the gut virome in children and its role in growth and development. In this study, we collected fecal samples from newborns and children under 5 years old from the same area during the same time period to investigate the gut viral community using viral metagenomic technique. METHODS We used viral metagenomics to compare the gut bacteriophage composition between newborns and children under 5 years of age. We collected fecal samples from 45 newborns who were born at the Affiliated Hospital of Jiangsu University and 45 healthy children who were examined at the same hospital. The two groups were classified as the newborn group and the children group. RESULTS Our sequencing analysis showed that the number of seqeunce reads of the children group were more than that of the newborn group. The results of alpha diversity and beta diversity both indicated that the diversity of the children group was significantly higher than that of the newborn group and the children group is different from the newborn group. The abundance of gut virome in the children group was also higher than that in the newborn group. The analysis of the genetic characteristics of the viruses showed that the phage genome was scattered and clustered with specificity. CONCLUSION Our findings indicate that the gut bacteriophage communities undergo changes over time, presenting diversity and dynamic characteristics. We characterized the composition of gut virome in children and newborns in this region. However, further research is needed to investigate the function of bacteriophages in the ecology of the gastrointestinal tract.
Collapse
Affiliation(s)
- Hong Li
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, P.R. China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hao Wang
- Department of Clinical Laboratory, Huai'an Hospital, Xuzhou Medical University, Huai'an, Jiangsu, 223002, China
| | - Huimin Ju
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, P.R. China
| | - Jinquan Lv
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, P.R. China
| | - Shixing Yang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Hongyan Lu
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, P.R. China.
| |
Collapse
|
13
|
Huang J, Alanís-Martínez I, Kumagai L, Dai Z, Zheng Z, Perez de Leon AA, Chen J, Deng X. Machine learning and analysis of genomic diversity of " Candidatus Liberibacter asiaticus" strains from 20 citrus production states in Mexico. FRONTIERS IN PLANT SCIENCE 2022; 13:1052680. [PMID: 36589083 PMCID: PMC9798433 DOI: 10.3389/fpls.2022.1052680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Huanglongbing (HLB, yellow shoot disease) is a highly destructive citrus disease associated with a nonculturable bacterium, "Candidatus Liberibacter asiaticus" (CLas), which is transmitted by Asian citrus psyllid (ACP, Diaphorina citri). In Mexico, HLB was first reported in Tizimin, Yucatán, in 2009 and is now endemic in 351 municipalities of 25 states. Understanding the population diversity of CLas is critical for HLB management. Current CLas diversity research is exclusively based on analysis of the bacterial genome, which composed two regions, chromosome (> 1,000 genes) and prophage (about 40 genes). METHODS AND RESULTS In this study, 40 CLas-infected ACP samples from 20 states in Mexico were collected. CLas was detected and confirmed by PCR assays. A prophage gene(terL)-based typing system (TTS) divided the Mexican CLas strains into two groups: Term-G including four strains from Yucatán and Chiapas, as well as strain psy62 from Florida, USA, and Term-A included all other 36 Mexican strains, as well as strain AHCA1 from California, USA. CLas diversity was further evaluated to include all chromosomal and prophage genes assisted by using machine learning (ML) tools to resolve multidimensional data handling issues. A Term-G strain (YTMX) and a Term-A strain (BCSMX) were sequenced and analyzed. The two Mexican genome sequences along with the CLas genome sequences available in GenBank were studied. An unsupervised ML was implemented through principal component analysis (PCA) on average nucleotide identities (ANIs) of CLas whole genome sequences; And a supervised ML was implemented through sparse partial least squares discriminant analysis (sPLS-DA) on single nucleotide polymorphisms (SNPs) of coding genes of CLas guided by the TTS. Two CLas Geno-groups, Geno-group 1 that extended Term-A and Geno-group 2 that extended Term-G, were established. CONCLUSIONS This study concluded that: 1) there were at least two different introductions of CLas into Mexico; 2) CLas strains between Mexico and USA are closely related; and 3) The two Geno-groups provide the basis for future CLas subspecies research.
Collapse
Affiliation(s)
- Jiaquan Huang
- Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, China
| | - Iobana Alanís-Martínez
- National Station of Plant Epidemiology, Quarantine and Sanitation, SENASICA, Queretaro, Mexico
| | - Lucita Kumagai
- Plant Pest Diagnostic Center, California Department of Food and Agriculture, Sacramento, CA, United States
| | - Zehan Dai
- Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zheng Zheng
- Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China
| | - Adalberto A. Perez de Leon
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), San Joaquín Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Jianchi Chen
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), San Joaquín Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Xiaoling Deng
- Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Biological Features and In Planta Transcriptomic Analyses of a Microviridae Phage (CLasMV1) in " Candidatus Liberibacter asiaticus". Int J Mol Sci 2022; 23:ijms231710024. [PMID: 36077424 PMCID: PMC9456138 DOI: 10.3390/ijms231710024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022] Open
Abstract
“Candidatus Liberibacter asiaticus” (CLas) is the causal agent of citrus Huanglongbing (HLB, also called citrus greening disease), a highly destructive disease threatening citrus production worldwide. A novel Microviridae phage (named CLasMV1) has been found to infect CLas, providing a potential therapeutic strategy for CLas/HLB control. However, little is known about the CLasMV1 biology. In this study, we analyzed the population dynamics of CLasMV1 between the insect vector of CLas, the Asian citrus psyllid (ACP, Diaphorina citri Kuwayama) and the holoparasitic dodder plant (Cuscuta campestris Yunck.); both acquired CLasMV1-infected CLas from an HLB citrus. All CLas-positive dodder samples were CLasMV1-positive, whereas only 32% of CLas-positive ACP samples were identified as CLasMV1-positive. Quantitative analyses showed a similar distribution pattern of CLasMV1 phage and CLas among eight citrus cultivars by presenting at highest abundance in the fruit pith and/or the center axis of the fruit. Transcriptome analyses revealed the possible lytic activity of CLasMV1 on CLas in fruit pith as evidenced by high-level expressions of CLasMV1 genes, and CLas genes related to cell wall biogenesis and remodeling to maintain the CLas cell envelope integrity. The up-regulation of CLas genes were involved in restriction–modification system that could involve possible phage resistance for CLas during CLasMV1 infection. In addition, the regulation of CLas genes involved in cell surface components and Sec pathway by CLasMV1 phage could be beneficial for phage infection. This study expanded our knowledge of CLasMV1 phage that will benefit further CLas phage research and HLB control.
Collapse
|