1
|
Lima RAT, Garay AV, Frederico TD, de Oliveira GM, Quirino BF, Barbosa JARG, Freitas SMD, Krüger RH. Biochemical and structural characterization of a family-9 glycoside hydrolase bioprospected from the termite Syntermes wheeleri gut bacteria metagenome. Enzyme Microb Technol 2025; 189:110654. [PMID: 40262434 DOI: 10.1016/j.enzmictec.2025.110654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/24/2025] [Accepted: 04/12/2025] [Indexed: 04/24/2025]
Abstract
Glycosyl hydrolases (GH) are enzymes involved in the degradation of plant biomass. They are important for biorefineries that aim at the sustainable utilization of lignocellulosic residues to generate value-added products. The termite Syntermes wheeleri gut microbiota showed an abundance of bacteria from the phylum Firmicutes, a phylum with enzymes capable of breaking down cellulose and degrading lignin, facilitating the use of plant materials as a food source for termites. Using bioinformatics techniques, cellobiohydrolases were searched for in the gut metagenome of the termite Syntermes wheeleri, endemic to the Cerrado. After selecting sequences of the target enzymes, termite gut microbiome metatranscriptome data were used as the criteria to choose the GH9 enzyme sequence Exo8574. Here we present the biochemical and structural characterization of Exo8574, a GH9 enzyme that showed activity with the substrate p-nitrophenyl-D-cellobioside (pNPC), consistent with cellobiohydrolase activity. Bioinformatics tools were used to perform phylogeny studies of Exo8574 and to identify conserved families and domains. Exo8574 showed 48.8 % homology to a protein from a bacterium belonging to the phylum Firmicutes. The high-quality three-dimensional (3D) model of Exo8574 was obtained by protein structure prediction AlphaFold 2, a neural network-based method. After the heterologous expression of Exo8574 and its purification, biochemical experiments showed that the optimal activity of the enzyme was at a temperature of 55 ºC and pH 6.0, which was enhanced in the presence of metal ions, especially Fe2 +. The estimated kinetic parameters of Exo8574 using the synthetic substrate p-nithrophenyl-beta-D-cellobioside (pNPC) were: Vmax = 9.14 ± 0.2 x10-5 μmol/min and Km = 248.27 ± 26.35 μmol/L. The thermostability test showed a 50 % loss of activity after 1 h incubation at 55 °C. The secondary structure contents of Exo8574 evaluated by Circular Dichroism were pH dependent, with greater structuring of protein in β-antiparallel and α-helices at pH 6.0. The similarity between the CD results and the Ramachandran plot of the 3D model suggests that a reliable model has been obtained. Altogether, the results of the biochemical and structural characterization showed that Exo8574 is capable of acting on p-nithrophenyl-beta-D-cellobioside (pNPC), a substrate that mimics bonds cleaved by cellobiohydrolases. These findings have significant implications for advancing in the field of biomass conversion while also contributing to efforts aimed at overcoming challenges in developing more efficient cellulase cocktails.
Collapse
Affiliation(s)
| | - Aisel Valle Garay
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Tayná Diniz Frederico
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Gideane Mendes de Oliveira
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Betania Ferraz Quirino
- Embrapa-Agroenegy, Genetics and Biotechnology Laboratory, Brasília, DF 70770-901, Brazil
| | | | - Sonia Maria de Freitas
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Ricardo Henrique Krüger
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
2
|
Proaño-Cuenca F, Millican MD, Buczkowski E, Chou MY, Koch PL. Fungal and bacterial community composition and assemblage in managed and unmanaged urban landscapes in Wisconsin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178873. [PMID: 40010245 DOI: 10.1016/j.scitotenv.2025.178873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
Microbial communities play crucial roles in ecosystem functioning, yet their diversity and assembly in urban turfgrass systems remain underexplored. In 2017, microbial communities within 48 samples from managed turfgrass (home lawns, golf course fairways, and putting greens) and an unmanaged grass mixture in Madison, WI, USA were analyzed across leaf, thatch, rhizoplane, and rhizosphere habitats Intensive management, particularly in nitrogen-rich, sand-based putting greens, reduced fungal richness and diversity, whereas bacterial diversity patterns varied. Beta diversity analyses revealed distinct clustering: fungal communities differed most in unmanaged systems, while bacterial communities clustered within managed systems. Functional profiling demonstrated that bacterial communities maintained metabolic stability despite taxonomic shifts, while fungal communities showed dynamic functional responses to management. Furthermore, management practices also impacted microbial community assembly. Bacterial communities were predominantly shaped by neutral, stochastic processes, while fungal communities were more sensitive to management, showing deterministic, niche-based assembly and compositional shifts. These findings underscore the contrasting impacts of management on microbial communities and highlight the importance of sustainable turfgrass practices that balance plant health with microbial ecosystem functions. By linking microbial assembly processes to functional outcomes, this study provides insights for optimizing urban landscapes to enhance soil health and ecosystem resilience.
Collapse
Affiliation(s)
- Fernanda Proaño-Cuenca
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| | - Michael D Millican
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Emma Buczkowski
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Ming-Yi Chou
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, United States.
| | - Paul L Koch
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
3
|
Campos-Avelar I, Montoya-Martínez AC, Parra-Cota FI, de los Santos-Villalobos S. Editorial: plant-microbial symbiosis toward sustainable food security. PLANT SIGNALING & BEHAVIOR 2024; 19:2298054. [PMID: 38183219 PMCID: PMC10773630 DOI: 10.1080/15592324.2023.2298054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/16/2023] [Indexed: 01/07/2024]
Abstract
The use of plant-associated microorganisms is increasingly being investigated as a key tool for mitigating the impact of biotic and abiotic threats to crops and facilitating migration to sustainable agricultural practices. The microbiome is responsible for several functions in agroecosystems, such as the transformation of organic matter, nutrient cycling, and plant/pathogen growth regulation. As climate change and global warming are altering the dynamics of plant-microbial interactions in the ecosystem, it has become essential to perform comprehensive studies to decipher current and future microbial interactions, as their useful symbiotic mechanisms could be better exploited to achieve sustainable agriculture. This will allow for the development of effective microbial inoculants that facilitate nutrient supply for the plant at its minimal energy expense, thus increasing its resilience to biotic and abiotic stresses. This article collection aims to compile state-of-the-art research focused on the elucidation and optimization of symbiotic relationships between crops and their associated microbes. The information presented here will contribute to the development of next-generation microbial inoculants for achieving a more sustainable agriculture.
Collapse
Affiliation(s)
- Ixchel Campos-Avelar
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora (ITSON), Ciudad Obregon, Mexico
| | - Amelia C. Montoya-Martínez
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora (ITSON), Ciudad Obregon, Mexico
| | - Fannie I. Parra-Cota
- Campo Experimental Norman E. Borlaug, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Ciudad Obregon, Mexico
| | | |
Collapse
|
4
|
Rajguru B, Shri M, Bhatt VD. Exploring microbial diversity in the rhizosphere: a comprehensive review of metagenomic approaches and their applications. 3 Biotech 2024; 14:224. [PMID: 39247454 PMCID: PMC11379838 DOI: 10.1007/s13205-024-04065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
The rhizosphere, the soil region influenced by plant roots, represents a dynamic microenvironment where intricate interactions between plants and microorganisms shape soil health, nutrient cycling, and plant growth. Soil microorganisms are integral players in the transformation of materials, the dynamics of energy flows, and the intricate cycles of biogeochemistry. Considerable research has been dedicated to investigating the abundance, diversity, and intricacies of interactions among different microbes, as well as the relationships between plants and microbes present in the rhizosphere. Metagenomics, a powerful suite of techniques, has emerged as a transformative tool for dissecting the genetic repertoire of complex microbial communities inhabiting the rhizosphere. The review systematically navigates through various metagenomic approaches, ranging from shotgun metagenomics, enabling unbiased analysis of entire microbial genomes, to targeted sequencing of the 16S rRNA gene for taxonomic profiling. Each approach's strengths and limitations are critically evaluated, providing researchers with a nuanced understanding of their applicability in different research contexts. A central focus of the review lies in the practical applications of rhizosphere metagenomics in various fields including agriculture. By decoding the genomic content of rhizospheric microbes, researchers gain insights into their functional roles in nutrient acquisition, disease suppression, and overall plant health. The review also addresses the broader implications of metagenomic studies in advancing our understanding of microbial diversity and community dynamics in the rhizosphere. It serves as a comprehensive guide for researchers, agronomists, and policymakers, offering a roadmap for harnessing metagenomic approaches to unlock the full potential of the rhizosphere microbiome in promoting sustainable agriculture.
Collapse
Affiliation(s)
- Bhumi Rajguru
- School of Applied Sciences and Technology, Gujarat Technological University, Chandkheda, Ahmedabad, Gujarat India
| | - Manju Shri
- School of Applied Sciences and Technology, Gujarat Technological University, Chandkheda, Ahmedabad, Gujarat India
| | - Vaibhav D Bhatt
- School of Applied Sciences and Technology, Gujarat Technological University, Chandkheda, Ahmedabad, Gujarat India
| |
Collapse
|
5
|
Talib N, Mohamad NE, Ho CL, Masarudin MJ, Alitheen NB. Modulatory Effects of Isolated Lactobacillus paracasei from Malaysian Water Kefir Grains on the Intestinal Barrier and Gut Microbiota in Diabetic Mice. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10367-4. [PMID: 39313703 DOI: 10.1007/s12602-024-10367-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Type 2 diabetes (T2DM) is one of the four major types of non-communicable diseases that have become a global health concern. Water kefir is a product of a brown sugar solution fermented with kefir grains which comprises around 30 microbial species in its grains. Water kefir possesses a wide range of health benefits, including anti-hyperlipidemic effects, and reduces hypertension and blood glucose levels in animal models. Reportedly, consuming water kefir containing probiotics may enhance the intestinal barrier and positively influence the composition of the intestinal microflora. The present study aimed to evaluate the regulatory effects of Lactobacillus paracasei isolated from Malaysian water kefir grains (MWKG) on the alterations of intestinal barrier and gut microbiota in diabetic mice via histopathological analysis of the distal colon and 16S rRNA gene sequencing on fecal microbiome. Results indicated that the administration of isolated Lactobacillus paracasei from MWKG to diabetic mice ameliorated the dominant probiotic phyla in the gut microbiota. Results showed that lower dose (LD) and high dose (HD) treatments of the isolated Lactobacillus paracasei could significantly reduce inflammatory cell infiltration in the distal colon of diabetic mice. The treatments revealed a significant decrease in the relative abundance of Firmicutes in the gut, 0.27 ± 0.06% for LD and 0.34 ± 0.04% for HD, compared to untreated (UN) diabetic mice, 0.40 ± 0.02%. These results suggest that L. paracasei isolated from MWKG could serve as a potential dietary supplement against intestinal inflammation and modify gut microbiota composition in patients with T2DM.
Collapse
Affiliation(s)
- Noorshafadzilah Talib
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Nurul Elyani Mohamad
- Biotechnology Research Institute, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Chai Ling Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
6
|
Aminu S, Ascandari A, Laamarti M, Safdi NEH, El Allali A, Daoud R. Exploring microbial worlds: a review of whole genome sequencing and its application in characterizing the microbial communities. Crit Rev Microbiol 2024; 50:805-829. [PMID: 38006569 DOI: 10.1080/1040841x.2023.2282447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
The classical microbiology techniques have inherent limitations in unraveling the complexity of microbial communities, necessitating the pivotal role of sequencing in studying the diversity of microbial communities. Whole genome sequencing (WGS) enables researchers to uncover the metabolic capabilities of the microbial community, providing valuable insights into the microbiome. Herein, we present an overview of the rapid advancements achieved thus far in the use of WGS in microbiome research. There was an upsurge in publications, particularly in 2021 and 2022 with the United States, China, and India leading the metagenomics research landscape. The Illumina platform has emerged as the widely adopted sequencing technology, whereas a significant focus of metagenomics has been on understanding the relationship between the gut microbiome and human health where distinct bacterial species have been linked to various diseases. Additionally, studies have explored the impact of human activities on microbial communities, including the potential spread of pathogenic bacteria and antimicrobial resistance genes in different ecosystems. Furthermore, WGS is used in investigating the microbiome of various animal species and plant tissues such as the rhizosphere microbiome. Overall, this review reflects the importance of WGS in metagenomics studies and underscores its remarkable power in illuminating the variety and intricacy of the microbiome in different environments.
Collapse
Affiliation(s)
- Suleiman Aminu
- Chemical and Biochemical Sciences-Green Process Engineering, University Mohammed VI Polytechnic, Ben Guerir, Morocco
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - AbdulAziz Ascandari
- Chemical and Biochemical Sciences-Green Process Engineering, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Meriem Laamarti
- Faculty of Medical Sciences, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Nour El Houda Safdi
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Achraf El Allali
- Bioinformatics Laboratory, College of Computing, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Rachid Daoud
- Chemical and Biochemical Sciences-Green Process Engineering, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| |
Collapse
|
7
|
Fatemifard SZ, Masoumiasl A, Rezaei R, Fazeli-Nasab B, Salehi-Sardoei A, Ghorbanpour M. Association between molecular markers and resistance to bacterial blight using binary logistic analysis. BMC PLANT BIOLOGY 2024; 24:670. [PMID: 39004723 PMCID: PMC11247743 DOI: 10.1186/s12870-024-05381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
The most effective strategy for managing wheat bacterial blight caused by Pseudomonas syringae pv. syringae is believed to be the use of resistant cultivars. Researching the correlation between molecular markers and stress resistance can expedite the plant breeding process. The current study aims to evaluate the response of 27 bread wheat cultivars to bacterial blight disease in order to identify resistant and susceptible cultivars and to pinpoint ISSR molecular markers associated with bacterial blight resistance genes. ISSR markers are recommended for assessing a plant's disease resistance. This experiment is focused on identifying ISSR molecular markers linked to bacterial blight resistance. After applying the bacterial solution to the leaves, we performed sampling to determine the infection percentage in the leaves at different intervals (7, 14, and 18 days after spraying). In most cultivars, the average leaf infection percentage decreased 18 days after spraying on young leaves. However, in some cultivars such as Niknegad, Darab2, and Zarin, leaf infection increased in older leaves and reached up to 100% necrosis. In our study, 12 ISSR primers generated a total of 170 bands, with 156 being polymorphic. The primers F10 and F5 showed the highest polymorphism, while the F7 primer exhibited the lowest polymorphism. Cluster analysis grouped these cultivars into four categories. The resistant group included Qods, Omid, and Atrak cultivars, while the semi-resistant and susceptible groups comprised the rest of the cultivars. Through binary logistic analysis, we identified three Super oxide dismutase-related genes that contribute to plant resistance to bacterial blight. These genes were linked to the F3, F5, and F12 primers in regions I (1500 bp), T (1000 bp), and G (850 bp), respectively. We also identified seven susceptibility-associated genes. Atrak, Omid, and Qods cultivars exhibited resistance against bacterial blight, and three genes associated with this resistance were linked to the F3, F5, and F12 primers. These markers can be used for screening or transferring tolerance to other wheat cultivars in breeding programs.
Collapse
Affiliation(s)
| | - Asad Masoumiasl
- Plant Breeding Department, Agriculture Faculty, Yasouj University, Yasouj, Iran.
| | - Rasool Rezaei
- Plant Protection Department, Agriculture Faculty, Yasouj University, Yasouj, Iran
| | - Bahman Fazeli-Nasab
- Department of Agronomy and Plant Breeding, Agriculture Institute, Research Institute of Zabol, Zabol, Iran
| | - Ali Salehi-Sardoei
- Crop and Horticultural Science Research Department, South Kerman Agricultural and Natural Resources Research and Education Center, AREEO, Jiroft, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
8
|
Samantaray A, Chattaraj S, Mitra D, Ganguly A, Kumar R, Gaur A, Mohapatra PK, Santos-Villalobos SDL, Rani A, Thatoi H. Advances in microbial based bio-inoculum for amelioration of soil health and sustainable crop production. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100251. [PMID: 39165409 PMCID: PMC11334944 DOI: 10.1016/j.crmicr.2024.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
The adoption of sustainable agricultural practices is increasingly imperative in addressing global food security and environmental concerns, with microbial based bio-inoculums emerging as a promising approach for nurturing soil health and fostering sustainable crop production.This review article explores the potential of microbial based bio-inoculumsor biofertilizers as a transformative approach toenhance plant disease resistance and growth. It explores the commercial prospects of biofertilizers, highlighting their role in addressing environmental concerns associated with conventional fertilizers while meeting the growing demand for eco-friendly agricultural practices. Additionally, this review discusses the future prospects of biofertilizers, emphasizing the ongoing advancements in biotechnology and formulation techniques that are expected to enhance their efficacy and applicability. Furthermore, this article provides insights into strategies for the successful acceptance of biofertilizers among farmers, including the importance of quality control, assurance, and education initiatives to raise awareness about their benefits and overcome barriers to adoption. By synthesizing the current research findings and industrial developments, this review offers valuable guidance for stakeholders seeking to exploit the potential of biofertilizers or beneficial microbes to promote soil health, ensure sustainable crop production, and addressing the challenges of modern agriculture.
Collapse
Affiliation(s)
- Aurodeepa Samantaray
- Centre for Industrial Biotechnology Research, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan, Deemed to be University, Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| | - Sourav Chattaraj
- Centre for Industrial Biotechnology Research, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan, Deemed to be University, Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| | - Debasis Mitra
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Arindam Ganguly
- Department of Microbiology, Bankura Sammilani College, Bankura, West Bengal 722102, India
| | - Rahul Kumar
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Ashish Gaur
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Pradeep K.Das Mohapatra
- Department of Microbiology, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal 733134, India
| | | | - Anju Rani
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Hrudayanath Thatoi
- Centre for Industrial Biotechnology Research, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan, Deemed to be University, Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| |
Collapse
|
9
|
Nam NN, Do HDK, Loan Trinh KT, Lee NY. Metagenomics: An Effective Approach for Exploring Microbial Diversity and Functions. Foods 2023; 12:2140. [PMID: 37297385 PMCID: PMC10252221 DOI: 10.3390/foods12112140] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Various fields have been identified in the "omics" era, such as genomics, proteomics, transcriptomics, metabolomics, phenomics, and metagenomics. Among these, metagenomics has enabled a significant increase in discoveries related to the microbial world. Newly discovered microbiomes in different ecologies provide meaningful information on the diversity and functions of microorganisms on the Earth. Therefore, the results of metagenomic studies have enabled new microbe-based applications in human health, agriculture, and the food industry, among others. This review summarizes the fundamental procedures on recent advances in bioinformatic tools. It also explores up-to-date applications of metagenomics in human health, food study, plant research, environmental sciences, and other fields. Finally, metagenomics is a powerful tool for studying the microbial world, and it still has numerous applications that are currently hidden and awaiting discovery. Therefore, this review also discusses the future perspectives of metagenomics.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 72820, Vietnam
| | - Kieu The Loan Trinh
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
10
|
Boutsika A, Michailidis M, Ganopoulou M, Dalakouras A, Skodra C, Xanthopoulou A, Stamatakis G, Samiotaki M, Tanou G, Moysiadis T, Angelis L, Bazakos C, Molassiotis A, Nianiou-Obeidat I, Mellidou I, Ganopoulos I. A wide foodomics approach coupled with metagenomics elucidates the environmental signature of potatoes. iScience 2023; 26:105917. [PMID: 36691616 PMCID: PMC9860355 DOI: 10.1016/j.isci.2022.105917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
The term "terroir" has been widely employed to link differential geographic phenotypes with sensorial signatures of agricultural food products, influenced by agricultural practices, soil type, and climate. Nowadays, the geographical indications labeling has been developed to safeguard the quality of plant-derived food that is linked to a certain terroir and is generally considered as an indication of superior organoleptic properties. As the dynamics of agroecosystems are highly intricate, consisting of tangled networks of interactions between plants, microorganisms, and the surrounding environment, the recognition of the key molecular components of terroir fingerprinting remains a great challenge to protect both the origin and the safety of food commodities. Furthermore, the contribution of microbiome as a potential driver of the terroir signature has been underestimated. Herein, we present a first comprehensive view of the multi-omic landscape related to transcriptome, proteome, epigenome, and metagenome of the popular Protected Geographical Indication potatoes of Naxos.
Collapse
Affiliation(s)
- Anastasia Boutsika
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 570001 Thessaloniki-Thermi, Greece
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Aristotle University, 54124 Thessaloniki, Greece
| | - Michail Michailidis
- Joint Laboratory of Horticulture, ELGO-DIMITRA, 57001 Thessaloniki-Thermi, 21 Greece
| | - Maria Ganopoulou
- School of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios Dalakouras
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 570001 Thessaloniki-Thermi, Greece
| | - Christina Skodra
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001 Thessaloniki-Thermi, Greece
| | - Aliki Xanthopoulou
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 570001 Thessaloniki-Thermi, Greece
- Joint Laboratory of Horticulture, ELGO-DIMITRA, 57001 Thessaloniki-Thermi, 21 Greece
| | - George Stamatakis
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece
| | - Georgia Tanou
- Joint Laboratory of Horticulture, ELGO-DIMITRA, 57001 Thessaloniki-Thermi, 21 Greece
- Institute of Soil and Water Resources, ELGO-DIMITRA, 57001 Thessaloniki-Thermi, Greece
| | - Theodoros Moysiadis
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 570001 Thessaloniki-Thermi, Greece
- Department of Computer Science, School of Sciences and Engineering, University of Nicosia, 2417 Nicosia, Cyprus
| | - Lefteris Angelis
- School of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christos Bazakos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 570001 Thessaloniki-Thermi, Greece
- Joint Laboratory of Horticulture, ELGO-DIMITRA, 57001 Thessaloniki-Thermi, 21 Greece
- Max Planck Institute for Plant Breeding Research, Department of Comparative Development and Genetics, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001 Thessaloniki-Thermi, Greece
| | - Irini Nianiou-Obeidat
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Aristotle University, 54124 Thessaloniki, Greece
| | - Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 570001 Thessaloniki-Thermi, Greece
- Joint Laboratory of Horticulture, ELGO-DIMITRA, 57001 Thessaloniki-Thermi, 21 Greece
- Corresponding author
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 570001 Thessaloniki-Thermi, Greece
- Joint Laboratory of Horticulture, ELGO-DIMITRA, 57001 Thessaloniki-Thermi, 21 Greece
- Corresponding author
| |
Collapse
|
11
|
Srinivas M, O’Sullivan O, Cotter PD, van Sinderen D, Kenny JG. The Application of Metagenomics to Study Microbial Communities and Develop Desirable Traits in Fermented Foods. Foods 2022; 11:3297. [PMID: 37431045 PMCID: PMC9601669 DOI: 10.3390/foods11203297] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
The microbial communities present within fermented foods are diverse and dynamic, producing a variety of metabolites responsible for the fermentation processes, imparting characteristic organoleptic qualities and health-promoting traits, and maintaining microbiological safety of fermented foods. In this context, it is crucial to study these microbial communities to characterise fermented foods and the production processes involved. High Throughput Sequencing (HTS)-based methods such as metagenomics enable microbial community studies through amplicon and shotgun sequencing approaches. As the field constantly develops, sequencing technologies are becoming more accessible, affordable and accurate with a further shift from short read to long read sequencing being observed. Metagenomics is enjoying wide-spread application in fermented food studies and in recent years is also being employed in concert with synthetic biology techniques to help tackle problems with the large amounts of waste generated in the food sector. This review presents an introduction to current sequencing technologies and the benefits of their application in fermented foods.
Collapse
Affiliation(s)
- Meghana Srinivas
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- School of Microbiology, University College Cork, T12 CY82 Cork, Ireland
| | - Orla O’Sullivan
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- School of Microbiology, University College Cork, T12 CY82 Cork, Ireland
| | - John G. Kenny
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| |
Collapse
|
12
|
Lee J, Um S, Kim SH. Metabolomic analysis of halotolerant endophytic bacterium Salinivibrio costicola isolated from Suaeda maritima (L.) dumort. Front Mol Biosci 2022; 9:967945. [PMID: 36120548 PMCID: PMC9478568 DOI: 10.3389/fmolb.2022.967945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, the Salinivibrio costicola strain was isolated from Suaeda maritima (L.) Dumort. collected in Sinan, Republic of Korea. The endophytic characteristics of the Gram-negative bacterium S. costicola were verified with metagenomics sequencing of S. maritima. S. costicola was cultivated for 3 days in a liquid medium with 3.3% sea salt and analyzed the metabolites produced by the strain cultured in five different bacterial cultivation media. From the bacterial cultures, polyhydroxybutyrate derivatives were detected using high-resolution mass spectrometry, and three major compounds were isolated by high-performance liquid chromatography. The chemical structures of the compounds were elucidated using nuclear magnetic resonance and MS analyses. The relationship between the compounds was confirmed with Global Natural Product Social Molecular Networking, which showed clustering of the compounds. From the S. maritima extract, polyhydroxybutyrate derivatives produced by S. costicola were detected as being accumulated in the host plant.
Collapse
|