1
|
Akram F, Fatima T, Shabbir I, Haq IU, Ibrar R, Mukhtar H. Abridgement of Microbial Esterases and Their Eminent Industrial Endeavors. Mol Biotechnol 2025; 67:817-833. [PMID: 38461181 DOI: 10.1007/s12033-024-01108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024]
Abstract
Esterases are hydrolases that contribute to the hydrolysis of ester bonds into both water-soluble acyl esters and emulsified glycerol-esters containing short-chain acyl groups. They have garnered significant attention from biotechnologists and organic chemists due to their immense commercial value. Esterases, with their diverse and significant properties, have become highly sought after for various industrial applications. Synthesized ubiquitously by a wide range of living organisms, including animals, plants, and microorganisms, these enzymes have found microbial esterases to be the preferred choice in industrial settings. The cost-effective production of microbial esterases ensures higher yields, unaffected by seasonal variations. Their applications span diverse sectors, such as food manufacturing, leather tanneries, paper and pulp production, textiles, detergents, cosmetics, pharmaceuticals, biodiesel synthesis, bioremediation, and waste treatment. As the global trend shifts toward eco-friendly and sustainable practices, industrial processes are evolving with reduced waste generation, lower energy consumption, and the utilization of biocatalysts derived from renewable and unconventional raw materials. This review explores the background, structural characteristics, thermostability, and multifaceted roles of bacterial esterases in crucial industries, aiming to optimize and analyze their properties for continued successful utilization in diverse industrial processes. Additionally, recent advancements in esterase research are overviewed, showcasing novel techniques, innovations, and promising areas for further exploration.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Taseer Fatima
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ifrah Shabbir
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Ramesha Ibrar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
2
|
Nonthijun P, Tanunchai B, Schroeter SA, Wahdan SFM, Alves EG, Hilke I, Buscot F, Schulze ED, Disayathanoowat T, Purahong W, Noll M. Feels Like Home: A Biobased and Biodegradable Plastic Offers a Novel Habitat for Diverse Plant Pathogenic Fungi in Temperate Forest Ecosystems. MICROBIAL ECOLOGY 2024; 87:155. [PMID: 39708062 DOI: 10.1007/s00248-024-02466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/16/2024] [Indexed: 12/23/2024]
Abstract
Poly(butylene succinate-co-adipate) (PBSA), a biodegradable plastic, is significantly colonized and degraded by soil microbes under natural field conditions, especially by fungal plant pathogens, raising concerns about potential economic losses. This study hypothesizes that the degradation of biodegradable plastics may increase the presence and abundance of plant pathogens by serving as an additional carbon source, ultimately posing a risk to forest ecosystems. We investigated (i) fungal plant pathogens during the exposure of PBSA in European broadleaved and coniferous forests (two forest types), with a specific focus on potential risk to tree health, and (ii) the response of such fungi to environmental factors, including tree species, soil pH, nutrient availability, moisture content, and the physicochemical properties of leaf litter layer. Next-generation sequencing (NGS) revealed that PBSA harbored a total of 318 fungal plant pathogenic amplicon sequence variants (ASVs) belonging to 108 genera. Among the identified genera (Alternaria, Nectria, Phoma, Lophodermium, and Phacidium), some species have been reported as causative agents of tree diseases. Plenodomus was present in high relative abundances on PBSA, which have not previously been associated with disease in broadleaved and coniferous forests. Furthermore, the highest number of fungal plant pathogens were detected at 200 days of PBSA exposure (112 and 99 fungal plant pathogenic ASV on PBSA degraded under Q. robur and F. sylvatic-dominated forest, respectively), which was double compared mature leaves and needles from the same forest sites. These findings suggest that PBSA attracts fungal plant pathogens in forests as an additional carbon source, potentially leading to increased disease outbreaks and disrupting the stability of forest ecosystems. The fungal plant pathogenic community compositions were mainly shaped by forest type, PBSA exposure time, site locations, leaf litter layer water content, and N:P ratio from leaf litter layer in both forest types. This study provides valuable insights into the potential risks posed by biodegradable plastic degradation in forests after 200 and 400 days of exposure, respectively. Further comprehensive evaluations of their effects on tree health and ecosystems, ideally on a long-term basis, are needed. These evaluations should include integrating microbial investigation, soil health monitoring, and ecosystem interaction assessments. Nevertheless, it should be noted that our interpretation of plant pathogens is solely based on high-throughput sequencing, bioinformatics, and annotation tools.
Collapse
Affiliation(s)
- Paradha Nonthijun
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Benjawan Tanunchai
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Simon Andreas Schroeter
- Max Planck Institute for Biogeochemistry, Biogeochemical Processes Department, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Sara Fareed Mohamed Wahdan
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Eliane Gomes Alves
- Max Planck Institute for Biogeochemistry, Biogeochemical Processes Department, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Ines Hilke
- Max Planck Institute for Biogeochemistry, Biogeochemical Processes Department, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - François Buscot
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, 04103, Leipzig, Germany
| | - Ernst-Detlef Schulze
- Max Planck Institute for Biogeochemistry, Biogeochemical Processes Department, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goal (SMART Bee SDGs), Chiang Mai University, Chiang Mai, Thailand.
| | - Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle (Saale), Germany.
| | - Matthias Noll
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany.
| |
Collapse
|
3
|
Yang B, Dong Z, Tan Z, Cai Y, Xie S. Roles of carbon dioxide in the conversion of biomass or waste plastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176882. [PMID: 39423883 DOI: 10.1016/j.scitotenv.2024.176882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Under the current trend of pursuing sustainable development and environmental protection, the important application of carbon dioxide (CO2) in the conversion process of biomass or waste plastics has become a research direction of concern. The goal of this conversion process is to achieve the efficient use of carbon dioxide, providing a process for the efficient use of biomass, and solving the environmental problems caused by plastics. Remarkable progress has been made in the study of the reaction of CO2 with other substances to produce methane, low-carbon hydrocarbons, methanol, formic acid, and its derivatives, as well as ethers, aldehydes, gasoline, low-carbon alcohols, and other chemicals. In this paper, the important role of CO2 in the conversion of alcohol, sugar, cellulose, and waste plastics was reviewed, with emphasis on the important applications of CO2 as a carbon source, reactant, reaction medium, enhancing agent, solvent, and carrier gas in the conversion of biomass or waste plastics and the basic insights of the reaction mechanism. The emerging CO2 new roles not only put forward the green application of CO2 but also have guiding significance for the utilization of biomass resources and the treatment of waste plastics.
Collapse
Affiliation(s)
- Bo Yang
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhun Dong
- SinoHykey Technology Company Ltd., 8 Hongyuan Road, Huangpu District, Guangzhou 510760, PR China
| | - Zixuan Tan
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yihong Cai
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shaoqu Xie
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering, Jieyang Center, Jieyang 515200, PR China.
| |
Collapse
|
4
|
Mahfooz A, Yasin M, Qayyum MA, Abbasi A, Hashem A, Almutairi KF, Abd_Allah EF, Farhan M, Aqueel MA, Subhan M. Effect of Co-Diet Supplementation on Biodegradation of Polyethylene by Galleria mellonella L. (Lepidoptera: Pyralidae). INSECTS 2024; 15:704. [PMID: 39336672 PMCID: PMC11432048 DOI: 10.3390/insects15090704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Pollution coming from plastic polymers, particularly polyethylene (PE), poses a serious threat to both humans and animals. The biodegradation of plastics facilitated by insects is a crucial and eco-friendly approach that can be employed to combat this global concern. Recently, the larvae of the greater wax moth Galleria mellonella (L.) have been recognized as avid 'plastivores'. The current study was aimed at evaluating the feeding efficiency of G. mellonella larvae on PEs of various densities with a co-diet supplementation of wheat germ + honey and beeswax. The results reveal that maximum PE consumption (9.98 ± 1.25 mg) was recorded in the case of 1.0 mm thick PE after a 24 h interval; however, the same scenario also achieved the greatest reduction in larval weight (27.79 ± 2.02 mg). A significant reduction in PE mass (5.87 ± 1.44 mg) was also observed in 1.0 mm PE when fed beeswax; however, the larvae experienced minimal weight loss (9.59 ± 3.81 mg). The larvae exhibited a higher PE consumption in 1.0 mm PE, indicating that the lower the density of PE, the greater the consumed area. Moreover, the biodegradation levels were notably higher within the 24 h interval. In conclusion, these findings suggest that the density of PEs and the supplementation of the co-diet have an impact on PE biodegradation. Additionally, the utilization of G. mellonella for the biodegradation of PE proves effective when combined with beeswax, resulting in minimal weight loss of the larvae. Our findings offer initial insights into how Galleria mellonella larvae biodegrade polyethylene (PE) of four different densities, along with co-diet supplementation. This approach helps us evaluate how varying densities affect degradation rates and provides a better understanding of the larvae's capabilities. Additionally, our observations at three specific time intervals (24, 48, and 72 h) allow us to identify the time required for achieving degradation rates. Through examining these time points, our method offers valuable insights into the initial phases of plastic consumption and biodegradation.
Collapse
Affiliation(s)
- Areej Mahfooz
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Yasin
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mirza Abdul Qayyum
- Institute of Plant Protection, Muhammad Nawaz Sharif-University of Agriculture, Multan 66000, Pakistan
| | - Asim Abbasi
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| | - Khalid F. Almutairi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| | - Muhammad Farhan
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Anjum Aqueel
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mishal Subhan
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan 66000, Pakistan
| |
Collapse
|
5
|
Wang T, Yang WT, Gong YM, Zhang YK, Fan XX, Wang GC, Lu ZH, Liu F, Liu XH, Zhu YS. Molecular engineering of PETase for efficient PET biodegradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116540. [PMID: 38833982 DOI: 10.1016/j.ecoenv.2024.116540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
The widespread utilization of polyethylene terephthalate (PET) has caused a variety of environmental and health problems. Compared with traditional thermomechanical or chemical PET cycling, the biodegradation of PET may offer a more feasible solution. Though the PETase from Ideonalla sakaiensis (IsPETase) displays interesting PET degrading performance under mild conditions; the relatively low thermal stability of IsPETase limits its practical application. In this study, enzyme-catalysed PET degradation was investigated with the promising IsPETase mutant HotPETase (HP). On this basis, a carbohydrate-binding module from Bacillus anthracis (BaCBM) was fused to the C-terminus of HP to construct the PETase mutant (HLCB) for increased PET degradation. Furthermore, to effectively improve PET accessibility and PET-degrading activity, the truncated outer membrane hybrid protein (FadL) was used to expose PETase and BaCBM on the surface of E. coli (BL21with) to develop regenerable whole-cell biocatalysts (D-HLCB). Results showed that, among the tested small-molecular weight ester compounds (p-nitrophenyl phosphate (pNPP), p-Nitrophenyl acetate (pNPA), 4-Nitrophenyl butyrate (pNPB)), PETase displayed the highest hydrolysing activity against pNPP. HP displayed the highest catalytic activity (1.94 μM(p-NP)/min) at 50 °C and increased longevity at 40 °C. The fused BaCBM could clearly improve the catalytic performance of PETase by increasing the optimal reaction temperature and improving the thermostability. When HLCB was used for PET degradation, the yield of monomeric products (255.7 μM) was ∼25.5 % greater than that obtained after 50 h of HP-catalysed PET degradation. Moreover, the highest yield of monomeric products from the D-HLCB-mediated system reached 1.03 mM. The whole-cell catalyst D-HLCB displayed good reusability and stability and could maintain more than 54.6 % of its initial activity for nine cycles. Finally, molecular docking simulations were utilized to investigate the binding mechanism and the reaction mechanism of HLCB, which may provide theoretical evidence to further increase the PET-degrading activities of PETases through rational design. The proposed strategy and developed variants show potential for achieving complete biodegradation of PET under mild conditions.
Collapse
Affiliation(s)
- Tao Wang
- School of Biological Science, Jining Medical University, Jining, China
| | - Wen-Tao Yang
- School of Biological Science, Jining Medical University, Jining, China
| | - Yu-Ming Gong
- School of Biological Science, Jining Medical University, Jining, China
| | - Ying-Kang Zhang
- School of Biological Science, Jining Medical University, Jining, China
| | - Xin-Xin Fan
- School of Biological Science, Jining Medical University, Jining, China
| | - Guo-Cheng Wang
- School of Biological Science, Jining Medical University, Jining, China
| | - Zhen-Hua Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fei Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - Xiao-Huan Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - You-Shuang Zhu
- School of Biological Science, Jining Medical University, Jining, China.
| |
Collapse
|
6
|
Khatua S, Simal-Gandara J, Acharya K. Myco-remediation of plastic pollution: current knowledge and future prospects. Biodegradation 2024; 35:249-279. [PMID: 37665521 PMCID: PMC10950981 DOI: 10.1007/s10532-023-10053-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
To date, enumerable fungi have been reported to participate in the biodegradation of several notorious plastic materials following their isolation from soil of plastic-dumping sites, marine water, waste of mulch films, landfills, plant parts and gut of wax moth. The general mechanism begins with formation of hydrophobin and biofilm proceding to secretion of specific plastic degarding enzymes (peroxidase, hydrolase, protease and urease), penetration of three dimensional substrates and mineralization of plastic polymers into harmless products. As a result, several synthetic polymers including polyethylene, polystyrene, polypropylene, polyvinyl chloride, polyurethane and/or bio-degradable plastics have been validated to deteriorate within months through the action of a wide variety of fungal strains predominantly Ascomycota (Alternaria, Aspergillus, Cladosporium, Fusarium, Penicillium spp.). Understanding the potential and mode of operation of these organisms is thus of prime importance inspiring us to furnish an up to date view on all the presently known fungal strains claimed to mitigate the plastic waste problem. Future research henceforth needs to be directed towards metagenomic approach to distinguish polymer degrading microbial diversity followed by bio-augmentation to build fascinating future of waste disposal.
Collapse
Affiliation(s)
- Somanjana Khatua
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, 32004, Ourense, Spain.
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
7
|
Zhou X, Zhou X, Xu Z, Zhang M, Zhu H. Characterization and engineering of plastic-degrading polyesterases jmPE13 and jmPE14 from Pseudomonas bacterium. Front Bioeng Biotechnol 2024; 12:1349010. [PMID: 38425995 PMCID: PMC10904013 DOI: 10.3389/fbioe.2024.1349010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Polyester plastics are widely used in daily life, but also cause a large amount of waste. Degradation by microbial enzymes is the most promising way for the biobased upcycling of the wastes. However, there is still a shortage of high-performance enzymes, and more efficient polyester hydrolases need to be developed. Here we identified two polyester hydrolases, jmPE13 and jmPE14, from a previously isolated strain Pseudomonas sp. JM16B3. The proteins were recombinantly expressed and purified in E. coli, and their enzymatic properties were characterized. JmPE13 and jmPE14 showed hydrolytic activity towards polyethylene terephthalate (PET) and Poly (butylene adipate-co-terephthalate) (PBAT) at medium temperatures. The enzyme activity and stability of jmPE13 were further improved to 3- and 1.5-fold, respectively, by rational design. The results of our research can be helpful for further engineering of more efficient polyester plastic hydrolases and their industrial applications.
Collapse
Affiliation(s)
| | | | | | | | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
8
|
Prasert Y, Surachat K, Chukamnerd A, Umsakul K. Investigation of potential rubber-degrading bacteria and genes involved. Arch Microbiol 2024; 206:71. [PMID: 38252137 DOI: 10.1007/s00203-023-03781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024]
Abstract
COVID-19 pandemic has generated high demand for natural rubber gloves (NR) leading to crucial issues of rubber waste and waste management such as burning, dumping, stockpiling, discarding waste in landfills. Hence, rubber biodegradation by microorganisms is an alternative solution to the problem. The biodegradation method is environmentally friendly but normally extremely slow. Numerous microorganisms can degrade NR as a source of carbon and energy. In this study, Rhodococcus pyridinivorans KU1 was isolated from the consortium CK from previous study. The 40% rubber weight loss was detected after incubated for 2 months. The bacterial colonization and cavities on the surface of rubber were identified using a scanning electron microscope (SEM). The result demonstrated the critical degradation of the rubber surface, indicating that bacteria can degrade rubber and use it as their sole carbon source. The result of whole-genome sequencing (WGS) revealed a gene that is 99.9% identical to lcp which is responsible for poly (cis-1,4-isoprene) degradation. The results from Meta16S rRNA sequencing showed that the microbial communities were slightly shifted during the 2-month degradation, depending on the presence of monomers or oligomers appeared during the degradation process. The majority of species were soil bacteria such as phylum Proteobacteria, Actinobacteria, and Firmicutes. Members of Pseudoxanthomonas seemed to be the dominant degraders throughout the degradation.
Collapse
Affiliation(s)
- Yaninee Prasert
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Translational Medicine Research Center, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Arnon Chukamnerd
- Division of Infectious Diseases, Department of Internal Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kamontam Umsakul
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| |
Collapse
|
9
|
Han W, Zhang J, Chen Q, Xie Y, Zhang M, Qu J, Tan Y, Diao Y, Wang Y, Zhang Y. Biodegradation of poly(ethylene terephthalate) through PETase surface-display: From function to structure. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132632. [PMID: 37804764 DOI: 10.1016/j.jhazmat.2023.132632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 10/09/2023]
Abstract
Polyethylene terephthalate (PET) is one of the most used plastics which has caused some environmental pollution and social problems. Although many newly discovered or modified PET hydrolases have been reported at present, there is still a lack of comparison between their hydrolytic capacities, as well as the need for new biotechnology to apply them for the PET treatment. Here, we systematically studied the surface-display technology for PET hydrolysis using several PET hydrolases. It is found that anchoring protein types had little influence on the surface-display result under T7 promoter, while the PET hydrolase types were more important. By contrast, the newly reported FAST-PETase showed the strongest hydrolysis effect, achieving 71.3% PET hydrolysis in 24 h by pGSA-FAST-PETase. Via model calculation, FAST-PETase indeed exhibited higher temperature tolerance and catalytic capacity. Besides, smaller particle size and lower crystallinity favored the hydrolysis of PET pellets. Through protein structure comparison, we summarized the common characteristics of efficient PET-hydrolyzing enzymes and proposed three main crystal structures of PET enzymes via crystal structural analysis, with ISPETase being the representative and main structure. Surface co-display of FAST-PETase and MHETase can promote the hydrolysis of PET, and the C-terminal of the fusion protein is crucial for PET hydrolysis. The results of our research can be helpful for PET contamination removal as well as other areas involving the application of enzymes. SYNOPSIS: This research can promote the development of better PET hydrolase and its applications in PET pollution treatment via bacteria surface-display.
Collapse
Affiliation(s)
- Wei Han
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang 150030, PR China
| | - Jun Zhang
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang 150030, PR China
| | - Qi Chen
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang 150030, PR China
| | - Yuzhu Xie
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang 150030, PR China
| | - Meng Zhang
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang 150030, PR China
| | - Yuanji Tan
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang 150030, PR China
| | - Yiran Diao
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang 150030, PR China
| | - Yixuan Wang
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang 150030, PR China.
| |
Collapse
|
10
|
Mallick K, Sahu A, Dubey NK, Das AP. Harvesting marine plastic pollutants-derived renewable energy: A comprehensive review on applied energy and sustainable approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119371. [PMID: 37925980 DOI: 10.1016/j.jenvman.2023.119371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/29/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023]
Abstract
The inevitable use of plastics in the existing standard of life makes its way to ecosystems, predominantly into the marine ecosystem. Recent research on energy recycling from marine discarded plastics through biological, chemical, and thermal processes is summarized, which degrade plastic debris and transform it into energy-efficient products. In a system-oriented approach, different boundaries like carbon efficiency, global warming potential, cumulative energy demand, and cost of the product have been evaluated. Even these technologies may successfully reduce the yearly volume of marine plastics by up to 89% while reducing greenhouse gas emissions by 30%. Conversely, recycling a ton of marine discarded plastics may save 915 cubic feet of landfill space, 6500 kWh of energy, and barrels of oil. Energy may be recovered up to 79% from waste plastics using various techniques. Up to 84% liquid fuel had been generated, with a maximum calorific power of 45 MJ/kg. It has been shown that in Asian countries, the power generation capacity of throw-away facemask wastes regularly varies from 2256 kWh/day to 18.52 million kWh/day. Hence, the conversion of marine plastics into biofuel, syngas, biochar, hydrocarbons, electricity, and value-added functional materials by various biotechnological and chemical processes like biodegradation, pyrolysis, gasification, methanolysis, and hydrolysis should be improvised as a source of alternative energy in the immediate future. Our review signifies the potential benefits of energy harvesting technologies from marine plastics pollutants to overcome the growing challenge of energy demands and provide a long-term solution to underdeveloped and developing countries as a sustainable source of energy. Endorsing current strategies to harvest energy from marine plastic wastes that enhance power generation technologies will help in building a more sustainable and greener environment that imparts a healthy and circular economy while shielding natural resources.
Collapse
Affiliation(s)
- Krishnamayee Mallick
- Department of Life Sciences, Rama Devi Women's University, Bhubaneswar, Odisha, India
| | - Aishwarya Sahu
- Department of Life Sciences, Rama Devi Women's University, Bhubaneswar, Odisha, India
| | | | - Alok Prasad Das
- Department of Life Sciences, Rama Devi Women's University, Bhubaneswar, Odisha, India.
| |
Collapse
|
11
|
Sui B, Wang T, Fang J, Hou Z, Shu T, Lu Z, Liu F, Zhu Y. Recent advances in the biodegradation of polyethylene terephthalate with cutinase-like enzymes. Front Microbiol 2023; 14:1265139. [PMID: 37849919 PMCID: PMC10577388 DOI: 10.3389/fmicb.2023.1265139] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Polyethylene terephthalate (PET) is a synthetic polymer in the polyester family. It is widely found in objects used daily, including packaging materials (such as bottles and containers), textiles (such as fibers), and even in the automotive and electronics industries. PET is known for its excellent mechanical properties, chemical resistance, and transparency. However, these features (e.g., high hydrophobicity and high molecular weight) also make PET highly resistant to degradation by wild-type microorganisms or physicochemical methods in nature, contributing to the accumulation of plastic waste in the environment. Therefore, accelerated PET recycling is becoming increasingly urgent to address the global environmental problem caused by plastic wastes and prevent plastic pollution. In addition to traditional physical cycling (e.g., pyrolysis, gasification) and chemical cycling (e.g., chemical depolymerization), biodegradation can be used, which involves breaking down organic materials into simpler compounds by microorganisms or PET-degrading enzymes. Lipases and cutinases are the two classes of enzymes that have been studied extensively for this purpose. Biodegradation of PET is an attractive approach for managing PET waste, as it can help reduce environmental pollution and promote a circular economy. During the past few years, great advances have been accomplished in PET biodegradation. In this review, current knowledge on cutinase-like PET hydrolases (such as TfCut2, Cut190, HiC, and LCC) was described in detail, including the structures, ligand-protein interactions, and rational protein engineering for improved PET-degrading performance. In particular, applications of the engineered catalysts were highlighted, such as improving the PET hydrolytic activity by constructing fusion proteins. The review is expected to provide novel insights for the biodegradation of complex polymers.
Collapse
Affiliation(s)
- Beibei Sui
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| | - Tao Wang
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| | - Jingxiang Fang
- Rizhao Administration for Market Regulation, Rizhao, Shandong, China
| | - Zuoxuan Hou
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| | - Ting Shu
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| | - Zhenhua Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei Liu
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| | - Youshuang Zhu
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
12
|
Liu F, Wang T, Yang W, Zhang Y, Gong Y, Fan X, Wang G, Lu Z, Wang J. Current advances in the structural biology and molecular engineering of PETase. Front Bioeng Biotechnol 2023; 11:1263996. [PMID: 37795175 PMCID: PMC10546322 DOI: 10.3389/fbioe.2023.1263996] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
Poly(ethylene terephthalate) (PET) is a highly useful synthetic polyester plastic that is widely used in daily life. However, the increase in postconsumer PET as plastic waste that is recalcitrant to biodegradation in landfills and the natural environment has raised worldwide concern. Currently, traditional PET recycling processes with thermomechanical or chemical methods also result in the deterioration of the mechanical properties of PET. Therefore, it is urgent to develop more efficient and green strategies to address this problem. Recently, a novel mesophilic PET-degrading enzyme (IsPETase) from Ideonella sakaiensis was found to streamline PET biodegradation at 30°C, albeit with a lower PET-degrading activity than chitinase or chitinase-like PET-degrading enzymes. Consequently, the molecular engineering of more efficient PETases is still required for further industrial applications. This review details current knowledge on IsPETase, MHETase, and IsPETase-like hydrolases, including the structures, ligand‒protein interactions, and rational protein engineering for improved PET-degrading performance. In particular, applications of the engineered catalysts are highlighted, including metabolic engineering of the cell factories, enzyme immobilization or cell surface display. The information is expected to provide novel insights for the biodegradation of complex polymers.
Collapse
Affiliation(s)
- Fei Liu
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Tao Wang
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Wentao Yang
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Yingkang Zhang
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Yuming Gong
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Xinxin Fan
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Guocheng Wang
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Zhenhua Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Wang
- School of Pharmacy, Jining Medical University, Rizhao, China
| |
Collapse
|
13
|
The increased efficiency of porphyran hydrolysis by constructing a multifunctional enzyme complex from marine microorganisms. Enzyme Microb Technol 2023; 165:110207. [PMID: 36709516 DOI: 10.1016/j.enzmictec.2023.110207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Porphyran, a polysaccharide composed of red algae, is a source of a multifunctional oligosaccharide material and raw biomass with various physiological activities. The glycolysis of porphyrans into oligosaccharides through various porphyranases is an approach for obtaining high-quality and promising alternative resources. In this study, porphyran was extracted from Porphyra yezoensis and used as a research substrate. We also established an efficient hydrolysis method using an enzymatic complex obtained through cohesin-dockerin interactions that degrade natural polysaccharides. The cohesion-dockerin interaction is designed to genetically bind the dockerin module to the end of an existing enzyme and then attach the cohesin module to obtain a protein complex. The designed protein complex has been shown to further increase the activity on the substrate, which can be considered a useful method to obtain efficient oligosaccharides or monosaccharides through hydrolysis of red algae for bioresources.
Collapse
|
14
|
Teimouri F, Mokhtari M, Nasiri T, Abouee E. Introducing heterotrophic iron ore bacteria as new candidates in promoting the recovery of e-waste strategic metals. World J Microbiol Biotechnol 2023; 39:137. [PMID: 36976392 DOI: 10.1007/s11274-023-03589-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Electrical instruments are an integral part of human life resulting in a vast electronic waste generation (74.7 Mt by 2030), threatening human life and the environment due to its hazardous nature. Therefore, proper e-waste management is a necessity. Currently, bio-metallurgy is a sustainable process and an emerging research field. Simultaneous leaching of metals using two groups of indigenous heterotrophs and autotrophs was an exciting work done in this study. Bioleaching experiments using pre-adapted cultures were investigated at three e-waste densities: 5, 10, and 15 g/L. Statistical analysis was done using two-way ANOVA. Copper (93%), zinc (21.5%), and nickel (10.5%) had the highest recovery efficiencies. There was a significant difference between copper, nickel, tin, and zinc concentrations and the bacterial group (P < 0.05); Iron-oxidizing bacteria showed the most weight decrease and recovered 46-47% of total metals, mainly copper and nickel, while sulfur oxidizers were more capable of zinc leaching. The heterotrophs solubilized tin preferably and substantially decreased e-waste weight. Using heterotrophs alongside autotrophs is proposed to promote metal recovery.
Collapse
Affiliation(s)
- Fahimeh Teimouri
- Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehdi Mokhtari
- Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tannaz Nasiri
- Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Ehsan Abouee
- Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
15
|
Guo H, Yao HY, Huang QQ, Li T, Show DY, Ling M, Yan YG, Show KY, Lee DJ. Anaerobic-anoxic-oxic biological treatment of high-strength, highly recalcitrant polyphenylene sulfide wastewater. BIORESOURCE TECHNOLOGY 2023; 371:128640. [PMID: 36681351 DOI: 10.1016/j.biortech.2023.128640] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
This paper outlines an integrated anaerobic-anoxic-oxic (A2O) treatment scheme for high-strength, highly recalcitrant wastewater from the production of polyphenylene sulfide (PPS) resins and their composite chemicals. An integrated anaerobic granular sludge blanket (GSB) and anoxic-oxic (AO) reactor indicated that the A2O removed chemical oxygen demand (COD) of up to 7,043 mg/L with no adverse impact from high total dissolved solids (25,000 mg/L) on the GSB COD removal and effluent suspended solids. At a Total Kjeldahl Nitrogen (TKN) nitrification load of 0.11 g TKN/L.d and 400 mg NH3/L, almost 99 % of the NH3 was degraded with effluent NH3 < 5 mg/L, meeting the limit of 35 mg/L. High S2- levels of up to 1470 mg/L can be transformed through aerobic microbial degradation to meet a limit of 1.0 mg/L. With proper microbial acclimation and process designs, the integrated A2O scheme offers a resilient and robust treatment for high-strength recalcitrant PPS wastewater.
Collapse
Affiliation(s)
- Hui Guo
- Zhejiang Juneng Co. Ltd., Zhejiang, China; Jiangnan University, Wuxi, Zhejiang, China
| | - Hai-Yong Yao
- Zhejiang Juneng Co. Ltd., Zhejiang, China; Jiangnan University, Wuxi, Zhejiang, China
| | | | - Ting Li
- Zhejiang Juneng Co. Ltd., Zhejiang, China
| | | | - Ming Ling
- Zhejiang Juneng Co. Ltd., Zhejiang, China
| | - Yue-Gen Yan
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Kuan-Yeow Show
- Zhejiang Juneng Co. Ltd., Zhejiang, China; Jiangnan University, Wuxi, Zhejiang, China; Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Chemical Engineering & Material Science, Yuan Ze University, Taoyuan 320, Taiwan.
| |
Collapse
|
16
|
An Ultra-Sensitive Comamonas thiooxidans Biosensor for the Rapid Detection of Enzymatic Polyethylene Terephthalate (PET) Degradation. Appl Environ Microbiol 2023; 89:e0160322. [PMID: 36507653 PMCID: PMC9888244 DOI: 10.1128/aem.01603-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Polyethylene terephthalate (PET) is a prevalent synthetic polymer that is known to contaminate marine and terrestrial environments. Currently, only a limited number of PET-active microorganisms and enzymes (PETases) are known. This is in part linked to the lack of highly sensitive function-based screening assays for PET-active enzymes. Here, we report on the construction of a fluorescent biosensor based on Comamonas thiooxidans strain S23. C. thiooxidans S23 transports and metabolizes TPA, one of the main breakdown products of PET, using a specific tripartite tricarboxylate transporter (TTT) and various mono- and dioxygenases encoded in its genome in a conserved operon ranging from tphC-tphA1. TphR, an IclR-type transcriptional regulator is found upstream of the tphC-tphA1 cluster where TPA induces transcription of tphC-tphA1 up to 88-fold in exponentially growing cells. In the present study, we show that the C. thiooxidans S23 wild-type strain, carrying the sfGFP gene fused to the tphC promoter, senses TPA at concentrations as low as 10 μM. Moreover, a deletion mutant lacking the catabolic genes involved in TPA degradation thphA2-A1 (ΔtphA2A3BA1) is up to 10,000-fold more sensitive and detects TPA concentrations in the nanomolar range. This is, to our knowledge, the most sensitive reporter strain for TPA and we demonstrate that it can be used for the detection of enzymatic PET breakdown products. IMPORTANCE Plastics and microplastics accumulate in all ecological niches. The construction of more sensitive biosensors allows to monitor and screen potential PET degradation in natural environments and industrial samples. These strains will also be a valuable tool for functional screenings of novel PETase candidates and variants or monitoring of PET recycling processes using biocatalysts. Thereby they help us to enrich the known biodiversity and efficiency of PET degrading organisms and enzymes and understand their contribution to environmental plastic degradation.
Collapse
|