1
|
Feng D, Zhou J, Liu L, Li Y, Zhong R, Wu W, Zheng W, Zhang T. Integrated multi-omics reveals metabolic determinants of CRAB ST2 airway infection progression. Microbiol Spectr 2025:e0019525. [PMID: 40237491 DOI: 10.1128/spectrum.00195-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Acinetobacter baumannii commonly causes lower airway colonization and infection and is easily confused. This study aimed to analyze the biological characteristics of carbapenem-resistant A. baumannii (CRAB) ST2 in the lower airway and identify an effective method for distinguishing between A. baumannii colonization and infection. Lower airway CRAB ST2 isolated at the Department of Respiratory and Critical Care Medicine and intensive care unit of our hospital from January 2021 to June 2023 were included, and their whole genome, biofilm-forming ability, bacterial virulence, and metabolome were analyzed. Fifty-six strains of CRAB with ST2 were identified, of which 32 were infection strains and 24 were colonization strains. The virulence and resistance genes, as well as the virulence and biofilm-forming ability, of ST2-type carbapenem-resistant lower airway infecting and colonizing A. baumannii strains were similar. The levels of metabolites were significantly lower in ST2-type carbapenem-resistant lower airway-infecting A. baumannii infection strains than those in the lower airway-colonizing strains. The levels of (S)-(+)-2-(aniline methyl) pyrrolidine, valine, ketoleucine, L-isoleucine, homoserine, N-acetyl-L-aspartate, and 2-aminoethanol-1-phosphate in the lower airway infection strains were significantly lower than those in the lower airway colonization strains. Bacterial virulence tests and biofilm formation ability could not distinguish the same ST of CRAB in the lower airway from the colonization or infection strains; however, metabolomics could. The biosynthesis and degradation pathways of valine, leucine, and isoleucine were downregulated, and changes in their metabolism may be important factors in promoting carbapenem-resistant A. baumanniiCRAB transformation from colonization to infection.IMPORTANCECarbapenem-resistant A. baumannii (CRAB) poses a critical threat in clinical settings, particularly due to challenges in distinguishing airway colonization from active infection, which complicates treatment decisions. This study highlights the limitations of conventional approaches-such as virulence gene profiling, phenotypic virulence assays, and biofilm formation analysis-in differentiating CRAB ST2 strains isolated from lower airway infections versus colonization. By integrating metabolomics, we identified distinct metabolic signatures linked to infection, including significant downregulation of valine, leucine, and isoleucine biosynthesis/degradation pathways and reduced levels of key metabolites (e.g., ketoleucine and L-isoleucine) in infection strains. These findings provide the first evidence that metabolic dysregulation may drive CRAB's transition from colonization to invasive disease. This work advances our understanding of CRAB pathogenicity and offers a novel, metabolism-based strategy to improve diagnostic accuracy, guide targeted therapies, and optimize antimicrobial stewardship in managing CRAB-associated respiratory infections.
Collapse
Affiliation(s)
- DingYun Feng
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases of Sun Yat-Sen University, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - JianXia Zhou
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases of Sun Yat-Sen University, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Logen Liu
- Clinical Research Center, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ying Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Institute of Microbiology, Guangzhou, China
| | - RongHua Zhong
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases of Sun Yat-Sen University, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - WenBin Wu
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases of Sun Yat-Sen University, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - WenZheng Zheng
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases of Sun Yat-Sen University, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - TianTuo Zhang
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases of Sun Yat-Sen University, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Cao X, Luo N, Liu X, Guo K, Deng M, Lv C. Crosstalk of SPINK4 Expression With Patient Mortality, Immunotherapy and Metastasis in Pan-Cancer Based on Integrated Multi-Omics Analyses. Onco Targets Ther 2025; 18:161-177. [PMID: 39926372 PMCID: PMC11806753 DOI: 10.2147/ott.s487126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Background Cancer remains a major global health challenge, with early detection and prompt treatment being crucial for reducing mortality rates. The SPINK4 has been linked to the development of several tumors, and there is growing evidence of its involvement. However, its specific functions and effects in different cancer types remain unclear. Methods The association between SPINK4 expression levels and tumor progression was investigated and confirmed using the TCGA dataset. Kaplan-Meier curves were utilized to examine the correlation between SPINK4 expression with survival outcomes in pan-cancer patients. The Pearson method was employed to investigate the association of SPINK4 expression with the tumor microenvironment, stemness score, immunoinfiltrating subtype, and chemotherapy sensitivity in human different cancer types. Wound healing and Transwell assays were performed to confirm the roles of the model gene in colon adenocarcinoma cells. Results The expression of SPINK4 shows heterogeneity across pan-cancer tissues, and is closely associated with poor prognosis, immune cell invasion, tumor cell resistance, and tumor metastasis in a various human cancer. Mutation of SPINK4 hold significant predictive value for poor prognosis of pan-cancer patients. In addition, SPINK4 expression was significantly correlated with the tumor microenvironment (stromal cells and immune cells) and stemness score (DNAss and RNAss) in human pan-cancer tissues, particularly in BLCA and COAD. Single-cell sequencing analysis showed that SPINK4 is mainly expressed in endothelial cells in BLCA and in malignant cells in COAD. Drug resistance analysis showed a significant association between SPINK4 expression and sensitivity to several cancer chemotherapy drugs. Importantly, overexpression of SPINK4 promoted the metastasis of colon cancer cell lines (HCT116 and RKO), whereas SPINK4 knockout markedly inhibited their metastasis. Conclusion These findings reveal the crucial role of SPINK4 in the pan-cancer process and may have significant implications for the diagnosis and treatment of cancer in the future.
Collapse
Affiliation(s)
- Xiuhua Cao
- Center for Basic Medical Research, Southwest Medical University, Luzhou, People’s Republic of China
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Na Luo
- Center for Basic Medical Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Xiaoyan Liu
- Center for Basic Medical Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Kan Guo
- Center for Basic Medical Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Mingming Deng
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Chaoxiang Lv
- Center for Basic Medical Research, Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
3
|
Din NS, Mohd. Rani F, Alattraqchi AG, Ismail S, A. Rahman NI, Cleary DW, Clarke SC, Yeo CC. Whole-genome sequencing of Acinetobacter baumannii clinical isolates from a tertiary hospital in Terengganu, Malaysia (2011-2020), revealed the predominance of the Global Clone 2 lineage. Microb Genom 2025; 11:001345. [PMID: 39908088 PMCID: PMC11798184 DOI: 10.1099/mgen.0.001345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/13/2024] [Indexed: 02/06/2025] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii is recognized by the World Health Organization (WHO) as one of the top priority pathogens. Despite its public health importance, genomic data of clinical isolates from Malaysia remain scarce. In this study, whole-genome sequencing was performed on 126 A. baumannii isolates collected from the main tertiary hospital in the state of Terengganu, Malaysia, over a 10-year period (2011-2020). Antimicrobial susceptibilities determined for 20 antibiotics belonging to 8 classes showed that 77.0% (n=97/126) of the isolates were categorized as multidrug resistant (MDR), with all MDR isolates being carbapenem resistant. Multilocus sequence typing analysis categorized the Terengganu A. baumannii clinical isolates into 34 Pasteur and 44 Oxford sequence types (STs), with ST2Pasteur of the Global Clone 2 lineage identified as the dominant ST (n=76/126; 60.3%). The ST2Pasteur isolates could be subdivided into six Oxford STs with the majority being ST195Oxford (n=35) and ST208Oxford (n=17). Various antimicrobial resistance genes were identified with the bla OXA-23-encoded carbapenemase being the predominant acquired carbapenemase gene (n=90/126; 71.4%). Plasmid-encoded rep genes were identified in nearly all (n=122/126; 96.8%) of the isolates with the majority being Rep_3 family (n=121). Various virulence factors were identified, highlighting the pathogenic nature of this bacterium. Only 14/126 (11.1%) of the isolates were positive for the carriage of CRISPR-Cas arrays with none of the prevalent ST2Pasteur isolates harbouring them. This study provided a genomic snapshot of the A. baumannii isolates obtained from a single tertiary healthcare centre in Malaysia over a 10-year period and showed the predominance of a single closely related ST2Pasteur lineage, indicating the entrenchment of this clone in the hospital.
Collapse
Affiliation(s)
- Nurul Saidah Din
- Centre for Research in Infectious Diseases and Biotechnology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Farahiyah Mohd. Rani
- Centre for Research in Infectious Diseases and Biotechnology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Ahmed Ghazi Alattraqchi
- Centre for Research in Infectious Diseases and Biotechnology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Salwani Ismail
- Centre for Research in Infectious Diseases and Biotechnology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Nor Iza A. Rahman
- Centre for Research in Infectious Diseases and Biotechnology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - David W. Cleary
- Department of Microbes, Infections and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Stuart C. Clarke
- Centre for Research in Infectious Diseases and Biotechnology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton, UK
- Global Health Research Institute, University of Southampton, Southampton, UK
- Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| |
Collapse
|
4
|
Zhang S, Xiao J, Li Y, Li W, Li Y, Pang M, Yan M, Han H, Cui Y, Zhang X, Wang H. An integrative review on the risk factors, prevention, and control strategies for carbapenem-resistant Acinetobacter baumannii colonization in critically ill patients. Front Microbiol 2025; 15:1519906. [PMID: 39867493 PMCID: PMC11757275 DOI: 10.3389/fmicb.2024.1519906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/24/2024] [Indexed: 01/28/2025] Open
Abstract
The presence of carbapenem-resistant Acinetobacter baumannii (CRAb) has become one of the leading causes of life-threatening, hospital-acquired infections globally, especially with a notable prevalence in intensive care units (ICUs). The cross-transmission of microorganisms between patients and the hospital setting is crucial in the development of CRAb colonization and subsequent infections. Recent studies indicate that colonization typically precedes infection, suggesting the effectiveness and necessity of preventing CRAb colonization as a primary method to lower infection risks. As CRAb infections tend to draw more attention due to their severe symptoms and poor outcomes, understanding the link between colonization and infection is equally vital. To establish a foundation for prevention and control strategies against CRAb colonization in ICUs, we present a comprehensive review of research pertaining to CRAb in ICUs. This encompasses an analysis of the resistance mechanisms and epidemiological characteristics of CRAb, a discussion on associated risk factors, adverse outcomes, and an evaluation of detection methods and preventive strategies.
Collapse
Affiliation(s)
- Shihan Zhang
- Department of Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
- Innovation Research Center for Sepsis and Multiple Organ Injury, Shandong University, Jinan, China
| | - Jie Xiao
- Department of Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
- Innovation Research Center for Sepsis and Multiple Organ Injury, Shandong University, Jinan, China
| | - Yanan Li
- Department of Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
- Innovation Research Center for Sepsis and Multiple Organ Injury, Shandong University, Jinan, China
| | - Wei Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Yihui Li
- Department of Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
- Innovation Research Center for Sepsis and Multiple Organ Injury, Shandong University, Jinan, China
| | - Mingmin Pang
- Department of Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
- Innovation Research Center for Sepsis and Multiple Organ Injury, Shandong University, Jinan, China
| | - Meichen Yan
- Department of Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
- Innovation Research Center for Sepsis and Multiple Organ Injury, Shandong University, Jinan, China
| | - Hui Han
- Department of Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
- Innovation Research Center for Sepsis and Multiple Organ Injury, Shandong University, Jinan, China
| | - Yi Cui
- Department of Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
- Innovation Research Center for Sepsis and Multiple Organ Injury, Shandong University, Jinan, China
| | - Xuehai Zhang
- Department of Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
- Innovation Research Center for Sepsis and Multiple Organ Injury, Shandong University, Jinan, China
| | - Hao Wang
- Department of Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
- Innovation Research Center for Sepsis and Multiple Organ Injury, Shandong University, Jinan, China
| |
Collapse
|
5
|
Borges KCM, Costa VAF, Neves B, Kipnis A, Junqueira-Kipnis AP. New antibacterial candidates against Acinetobacter baumannii discovered by in silico-driven chemogenomics repurposing. PLoS One 2024; 19:e0307913. [PMID: 39325805 PMCID: PMC11426455 DOI: 10.1371/journal.pone.0307913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/14/2024] [Indexed: 09/28/2024] Open
Abstract
Acinetobacter baumannii is a worldwide Gram-negative bacterium with a high resistance rate, responsible for a broad spectrum of hospital-acquired infections. A computational chemogenomics framework was applied to investigate the repurposing of approved drugs to target A. baumannii. This comprehensive approach involved compiling and preparing proteomic data, identifying homologous proteins in drug-target databases, evaluating the evolutionary conservation of targets, and conducting molecular docking studies and in vitro assays. Seven drugs were selected for experimental assays. Among them, tavaborole exhibited the most promising antimicrobial activity with a minimum inhibitory concentration (MIC) value of 2 μg/ml, potent activity against several clinically relevant strains, and robust efficacy against biofilms from multidrug-resistant strains at a concentration of 16 μg/ml. Molecular docking studies elucidated the binding modes of tavaborole in the editing and active domains of leucyl-tRNA synthetase, providing insights into its structural basis for antimicrobial activity. Tavaborole shows promise as an antimicrobial agent for combating A. baumannii infections and warrants further investigation in preclinical studies.
Collapse
Affiliation(s)
- Kellen Christina Malheiros Borges
- Molecular Bacteriology Laboratory, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
- Microbiology Laboratory, Department of Biology, Academic Areas, Federal Institute of Goiás, Anápolis, Goiás, Brazil
| | | | - Bruno Neves
- Laboratory of Cheminformatics, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - André Kipnis
- Molecular Bacteriology Laboratory, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Ana Paula Junqueira-Kipnis
- Molecular Bacteriology Laboratory, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
6
|
Franzone JP, Mackow N, van Duin D. Current treatment options for pneumonia caused by carbapenem-resistant Acinetobacter baumannii. Curr Opin Infect Dis 2024; 37:137-143. [PMID: 38179988 PMCID: PMC10922681 DOI: 10.1097/qco.0000000000001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to briefly summarize the challenges associated with the treatment of pneumonia caused by carbapenem-resistant Acinetobacter baumannii (CRAB), discuss its carbapenem-resistance, and review the literature supporting the current treatment paradigm and therapeutic options. RECENT FINDINGS In a multicenter, randomized, and controlled trial the novel β-lactam-β-lactamase inhibitor sulbactam-durlobactam was compared to colistin, both in addition to imipenem-cilastatin. The drug met the prespecified criteria for noninferiority for 28-day all-cause mortality while demonstrating higher clinical cure rates in the treatment of CRAB pneumonia. In an international, randomized, double-blind, placebo controlled trial colistin monotherapy was compared to colistin combined with meropenem. In this trial, combination therapy was not superior to monotherapy in the treatment of drug-resistant gram-negative organisms including CRAB pneumonia. SUMMARY CRAB pneumonia is a preeminent public health threat without an agreed upon first line treatment strategy. Historically, there have been drawbacks to available treatment modalities without a clear consensus on the first-line treatment regimen. CRAB pneumonia is a top priority for the continued development of antimicrobials, adjuvant therapies and refinement of current treatment strategies.
Collapse
Affiliation(s)
- John P. Franzone
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Natalie Mackow
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Wang Z, Du M, Cao H, Yao H, Liu B, Bai Y, Geng H, Jia Z, Liu Y. Epidemiology and risk factors of nosocomial infections in a Chinese tertiary-care hospital: a 10-year retrospective case-control study. Infect Dis (Lond) 2024; 56:320-329. [PMID: 38317598 DOI: 10.1080/23744235.2024.2310647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Nosocomial infections (NIs) are the most frequent adverse events among patients and cause a heavy burden on both health and economics. To investigate epidemiology of NIs and identify risk factors for NIs by integrating continuous long-term surveillance data. METHODS We performed an observational study among inpatients at the Chinese People's Liberation Army General Hospital between January 1, 2010, and December 31, 2019. Infection rates, mortality rates and percentage of NIs were calculated. Trends of yearly infection rates by pathogens were assessed using Mann-Kendall trend test. Controls were matched to cases (2:1) by age (±2 years), sex, admission date (±1 year) and admission diagnosis, and conditional logistic regression was used to estimate odds ratios. RESULTS A total of 1,534,713 inpatients were included among which 33,468 NIs cases occurred with an infection rate of 2.18%. The most common infections were respiratory system infection (52.22%), bloodstream infection (17.60%), and genitourinary system infection (15.62%). Acinetobacter. baumannii (9.6%), Klebsiella. pneumoniae (9.0%), Pseudomonas. aeruginosa (8.6%), Escherichia. coli (8.6%) and Enterococcus. faecium (5.0%) were the top five isolated pathogens. Infection rates of K. pneumoniae and carbapenems-resistant K. pneumoniae significantly increased. Prior ICU stay, surgery, any device placement (including central venous catheter, mechanical ventilation, urinary catheter, and tracheotomy), prior use of triple or more antibiotics combinations, carbapenem, and β-Lactamase inhibitors were significantly associated with NIs. CONCLUSION K. pneumoniae has the potential to cause a clinical crisis with increasing infection rates and carbapenem resistance. Clinical management of invasive operations and antibiotics use should be further strengthened.
Collapse
Affiliation(s)
- Zekun Wang
- School of Public Health, Peking University, Beijing, China
| | - Mingmei Du
- Department of Disease Prevention and Control, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hui Cao
- School of Public Health, Peking University, Beijing, China
| | - Hongwu Yao
- Department of Disease Prevention and Control, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bowei Liu
- Department of Disease Prevention and Control, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanling Bai
- Department of Disease Prevention and Control, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huiling Geng
- Network Security and Information Technology Center, Peking University Health Science Center, Beijing, China
| | - Zhongwei Jia
- School of Public Health, Peking University, Beijing, China
- Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, Beijing, China
- Center for Drug Abuse Control and Prevention, National Institute of Health Data Science, Peking University, Beijing, China
- Peking University Clinical Research Institute, Beijing, China
| | - Yunxi Liu
- Department of Disease Prevention and Control, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Guo Q, Gao Z, Zhao L, Wang H, Luo Z, Vandeputte D, He L, Li M, Di S, Liu Y, Hou J, Jiang X, Zhu H, Tong X. Multiomics Analyses With Stool-Type Stratification in Patient Cohorts and Blautia Identification as a Potential Bacterial Modulator in Type 2 Diabetes Mellitus. Diabetes 2024; 73:511-527. [PMID: 38079576 PMCID: PMC10882154 DOI: 10.2337/db23-0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/06/2023] [Indexed: 02/22/2024]
Abstract
Heterogeneity in host and gut microbiota hampers microbial precision intervention of type 2 diabetes mellitus (T2DM). Here, we investigated novel features for patient stratification and bacterial modulators for intervention, using cross-sectional patient cohorts and animal experiments. We collected stool, blood, and urine samples from 103 patients with recent-onset T2DM and 25 healthy control subjects (HCs), performed gut microbial composition and metabolite profiling, and combined it with host transcriptome, metabolome, cytokine, and clinical data. Stool type (dry or loose stool), a feature of the stool microenvironment recently explored in microbiome studies, was used for stratification of patients with T2DM as it explained most of the variation in the multiomics data set among all clinical parameters in our covariate analysis. T2DM with dry stool (DM-DS) and loose stool (DM-LS) were clearly differentiated from HC and each other by LightGBM models, optimal among multiple machine learning models. Compared with DM-DS, DM-LS exhibited discordant gut microbial taxonomic and functional profiles, severe host metabolic disorder, and excessive insulin secretion. Further cross-measurement association analysis linked the differential microbial profiles, in particular Blautia abundances, to T2DM phenotypes in our stratified multiomics data set. Notably, oral supplementation of Blautia to T2DM mice induced inhibitory effects on lipid accumulation, weight gain, and blood glucose elevation with simultaneous modulation of gut bacterial composition, revealing the therapeutic potential of Blautia. Our study highlights the clinical implications of stool microenvironment stratification and Blautia supplementation in T2DM, offering promising prospects for microbial precision treatment of metabolic diseases. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Qian Guo
- Department of Biomedical Engineering, College of Future Technology, and Center for Quantitative Biology, Peking University, Beijing, China
| | - Zezheng Gao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing
| | - Han Wang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing
| | - Zhen Luo
- Infinitus (China) Company Ltd., Jiangmen, China
| | - Doris Vandeputte
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| | - Lisha He
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mo Li
- Department of Biomedical Engineering, College of Future Technology, and Center for Quantitative Biology, Peking University, Beijing, China
| | - Sha Di
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing
| | - Yanwen Liu
- Department of Endocrinology, Zhengzhou Traditional Chinese Medicine Hospital, Zhengzhou, China
| | - Jiaheng Hou
- Department of Biomedical Engineering, College of Future Technology, and Center for Quantitative Biology, Peking University, Beijing, China
| | - Xiaoqing Jiang
- Department of Biomedical Engineering, College of Future Technology, and Center for Quantitative Biology, Peking University, Beijing, China
| | - Huaiqiu Zhu
- Department of Biomedical Engineering, College of Future Technology, and Center for Quantitative Biology, Peking University, Beijing, China
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing
| |
Collapse
|
9
|
Vallianou NG, Skourtis A, Kounatidis D, Margellou E, Panagopoulos F, Geladari E, Evangelopoulos A, Jahaj E. The Role of the Respiratory Microbiome in the Pathogenesis of Aspiration Pneumonia: Implications for Diagnosis and Potential Therapeutic Choices. Antibiotics (Basel) 2023; 12:antibiotics12010140. [PMID: 36671341 PMCID: PMC9855160 DOI: 10.3390/antibiotics12010140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023] Open
Abstract
Although the lungs were considered to be sterile until recently, the advent of molecular biology techniques, such as polymerase chain reaction, 16 S rRNA sequencing and metagenomics has led to our expanding knowledge of the lung microbiome. These methods may be particularly useful for the identification of the causative agent(s) in cases of aspiration pneumonia, in which there is usually prior administration of antibiotics. The most common empirical treatment of aspiration pneumonia is the administration of broad-spectrum antibiotics; however, this may result in negative cultures from specimens taken from the respiratory tract. Therefore, in such cases, polymerase chain reaction or metagenomic next-generation sequencing may be life-saving. Moreover, these modern molecular methods may assist with antimicrobial stewardship. Based upon factors such as age, altered mental consciousness and recent hospitalization, there is a shift towards the predominance of aerobes, especially Gram-negative bacteria, over anaerobes in aspiration pneumonia. Thus, the therapeutic choices should be expanded to cover multi-drug resistant Gram-negative bacteria in selected cases of aspiration pneumonia.
Collapse
|
10
|
OXA-23-producing Acinetobacter baumannii isolates in L. Pasteur University Hospital in Slovakia from September 2021 to December 2021. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|