1
|
Śliwa-Dominiak J, Czechowska K, Blanco A, Sielatycka K, Radaczyńska M, Skonieczna-Żydecka K, Marlicz W, Łoniewski I. Flow Cytometry in Microbiology: A Review of the Current State in Microbiome Research, Probiotics, and Industrial Manufacturing. Cytometry A 2025; 107:145-164. [PMID: 40028773 DOI: 10.1002/cyto.a.24920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/22/2024] [Accepted: 01/25/2025] [Indexed: 03/05/2025]
Abstract
Flow cytometry (FC) is a versatile and powerful tool in microbiology, enabling precise analysis of single cells for a variety of applications, including the detection and quantification of bacteria, viruses, fungi, as well as algae, phytoplankton, and parasites. Its utility in assessing cell viability, metabolic activity, immune responses, and pathogen-host interactions makes it indispensable in both research and diagnostics. The analysis of microbiota (community of microorganisms) and microbiome (collective genomes of the microorganisms) has become essential for understanding the intricate role of microbial communities in health, disease, and physiological functions. FC offers a promising complement, providing rapid, cost-effective, and dynamic profiling of microbial communities, with the added ability to isolate and sort bacterial populations for further analysis. In the probiotic industry, FC facilitates fast, affordable, and versatile analyses, helping assess both probiotics and postbiotics. It also supports the study of bacterial viability under stress conditions, including gastric acid and bile, improving insight into probiotic survival and adhesion to the intestinal mucosa. Additionally, the integration of Machine Learning in microbiology research has transformative potential, improving data analysis and supporting advances in personalized medicine and probiotic formulations. Despite the need for further standardization, FC continues to evolve as a key tool in modern microbiology and clinical diagnostics.
Collapse
Affiliation(s)
- Joanna Śliwa-Dominiak
- Research and Development Centre, Sanprobi, Szczecin, Poland
- Department of Biochemical Science, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| | | | - Alfonso Blanco
- Flow Cytometry Core Technology, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Katarzyna Sielatycka
- Research and Development Centre, Sanprobi, Szczecin, Poland
- Institute of Biology, Faculty of Exact and Natural Sciences, University of Szczecin, Szczecin, Poland
| | - Martyna Radaczyńska
- Research and Development Centre, Sanprobi, Szczecin, Poland
- Department of Biochemical Science, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| | - Karolina Skonieczna-Żydecka
- Research and Development Centre, Sanprobi, Szczecin, Poland
- Department of Biochemical Science, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| | - Wojciech Marlicz
- Research and Development Centre, Sanprobi, Szczecin, Poland
- Department of Gastroenterology, Faculty of Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Igor Łoniewski
- Research and Development Centre, Sanprobi, Szczecin, Poland
- Department of Biochemical Science, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
2
|
da Silva TF, Glória RDA, Americo MF, Freitas ADS, de Jesus LCL, Barroso FAL, Laguna JG, Coelho-Rocha ND, Tavares LM, le Loir Y, Jan G, Guédon É, Azevedo VADC. Unlocking the Potential of Probiotics: A Comprehensive Review on Research, Production, and Regulation of Probiotics. Probiotics Antimicrob Proteins 2024; 16:1687-1723. [PMID: 38539008 DOI: 10.1007/s12602-024-10247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 10/02/2024]
Abstract
This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Rafael de Assis Glória
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis Claudio Lima de Jesus
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Guimarães Laguna
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laisa Macedo Tavares
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves le Loir
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Gwénaël Jan
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Éric Guédon
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
3
|
Alessandri G, Rizzo SM, Mancabelli L, Fontana F, Longhi G, Turroni F, van Sinderen D, Ventura M. Impact of cryoprotective agents on human gut microbes and in vitro stabilized artificial gut microbiota communities. Microb Biotechnol 2024; 17:e14509. [PMID: 38878269 PMCID: PMC11179620 DOI: 10.1111/1751-7915.14509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
The availability of microbial biobanks for the storage of individual gut microbiota members or their derived and artificially assembled consortia has become fundamental for in vitro investigation of the molecular mechanisms behind microbe-microbe and/or microbe-host interactions. However, to preserve bacterial viability, adequate storage and processing technologies are required. In this study, the effects on cell viability of seven different combinations of cryoprotective agents were evaluated by flow cytometry for 53 bacterial species representing key members of the human gut microbiota after one and 3 months of cryopreservation at -80°C. The obtained results highlighted that no universal cryoprotectant was identified capable of guaranteeing effective recovery of intact cells after cryopreservation for all tested bacteria. However, the presence of inulin or skimmed milk provided high levels of viability protection during cryoexposure. These results were further corroborated by cryopreserving 10 artificial gut microbiota produced through in vitro continuous fermentation system technology. Indeed, in this case, the inclusion of inulin or skimmed milk resulted in a high recovery of viable cells, while also allowing consistent and reliable preservation of the artificial gut microbiota biodiversity. Overall, these results suggest that, although the efficacy of various cryoprotective agents is species-specific, some cryoprotectants based on glycerol and the addition of inulin or skimmed milk are preferable to retain viability and biodiversity for both single bacterial species and artificial gut microbiota.
Collapse
Affiliation(s)
- Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Leonardo Mancabelli
- Department of Medicine and SurgeryUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience InstituteNational University of IrelandCorkIreland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| |
Collapse
|
4
|
Aziz G, Zaidi A, Sullivan DJO'. Insights from metagenome-assembled genomes on the genetic stability and safety of over-the-counter probiotic products. Curr Genet 2023; 69:213-234. [PMID: 37237157 DOI: 10.1007/s00294-023-01271-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
The demand for and acceptance of probiotics is determined by their quality and safety. Illumina NGS sequencing and analytics were used to examine eight marketed probiotics. Up to the species level, sequenced DNA was taxonomically identified, and relative abundances were determined using Kaiju. The genomes were constructed using GTDB and validated through PATRICK and TYGS. A FastTree 2 phylogenetic tree was constructed using several type strain sequences from relevant species. Bacteriocin and ribosomally synthesized polypeptide (RiPP) genes were discovered, and a safety check was performed to test for toxins, antibiotic resistance, and genetic drift genes. Except for two products with unclaimed species, the labeling was taxonomically correct. In three product formulations, Lactobacillus acidophilus, Limosilactobacillus reuteri, Lacticaseibacillus paracasei, and Bifidobacterium animalis exhibited two to three genomic alterations, while Streptococcus equinus was found in one. TYGS and GDTB discovered E. faecium and L. paracasei in distinctly different ways. All the bacteria tested had the genetic repertoire to tolerate GIT transit, although some exhibited antibiotic resistance, and one strain had two virulence genes. Except for Bifidobacterium strains, the others revealed a variety of bacteriocins and ribosomally synthesized polypeptides (RiPP), 92% of which were unique and non-homologous to known ones. Plasmids and mobile genetic elements are present in strains of L. reuteri (NPLps01.et_L.r and NPLps02.uf_L.r), Lactobacillus delbrueckii (NPLps01.et_L.d), Streptococcus thermophilus (NPLps06.ab_S.t), and E. faecium (NPLps07.nf_E.f). Our findings support the use of metagenomics to build better and efficient production and post-production practices for probiotic quality and safety assessment.
Collapse
Affiliation(s)
- Ghazal Aziz
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Punjab, 38000, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, 45650, Islamabad (ICT), Pakistan
- Department of Food Science and Nutrition, Center for Microbial and Plant Genomics, University of Minnesota, 1500 Gortner Ave, St. Paul, MN, 55108, USA
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Punjab, 38000, Faisalabad, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, 45650, Islamabad (ICT), Pakistan.
| | - Daniel J O ' Sullivan
- Department of Food Science and Nutrition, Center for Microbial and Plant Genomics, University of Minnesota, 1500 Gortner Ave, St. Paul, MN, 55108, USA
| |
Collapse
|
5
|
Idrees M, Atiq N, Zahra R, Imran M, Ghazanfar S. Draft genome sequence of Lactiplantibacillus plantarum subsp. plantarum strain HF43, a human gut-associated potential probiotic. Microbiol Resour Announc 2023; 12:e0094522. [PMID: 37466328 PMCID: PMC10508172 DOI: 10.1128/mra.00945-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/17/2023] [Indexed: 07/20/2023] Open
Abstract
Lactiplantibacillus plantarum adapts to a wide range of ecological niches, including the human gut. Numerous health-promoting benefits have been associated with L. plantarum strains. Motivated for the development of human-origin target-based probiotics with known genetic markers, we report the draft genome sequence of human gut-associated Lactiplantibacillus plantarum subsp. plantarum HF43.
Collapse
Affiliation(s)
- Maryam Idrees
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naima Atiq
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rabaab Zahra
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Imran
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad, Pakistan
| |
Collapse
|
6
|
Kruasuwan W, Jenjaroenpun P, Arigul T, Chokesajjawatee N, Leekitcharoenphon P, Foongladda S, Wongsurawat T. Nanopore Sequencing Discloses Compositional Quality of Commercial Probiotic Feed Supplements. Sci Rep 2023; 13:4540. [PMID: 36941307 PMCID: PMC10027865 DOI: 10.1038/s41598-023-31626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
The market for the application of probiotics as a livestock health improvement supplement has increased in recent years. However, most of the available products are quality-controlled using low-resolution techniques and un-curated databases, resulting in misidentification and incorrect product labels. In this work, we deployed two workflows and compared results obtained by full-length 16S rRNA genes (16S) and metagenomic (Meta) data to investigate their reliability for the microbial composition of both liquid and solid forms of animal probiotic products using Oxford Nanopore long-read-only (without short-read). Our result revealed that 16S amplicon data permits to detect the bacterial microbiota even with the low abundance in the samples. Moreover, the 16S approach has the potential to provide species-level resolution for prokaryotes but not for assessing yeast communities. Whereas, Meta data has more power to recover of high-quality metagenome-assembled genomes that enables detailed exploration of both bacterial and yeast populations, as well as antimicrobial resistance genes, and functional genes in the population. Our findings clearly demonstrate that implementing these workflows with long-read-only monitoring could be applied to assessing the quality and safety of probiotic products for animals and evaluating the quality of probiotic products on the market. This would benefit the sustained growth of the livestock probiotic industry.
Collapse
Affiliation(s)
- Worarat Kruasuwan
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tantip Arigul
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nipa Chokesajjawatee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Suporn Foongladda
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
7
|
Echegaray N, Yilmaz B, Sharma H, Kumar M, Pateiro M, Ozogul F, Lorenzo JM. A novel approach to Lactiplantibacillus plantarum: From probiotic properties to the omics insights. Microbiol Res 2023; 268:127289. [PMID: 36571922 DOI: 10.1016/j.micres.2022.127289] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/24/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) strains are one of the lactic acid bacteria (LAB) commonly used in fermentation and their probiotic and functional properties along with their health-promoting roles come to the fore. Food-derived L. plantarum strains have shown good resistance and adhesion in the gastrointestinal tract (GI) and excellent antioxidant and antimicrobial properties. Furthermore, many strains of L. plantarum can produce bacteriocins with interesting antimicrobial activity. This probiotic properties of L. plantarum and existing in different niches give a great potential to have beneficial effects on health. It is also has been shown that L. plantarum can regulate the intestinal microbiota composition in a good way. Recently, omics approaches such as metabolomics, secretomics, proteomics, transcriptomics and genomics try to understand the roles and mechanisms of L. plantarum that are related to its functional characteristics. This review provides an overview of the probiotic properties, including the specific interactions between microbiota and host, and omics insights of L. plantarum.
Collapse
Affiliation(s)
- Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Birsen Yilmaz
- Department of Nutrition and Dietetics, Cukurova University, Sarıcam, 01330 Adana, Turkey
| | - Heena Sharma
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnāl, Haryana, 132001, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330, Adana, Turkey
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Facultade de Ciencias de Ourense, 32004 Ourense, Spain.
| |
Collapse
|
8
|
Tracey H, Coates N, Hulme E, John D, Michael DR, Plummer SF. Insights into the enumeration of mixtures of probiotic bacteria by flow cytometry. BMC Microbiol 2023; 23:48. [PMID: 36849905 PMCID: PMC9969615 DOI: 10.1186/s12866-023-02792-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
The use of flow cytometry to enumerate microorganisms is gaining traction over the traditional plate count technique on the basis of superior accuracy, precision and time-to-result. Here, we assessed the suitability of live/dead flow cytometry for the enumeration of mixed populations of probiotic bacteria (L. acidophilus, L. paracasei, L. plantarum, L. salivarius, B. lactis and B. bifidum) whilst comparing outcomes with plate counting. Using a novel gating strategy designed specifically for the enumeration of mixed populations, the application of flow cytometry resulted in the detection of higher numbers of viable bacteria with a greater level of repeatability than plate counting (RSD of 6.82 and 13.14% respectively). Across all multi-species blends tested, viable cell input was more accurately recovered by flow cytometry (101.8 ± 6.95%) than plate counts (81.37 ± 16.03%). However, when certain probiotic mixtures contained preparations with high numbers of non-viable cells in their total population, flow cytometry had the potential for overestimation of the viable population. Nevertheless, the comparative plate counts of these mixtures were low and variable, thus supporting the use of flow cytometry for the enumeration of viable bacteria in mixed populations.
Collapse
Affiliation(s)
- Harry Tracey
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot, UK
| | - Niall Coates
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot, UK.
| | - Eleri Hulme
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot, UK
| | - Daniel John
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot, UK
| | - Daryn Robert Michael
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot, UK
| | | |
Collapse
|
9
|
Dutta B, Lahiri D, Nag M, Abukhader R, Sarkar T, Pati S, Upadhye V, Pandit S, Amin MFM, Al Tawaha ARMS, Kumar M, Ray RR. Multi-Omics Approach in Amelioration of Food Products. Front Microbiol 2022; 13:955683. [PMID: 35903478 PMCID: PMC9315205 DOI: 10.3389/fmicb.2022.955683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Determination of the quality of food products is an essential key factor needed for safe-guarding the quality of food for the interest of the consumers, along with the nutritional and sensory improvements that are necessary for delivering better quality products. Bacteriocins are a group of ribosomally synthesized antimicrobial peptides that help in maintaining the quality of food. The implementation of multi-omics approach has been important for the overall enhancement of the quality of the food. This review uses various recent technologies like proteomics, transcriptomics, and metabolomics for the overall enhancement of the quality of food products. The matrix associated with the food products requires the use of sophisticated technologies that help in the extraction of a large amount of information necessary for the amelioration of the food products. This review would provide a wholesome view of how various recent technologies can be used for improving the quality food products and for enhancing their shelf-life.
Collapse
Affiliation(s)
- Bandita Dutta
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Rose Abukhader
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Siddhartha Pati
- NatNov Bioscience Private Limited, Balasore, India
- Skills Innovation & Academic Network (SIAN) Institute, Association for Biodiversity Conservation & Research (ABC), Balasore, India
| | - Vijay Upadhye
- Center of Research for Development (CR4D), Parul Institute of Applied Sciences (PIAS), Parul University, Vadodara, India
| | - Soumya Pandit
- Department of Life Sciences, Sharda University, Noida, India
| | | | | | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|