1
|
Acton S, O'Donnell MM, Periyasamy K, Dixit B, Eishingdrelo H, Hill C, Paul Ross R, Chesnel L. LPA3 agonist-producing Bacillus velezensis ADS024 is efficacious in multiple neuroinflammatory disease models. Brain Behav Immun 2024; 121:384-402. [PMID: 39147172 DOI: 10.1016/j.bbi.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024] Open
Abstract
Neuroinflammation is a common component of neurological disorders. In the gut-brain-immune axis, bacteria and their metabolites are now thought to play a role in the modulation of the nervous and immune systems which may impact neuroinflammation. In this respect, commensal bacteria of humans have recently been shown to produce metabolites that mimic endogenous G-protein coupled receptor (GPCR) ligands. To date, it has not been established whether plant commensal bacteria, which may be ingested by animals including humans, can impact the gut-brain-immune axis via GPCR agonism. We screened an isopropanol (IPA) extract of the plant commensal Bacillus velezensis ADS024, a non-engrafting live biotherapeutic product (LBP) with anti-inflammatory properties isolated from human feces, against a panel of 168 GPCRs and identified strong agonism of the lysophosphatidic acid (LPA) receptor LPA3. The ADS024 IPA extracted material (ADS024-IPA) did not agonize LPA2, and only very weakly agonized LPA1. The agonism of LPA3 was inhibited by the reversible LPA1/3 antagonist Ki16425. ADS024-IPA signaled downstream of LPA3 through G-protein-induced calcium release, recruitment of β-arrestin, and recruitment of the neurodegeneration-associated proteins 14-3-3γ, ε and ζ but did not recruit the β isoform. Since LPA3 agonism was previously indirectly implicated in the reduction of pathology in models of Parkinson's disease (PD) and multiple sclerosis (MS) by use of the nonselective antagonist Ki16425, and since we identified an LPA3-specific agonist within ADS024, we sought to examine whether LPA3 might indeed be part of a broad underlying mechanism to control neuroinflammation. We tested oral treatment of ADS024 in multiple models of neuroinflammatory diseases using three models of PD, two models of MS, and a model each of amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and chemo-induced peripheral neuropathy (CIPN). ADS024 treatment improved model-specific functional effects including improvements in motor movement, breathing and swallowing, and allodynia suggesting that ADS024 treatment impacted a universal underlying neuroinflammatory mechanism regardless of the initiating cause of disease. We used the MOG-EAE mouse model to examine early events after disease initiation and found that ADS024 attenuated the increase in circulating lymphocytes and changes in neutrophil subtypes, and ADS024 attenuated the early loss of cell-surface LPA3 receptor expression on circulating white blood cells. ADS024 efficacy was partially inhibited by Ki16425 in vivo suggesting LPA3 may be part of its mechanism. Altogether, these data suggest that ADS024 and its LPA3 agonism activity should be investigated further as a possible treatment for diseases with a neuroinflammatory component.
Collapse
Affiliation(s)
| | | | | | | | | | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | |
Collapse
|
2
|
Monday L, Tillotson G, Chopra T. Microbiota-Based Live Biotherapeutic Products for Clostridioides Difficile Infection- The Devil is in the Details. Infect Drug Resist 2024; 17:623-639. [PMID: 38375101 PMCID: PMC10876012 DOI: 10.2147/idr.s419243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024] Open
Abstract
Clostridioides difficile infection (CDI) remains a significant contributor to healthcare costs and morbidity due to high rates of recurrence. Currently, available antibiotic treatment strategies further disrupt the fecal microbiome and do not address the alterations in commensal flora (dysbiosis) that set the stage for CDI. Advances in microbiome-based research have resulted in the development of new agents, classified as live biotherapeutic products (LBPs), for preventing recurrent CDI (rCDI) by restoring eubiosis. Prior to the LBPs, fecal microbiota transplantation (FMT) was available for this purpose; however, lack of large-scale availability and safety concerns have remained barriers to its widespread use. The LBPs are an exciting development, but questions remain. Some are derived directly from human stool while other developmental products contain a defined microbial consortium manufactured ex vivo, and they may be composed of either living bacteria or their spores, making it difficult to compare members of this heterogenous drug class to one another. None have been studied head-to head or against FMT in preventing rCDI. As a class, they have considerable variability in their biologic composition, biopharmaceutic science, route of administration, stages of development, and clinical trial data. This review will start by explaining the role of dysbiosis in CDI, then give the details of the biopharmaceutical components for the LBPs which are approved or in development including how they differ from FMT and from one another. We then discuss the clinical trials of the LBPs currently approved for rCDI and end with the future clinical directions of LBPs beyond C. difficile.
Collapse
Affiliation(s)
- Lea Monday
- Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Teena Chopra
- Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
3
|
Irwin S, Chupina Estrada A, Nelson B, Bullock A, Limketkai B, Ho W, Acton S, Chesnel L, Koon HW. ADS024, a single-strain live biotherapeutic product of Bacillus velezensis alleviates dextran sulfate-mediated colitis in mice, protects human colonic epithelial cells against apoptosis, and maintains epithelial barrier function. Front Microbiol 2024; 14:1284083. [PMID: 38268707 PMCID: PMC10806143 DOI: 10.3389/fmicb.2023.1284083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
Epithelial cell apoptosis and compromised gut barrier function are features of inflammatory bowel disease. ADS024 is a single-strain live biotherapeutic product (LBP) of Bacillus velezensis under development for treating ulcerative colitis (UC). The cytoprotective effects of the sterile filtrate of ADS024's secreted products on UC patient-derived colonic tissues, human primary colonic epithelial cells (HPEC), and human colonic epithelial T84 cells were evaluated. ADS024 filtrate significantly inhibited apoptosis and inflammation with reduced Bcl-2 Associated X-protein (BAX) and tumor necrosis factor (TNF) mRNA expression in fresh colonic explants from UC patients. Exposure to UC patient-derived serum exosomes (UCSE) induced apoptosis with increased cleaved caspase 3 protein expression in HPECs. ADS024 filtrate diminished the UCSE-mediated apoptosis by inhibiting cleaved caspase 3. TNFα and interferon-gamma (IFNγ) damaged epithelial barrier integrity with reduced transepithelial electrical resistance (TEER). ADS024 filtrate partially attenuated the TEER reduction and restored tight junction protein 1 (TJP1) expression. Oral live ADS024 treatment reduced weight loss, disease activity, colonic mucosal injury, and colonic expression of interleukin 6 (IL-6) and TNFα in dextran sodium sulfate (DSS)-treated mice with colitis. Thus, ADS024 may protect the colonic epithelial barrier in UC via anti-inflammatory, anti-apoptotic, and tight-junction protection mechanisms.
Collapse
Affiliation(s)
- Sophie Irwin
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Andrea Chupina Estrada
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Becca Nelson
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Ashlen Bullock
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Berkeley Limketkai
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Wendy Ho
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Susan Acton
- Adiso Therapeutics Inc., Concord, MA, United States
| | | | - Hon Wai Koon
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
4
|
Fischer M, Ray A. Future Microbiome Therapeutics for Clostridioides difficile Infection. Am J Gastroenterol 2024; 119:S27-S29. [PMID: 38153223 DOI: 10.14309/ajg.0000000000002576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/22/2023] [Indexed: 12/29/2023]
Affiliation(s)
| | - Arnab Ray
- Ochsner Clinic Foundation, New Orleans, LA
| |
Collapse
|
5
|
Murphy CK, O’Donnell MM, Hegarty JW, Schulz S, Hill C, Ross RP, Rea MC, Farquhar R, Chesnel L. Novel, non-colonizing, single-strain live biotherapeutic product ADS024 protects against Clostridioides difficile infection challenge in vivo. World J Gastrointest Pathophysiol 2023; 14:71-85. [PMID: 37727283 PMCID: PMC10505952 DOI: 10.4291/wjgp.v14.i4.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND The Centers for Disease Control and Prevention estimate that Clostridioides difficile (C. difficile) causes half a million infections (CDI) annually and is a major cause of total infectious disease death in the United States, causing inflammation of the colon and potentially deadly diarrhea. We recently reported the isolation of ADS024, a Bacillus velezensis (B. velezensis) strain, which demonstrated direct in vitro bactericidal activity against C. difficile, with minimal collateral impact on other members of the gut microbiota. In this study, we hypothesized that in vitro activities of ADS024 will translate in vivo to protect against CDI challenge in mouse models. AIM To investigate the in vivo efficacy of B. velezensis ADS024 in protecting against CDI challenge in mouse models. METHODS To mimic disruption of the gut microbiota, the mice were exposed to vancomycin prior to dosing with ADS024. For the mouse single-dose study, the recovery of ADS024 was assessed via microbiological analysis of intestinal and fecal samples at 4 h, 8 h, and 24 h after a single oral dose of 5 × 108 colony-forming units (CFU)/mouse of freshly grown ADS024. The single-dose study in miniature swine included groups that had been pre-dosed with vancomycin and that had been exposed to a dose range of ADS024, and a group that was not pre-dosed with vancomycin and received a single dose of ADS024. The ADS024 colonies [assessed by quantitative polymerase chain reaction (qPCR) using ADS024-specific primers] were counted on agar plates. For the 28-d miniature swine study, qPCR was used to measure ADS024 levels from fecal samples after oral administration of ADS024 capsules containing 5 × 109 CFU for 28 consecutive days, followed by MiSeq compositional sequencing and bioinformatic analyses to measure the impact of ADS024 on microbiota. Two studies were performed to determine the efficacy of ADS024 in a mouse model of CDI: Study 1 to determine the effects of fresh ADS024 culture and ADS024 spore preparations on the clinical manifestations of CDI in mice, and Study 2 to compare the efficacy of single daily doses vs dosing 3 times per day with fresh ADS024. C. difficile challenge was performed 24 h after the start of ADS024 exposure. To model the human distal colon, an anerobic fecal fermentation system was used. MiSeq compositional sequencing and bioinformatic analyses were performed to measure microbiota diversity changes following ADS024 treatment. To assess the potential of ADS024 to be a source of antibiotic resistance, its susceptibility to 18 different antibiotics was tested. RESULTS In a mouse model of CDI challenge, single daily doses of ADS024 were as efficacious as multiple daily doses in protecting against subsequent challenge by C. difficile pathogen-induced disease. ADS024 showed no evidence of colonization based on the observation that the ADS024 colonies were not recovered 24 h after single doses in mice or 72 h after single doses in miniature swine. In a 28-d repeat-dose study in miniature swine, ADS024 was not detected in fecal samples using plating and qPCR methods. Phylogenetic analysis performed in the human distal colon model showed that ADS024 had a selective impact on the healthy human colonic microbiota, similarly to the in vivo studies performed in miniature swine. Safety assessments indicated that ADS024 was susceptible to all the antibiotics tested, while in silico testing revealed a low potential for off-target activity or virulence and antibiotic-resistance mechanisms. CONCLUSION Our findings, demonstrating in vivo efficacy of ADS024 in protecting against CDI challenge in mouse models, support the use of ADS024 in preventing recurrent CDI following standard antibiotic treatment.
Collapse
Affiliation(s)
- Christopher K Murphy
- Research and Development, Adiso Therapeutics Inc., Concord, MA 01742, United States
| | | | - James W Hegarty
- Teagasc Food Research Centre, Moorepark Fermoy, Cork P61 C996, Ireland
| | - Sarah Schulz
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, Moorepark Fermoy, Cork P61 C996, Ireland
| | - Ronald Farquhar
- Executive Leadership Team, Adiso Therapeutics Inc., Concord, MA 01742, United States
| | - Laurent Chesnel
- Research and Development, Adiso Therapeutics Inc., Concord, MA 01742, United States
| |
Collapse
|
6
|
Wang R. Clostridioides difficile infection: microbe-microbe interactions and live biotherapeutics. Front Microbiol 2023; 14:1182612. [PMID: 37228365 PMCID: PMC10203151 DOI: 10.3389/fmicb.2023.1182612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/03/2023] [Indexed: 05/27/2023] Open
Abstract
Clostridioides difficile is a gram-positive, spore-forming, obligate anaerobe that infects the colon. C. difficile is estimated to cause nearly half a million cases in the United States annually, with about 29,000 associated deaths. Unfortunately, the current antibiotic treatment is not ideal. While antibiotics can treat the infections, they also disrupt the gut microbiota that mediates colonization resistance against enteric pathogens, including C. difficile; disrupted gut microbiota provides a window of opportunity for recurrent infections. Therefore, therapeutics that restore the gut microbiota and suppress C. difficile are being evaluated for safety and efficacy. This review will start with mechanisms by which gut bacteria affect C. difficile pathogenesis, followed by a discussion on biotherapeutics for recurrent C. difficile infections.
Collapse
|