1
|
Ding W, Cheng Y, Liu X, Zhu Z, Wu L, Gao J, Lei W, Li Y, Zhou X, Wu J, Gao Y, Ling Z, Jiang R. Harnessing the human gut microbiota: an emerging frontier in combatting multidrug-resistant bacteria. Front Immunol 2025; 16:1563450. [PMID: 40165964 PMCID: PMC11955657 DOI: 10.3389/fimmu.2025.1563450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Antimicrobial resistance (AMR) has become a major and escalating global health threat, undermining the effectiveness of current antibiotic and antimicrobial therapies. The rise of multidrug-resistant bacteria has led to increasingly difficult-to-treat infections, resulting in higher morbidity, mortality, and healthcare costs. Tackling this crisis requires the development of novel antimicrobial agents, optimization of current therapeutic strategies, and global initiatives in infection surveillance and control. Recent studies highlight the crucial role of the human gut microbiota in defending against AMR pathogens. A balanced microbiota protects the body through mechanisms such as colonization resistance, positioning it as a key ally in the fight against AMR. In contrast, gut dysbiosis disrupts this defense, thereby facilitating the persistence, colonization, and dissemination of resistant pathogens. This review will explore how gut microbiota influence drug-resistant bacterial infections, its involvement in various types of AMR-related infections, and the potential for novel microbiota-targeted therapies, such as fecal microbiota transplantation, prebiotics, probiotics, phage therapy. Elucidating the interactions between gut microbiota and AMR pathogens will provide critical insights for developing novel therapeutic strategies to prevent and treat AMR infections. While previous reviews have focused on the general impact of the microbiota on human health, this review will specifically look at the latest research on the interactions between the gut microbiota and the evolution and spread of AMR, highlighting potential therapeutic strategies.
Collapse
Affiliation(s)
- Wenwen Ding
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhangcheng Zhu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingbin Wu
- Department of Intensive Care Unit, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Yating Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center, Stanford, CA, United States
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Jian Wu
- Department of Clinical Laboratory, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Yongtao Gao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruilai Jiang
- Department of Intensive Care Unit, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| |
Collapse
|
2
|
Ha AW, Meliton LN, Chen W, Wang L, Maienschein‐Cline M, Jacobson JR, Letsiou E, Dudek SM. Epigenetic mechanisms mediate cytochrome P450 1A1 expression and lung endothelial injury caused by MRSA in vitro and in vivo. FASEB J 2024; 38:e70205. [PMID: 39588951 PMCID: PMC11590412 DOI: 10.1096/fj.202401812r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/16/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of severe pneumonia and acute respiratory distress syndrome (ARDS). To advance our mechanistic understanding of this important pathogen, we characterized the effects of MRSA-induced epigenetic modification of histone 3 lysine 9 acetylation (H3K9ac), an activator of gene transcription, on lung endothelial cells (EC), a critical site of ARDS pathophysiology. Chromatin immunoprecipitation and sequencing (ChIP-seq) analysis revealed that MRSA induces H3K9ac in the promoter regions of multiple genes, with the highest ranked peak annotated to the CYP1A1 gene. Subsequent experiments confirm that MRSA increases CYP1A1 protein and mRNA expression, and its enzymatic activity in EC. Epigenetic inhibitors (C646, RVX-208) reduce MRSA-induced CYP1A1 expression and inflammatory responses, including cytokine release and adhesion molecule expression. Inhibition of the Aryl hydrocarbon receptor (Ahr), a known mediator of CYP1A1 expression, blocks MRSA-induced upregulation of CYP1A1 mRNA and protein expression, enzyme activity, and cytokine release. Reduction of CYP1A1 protein expression by siRNA or inhibition of its activity by rhapontigenin attenuated MRSA-induced EC permeability and inflammatory responses. In a mouse model of MRSA-induced acute lung injury (ALI), inhibition of CYP1A1 activity by rhapontigenin improved multiple indices of ALI, including bronchoalveolar lavage (BAL) protein concentration, cytokine levels, and markers of endothelial damage. Analysis of publicly available data suggests upregulation of CYP1A1 expression in ARDS patients compared to ICU controls. In summary, these studies provide new insights into MRSA-induced lung injury and identify a novel functional role for epigenetic upregulation of CYP1A1 in lung EC during ARDS pathogenesis.
Collapse
Affiliation(s)
- Alison W. Ha
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Lucille N. Meliton
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Weiguo Chen
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Lichun Wang
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Mark Maienschein‐Cline
- Research Informatics Core, Research Resources CenterUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Jeffrey R. Jacobson
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Eleftheria Letsiou
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Steven M. Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| |
Collapse
|
3
|
Tu Y, Luo L, Zhou Q, Ni J, Tang Q. Fecal Microbiota Transplantation Repairs Radiation Enteritis Through Modulating the Gut Microbiota-Mediated Tryptophan Metabolism. Radiat Res 2024; 201:572-585. [PMID: 38555945 DOI: 10.1667/rade-23-00189.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/22/2024] [Indexed: 04/02/2024]
Abstract
Radiation enteritis is a common complication of abdominal and pelvic radiotherapy. Several previous studies showed that fecal microbiota transplantation (FMT) could alleviate radiation enteritis. In this study, we investigated the efficacy of FMT in alleviating radiation enteritis and explored the mechanisms by multi-omics approaches. Briefly, C57BL/6J mice were subjected to 9 Gy irradiation to the localized abdominal field, and randomized received FMT from healthy donor mice or saline. H&E staining of harvested small intestine showed FMT decreased epithelial injury. Radiation-induced microbiota dysbiosis, characterized by a decrease in beneficial bacteria Lactobacillaceae and Lachnospiraceae, while these bacteria were restored by FMT. Fecal metabolomics analysis revealed that FMT modulated metabolic dysregulation. Two tryptophan pathway metabolites, indole-3-acetaldehyde and N-Acetyl-5-hydroxytryptamine were decreased after irradiation, whereas these metabolites showed a pronounced recovery in mice receiving FMT. Proteomics analysis of small intestine indicated that radiation enteritis triggered immune-inflammatory responses, which were potentially mitigated by FMT. In 21 patients receiving pelvic radiotherapy for cervical cancer, those who developed enteritis (n = 15) had higher abundance in Lachnospiraceae. Moreover, Indole-3-acetaldehyde was reduced after irradiation. These findings provide insights into the therapeutic effects of FMT in radiation enteritis and highlight Lachnospiraceae and the tryptophan metabolite, Indole-3-acetaldehyde may protect against radiation enteritis.
Collapse
Affiliation(s)
- Yeqiang Tu
- Department of Radiation Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310006, Zhejiang, China
| | - Lumeng Luo
- Department of Radiation Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310006, Zhejiang, China
| | - Qiong Zhou
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Juan Ni
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Qiu Tang
- Department of Radiation Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310006, Zhejiang, China
| |
Collapse
|
4
|
Ye K, Lin X, Chen TZ, Wang LH, Liu SX. Heparin-Binding Protein Promotes Acute Lung Injury in Sepsis Mice by Blocking the Aryl Hydrocarbon Receptor Signaling Pathway. J Inflamm Res 2024; 17:2927-2938. [PMID: 38764496 PMCID: PMC11100518 DOI: 10.2147/jir.s454777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/25/2024] [Indexed: 05/21/2024] Open
Abstract
Purpose This study aimed to explore the therapeutic effect and potential mechanism of heparin-binding protein (HBP) reduction on sepsis-related acute lung injury. Methods We utilized a murine model of sepsis-induced by intraperitoneal injection of lipopolysaccharides (LPS) in C57BL/6J mice divided into four groups: Control, LPS, Anti-HBP, and ceftriaxone (CEF). Following sepsis induction, Anti-HBP or CEF treatments were administered, and survival rates were monitored for 48 h. We then used reverse-transcription quantitative PCR to analyze the expression levels of HBP in lung tissues, immunohistochemistry for protein localization, and Western blotting for protein quantification. Pulmonary inflammation was assessed using enzyme-linked immunosorbent assays of proinflammatory cytokines (tumor necrosis factor-α, interleukin [IL]-1β, IL-6, and interferon-γ). The activation state of the aryl hydrocarbon receptor (AhR) signaling pathway was determined via Western blotting, evaluating both cytoplasmic and nuclear localization of AhR and the expression of cytochrome P450 1A1 protein by its target gene. Results Anti-HBP specifically reduced HBP levels. The survival rate of mice in the Anti-HBP and CEF groups was much higher than that in the LPS group. The severity of lung injury and pulmonary inflammatory response in the Anti-HBP and CEF groups was significantly lower than that in the LPS group. AhR signaling pathway activation was observed in the Anti-HBP and CEF groups. Additionally, there was no significant difference in the above indices between the Anti-HBP and CEF groups. Conclusion HBP downregulation in lung tissues significantly improved LPS-induced lung injury and the pulmonary inflammatory response, thereby prolonging the survival of sepsis mice, suggesting activation of the AhR signaling pathway. Moreover, the effect of lowering the HBP level was equivalent to that of the classical antibiotic CEF. Trial Registration Not applicable.
Collapse
Affiliation(s)
- Kun Ye
- Department of Orthopaedics, Qiantang Campus of Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, 310018, People’s Republic of China
| | - Xiang Lin
- Department of Orthopaedics, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 570311, People’s Republic of China
| | - Tai-Zhi Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 570311, People’s Republic of China
| | - Long-Hui Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 570311, People’s Republic of China
| | - Sheng-Xing Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 570311, People’s Republic of China
| |
Collapse
|
5
|
Liu A, Garrett S, Hong W, Zhang J. Staphylococcus aureus Infections and Human Intestinal Microbiota. Pathogens 2024; 13:276. [PMID: 38668232 PMCID: PMC11053856 DOI: 10.3390/pathogens13040276] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/29/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a common pathogen that can cause many human diseases, such as skin infection, food poisoning, endocarditis, and sepsis. These diseases can be minor infections or life-threatening, requiring complex medical management resulting in substantial healthcare costs. Meanwhile, as the critically ignored "organ," the intestinal microbiome greatly impacts physiological health, not only in gastrointestinal diseases but also in disorders beyond the gut. However, the correlation between S. aureus infection and intestinal microbial homeostasis is largely unknown. Here, we summarized the recent progress in understanding S. aureus infections and their interactions with the microbiome in the intestine. These summarizations will help us understand the mechanisms behind these infections and crosstalk and the challenges we are facing now, which could contribute to preventing S. aureus infections, effective treatment investigation, and vaccine development.
Collapse
Affiliation(s)
- Aotong Liu
- Department of Pharmacology & Regenerative Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Shari Garrett
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Wanqing Hong
- Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- School of Chemistry & Chemical Engineering and Materials Sciences, Shandong Normal University, Jinan 250061, China
| | - Jilei Zhang
- Department of Pharmacology & Regenerative Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
6
|
Niu C, Lv W, Zhu X, Dong Z, Yuan K, Jin Q, Zhang P, Li P, Mao M, Dong T, Chen Z, Luo J, Hou L, Zhang C, Hao K, Chen S, Huang Z. Intestinal Translocation of Live Porphyromonas gingivalis Drives Insulin Resistance. J Dent Res 2024; 103:197-207. [PMID: 38185909 DOI: 10.1177/00220345231214195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Periodontitis has been emphasized as a risk factor of insulin resistance-related systemic diseases. Accumulating evidence has suggested a possible "oral-gut axis" linking oral infection and extraoral diseases, but it remains unclear whether periodontal pathogens can survive the barriers of the digestive tract and how they play their pathogenic roles. The present study established a periodontitis mouse model through oral ligature plus Porphyromonas gingivalis inoculation and demonstrated that periodontitis aggravated diet-induced obesity and insulin resistance, while also causing P. gingivalis enrichment in the intestine. Metabolic labeling strategy validated that P. gingivalis could translocate to the gastrointestinal tract in a viable state. Oral administration of living P. gingivalis elicited insulin resistance, while administration of pasteurized P. gingivalis had no such effect. Combination analysis of metagenome sequencing and nontargeted metabolomics suggested that the tryptophan metabolism pathway, specifically indole and its derivatives, was involved in the pathogenesis of insulin resistance caused by oral administration of living P. gingivalis. Moreover, liquid chromatography-high-resolution mass spectrometry analysis confirmed that the aryl hydrocarbon receptor (AhR) ligands, mainly indole acetic acid, tryptamine, and indole-3-aldehyde, were reduced in diet-induced obese mice with periodontitis, leading to inactivation of AhR signaling. Supplementation with Ficz (6-formylindolo (3,2-b) carbazole), an AhR agonist, alleviated periodontitis-associated insulin resistance, in which the restoration of gut barrier function might play an important role. Collectively, these findings reveal that the oral-gut translocation of viable P. gingivalis works as a fuel linking periodontitis and insulin resistance, in which reduction of AhR ligands and inactivation of AhR signaling are involved. This study provides novel insight into the role of the oral-gut axis in the pathogenesis of periodontitis-associated comorbidities.
Collapse
Affiliation(s)
- C Niu
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - W Lv
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, P. R. China
| | - X Zhu
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - Z Dong
- Department of Oral Implantology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, P. R. China
| | - K Yuan
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - Q Jin
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - P Zhang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - P Li
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - M Mao
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - T Dong
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - Z Chen
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - J Luo
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - L Hou
- Department of Nursing, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - C Zhang
- Department of Oral Implantology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, P. R. China
| | - K Hao
- Department of Oral Implantology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, P. R. China
| | - S Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, P. R. China
- Department of Oral Implantology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, P. R. China
| | - Z Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| |
Collapse
|
7
|
Markovich Z, Abreu A, Sheng Y, Han SM, Xiao R. Deciphering internal and external factors influencing intestinal junctional complexes. Gut Microbes 2024; 16:2389320. [PMID: 39150987 PMCID: PMC11332634 DOI: 10.1080/19490976.2024.2389320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/18/2024] Open
Abstract
The intestinal barrier, an indispensable guardian of gastrointestinal health, mediates the intricate exchange between internal and external environments. Anchored by evolutionarily conserved junctional complexes, this barrier meticulously regulates paracellular permeability in essentially all living organisms. Disruptions in intestinal junctional complexes, prevalent in inflammatory bowel diseases and irritable bowel syndrome, compromise barrier integrity and often lead to the notorious "leaky gut" syndrome. Critical to the maintenance of the intestinal barrier is a finely orchestrated network of intrinsic and extrinsic factors that modulate the expression, composition, and functionality of junctional complexes. This review navigates through the composition of key junctional complex components and the common methods used to assess intestinal permeability. It also explores the critical intracellular signaling pathways that modulate these junctional components. Lastly, we delve into the complex dynamics between the junctional complexes, microbial communities, and environmental chemicals in shaping the intestinal barrier function. Comprehending this intricate interplay holds paramount importance in unraveling the pathophysiology of gastrointestinal disorders. Furthermore, it lays the foundation for the development of precise therapeutic interventions targeting barrier dysfunction.
Collapse
Affiliation(s)
- Zachary Markovich
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Adriana Abreu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yi Sheng
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rui Xiao
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- Institute on Aging, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Abstract
Abstract The gut has been hypothesized to be the "motor" of multiple organ dysfunction in sepsis. Although there are multiple ways in which the gut can drive systemic inflammation, increasing evidence suggests that the intestinal microbiome plays a more substantial role than previously appreciated. An English language literature review was performed to summarize the current knowledge of sepsis-induced gut microbiome dysbiosis. Conversion of a normal microbiome to a pathobiome in the setting of sepsis is associated with worsened mortality. Changes in microbiome composition and diversity signal the intestinal epithelium and immune system resulting in increased intestinal permeability and a dysregulated immune response to sepsis. Clinical approaches to return to microbiome homeostasis may be theoretically possible through a variety of methods including probiotics, prebiotics, fecal microbial transplant, and selective decontamination of the digestive tract. However, more research is required to determine the efficacy (if any) of targeting the microbiome for therapeutic gain. The gut microbiome rapidly loses diversity with emergence of virulent bacteria in sepsis. Restoring normal commensal bacterial diversity through various therapies may be an avenue to improve sepsis mortality.
Collapse
Affiliation(s)
- Nathan J. Klingensmith
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Craig M. Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Fu J, Zhu F, Xu CJ, Li Y. Metabolomics meets systems immunology. EMBO Rep 2023; 24:e55747. [PMID: 36916532 PMCID: PMC10074123 DOI: 10.15252/embr.202255747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/24/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Metabolic processes play a critical role in immune regulation. Metabolomics is the systematic analysis of small molecules (metabolites) in organisms or biological samples, providing an opportunity to comprehensively study interactions between metabolism and immunity in physiology and disease. Integrating metabolomics into systems immunology allows the exploration of the interactions of multilayered features in the biological system and the molecular regulatory mechanism of these features. Here, we provide an overview on recent technological developments of metabolomic applications in immunological research. To begin, two widely used metabolomics approaches are compared: targeted and untargeted metabolomics. Then, we provide a comprehensive overview of the analysis workflow and the computational tools available, including sample preparation, raw spectra data preprocessing, data processing, statistical analysis, and interpretation. Third, we describe how to integrate metabolomics with other omics approaches in immunological studies using available tools. Finally, we discuss new developments in metabolomics and its prospects for immunology research. This review provides guidance to researchers using metabolomics and multiomics in immunity research, thus facilitating the application of systems immunology to disease research.
Collapse
Affiliation(s)
- Jianbo Fu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|