1
|
Praeg N, Steinwandter M, Urbach D, Snethlage MA, Alves RP, Apple ME, Bilovitz P, Britton AJ, Bruni EP, Chen TW, Dumack K, Fernandez-Mendoza F, Freppaz M, Frey B, Fromin N, Geisen S, Grube M, Guariento E, Guisan A, Ji QQ, Jiménez JJ, Maier S, Malard LA, Minor MA, Mc Lean CC, Mitchell EAD, Peham T, Pizzolotto R, Taylor AFS, Vernon P, van Tol JJ, Wu D, Wu Y, Xie Z, Weber B, Illmer P, Seeber J. Biodiversity in mountain soils above the treeline. Biol Rev Camb Philos Soc 2025. [PMID: 40369817 DOI: 10.1111/brv.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Biological diversity in mountain ecosystems has been increasingly studied over the last decade. This is also the case for mountain soils, but no study to date has provided an overall synthesis of the current state of knowledge. Here we fill this gap with a first global analysis of published research on cryptogams, microorganisms, and fauna in mountain soils above the treeline, and a structured synthesis of current knowledge. Based on a corpus of almost 1400 publications and the expertise of 37 mountain soil scientists worldwide, we summarise what is known about the diversity and distribution patterns of each of these organismal groups, specifically along elevation, and provide an overview of available knowledge on the drivers explaining these patterns and their changes. In particular, we document an elevation-dependent decrease in faunal diversity above the treeline, while for cryptogams there is an initial increase above the treeline, followed by a decrease towards the nival belt. Thus, our data confirm the key role that elevation plays in shaping the biodiversity and distribution of these organisms in mountain soils. The response of prokaryote diversity to elevation, in turn, was more diverse, whereas fungal diversity appeared to be substantially influenced by plants. As far as available, we describe key characteristics, adaptations, and functions of mountain soil species, and despite a lack of ecological information about the uncultivated majority of prokaryotes, fungi, and protists, we illustrate the remarkable and unique diversity of life forms and life histories encountered in alpine mountain soils. By applying rule- as well as pattern-based literature-mining approaches and semi-quantitative analyses, we identified hotspots of mountain soil research in the European Alps and Central Asia and revealed significant gaps in taxonomic coverage, particularly among biocrusts, soil protists, and soil fauna. We further report thematic priorities for research on mountain soil biodiversity above the treeline and identify unanswered research questions. Building upon the outcomes of this synthesis, we conclude with a set of research opportunities for mountain soil biodiversity research worldwide. Soils in mountain ecosystems above the treeline fulfil critical functions and make essential contributions to life on land. Accordingly, seizing these opportunities and closing knowledge gaps appears crucial to enable science-based decision making in mountain regions and formulating laws and guidelines in support of mountain soil biodiversity conservation targets.
Collapse
Affiliation(s)
- Nadine Praeg
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, Innsbruck, 6020, Austria
| | - Michael Steinwandter
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
| | - Davnah Urbach
- Global Mountain Biodiversity Assessment (GMBA), University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Centre Interdisciplinaire de Recherche sur la Montagne, University of Lausanne, Ch. de l'Institut 18, Bramois/Sion, 1967, Switzerland
| | - Mark A Snethlage
- Global Mountain Biodiversity Assessment (GMBA), University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Centre Interdisciplinaire de Recherche sur la Montagne, University of Lausanne, Ch. de l'Institut 18, Bramois/Sion, 1967, Switzerland
| | - Rodrigo P Alves
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Martha E Apple
- Department of Biological Sciences, Montana Technological University, Butte, 59701, MT, USA
| | - Peter Bilovitz
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Andrea J Britton
- Ecological Sciences, The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Estelle P Bruni
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Ting-Wen Chen
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, Na Sádkách 702/7, České Budějovice, 37005, Czech Republic
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, Göttingen, 37073, Germany
| | - Kenneth Dumack
- Terrestrial Ecology, Cologne Biocenter, University of Cologne, Zülpicher Strasse 47b, Cologne, 50674, Germany
| | - Fernando Fernandez-Mendoza
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Michele Freppaz
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
- Research Center on Natural Risks in Mountain and Hilly Environments, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Nathalie Fromin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Route de Mende 34199, Montpellier Cedex 5, France
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Martin Grube
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Elia Guariento
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
| | - Antoine Guisan
- Department of Ecology and Evolution (DEE), University of Lausanne, Biophore, Lausanne, 1015, Switzerland
- Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Géopolis, Lausanne, 1015, Switzerland
| | - Qiao-Qiao Ji
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130102, China
| | - Juan J Jiménez
- Instituto Pirenaico de Ecología (IPE), Consejo Superior de Investigaciones Cientificas (CSIC), Avda. Ntra. Sra. de la Victoria 16, Jaca, 22700, Huesca, Spain
| | - Stefanie Maier
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Lucie A Malard
- Department of Ecology and Evolution (DEE), University of Lausanne, Biophore, Lausanne, 1015, Switzerland
| | - Maria A Minor
- School of Food Technology and Natural Sciences, Massey University, Riddett Road, Palmerston North, 4410, New Zealand
| | - Cowan C Mc Lean
- Department of Soil, Crop and Climate Sciences, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Edward A D Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Thomas Peham
- Department of Ecology, Universität Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Roberto Pizzolotto
- Dipartimento di Biologia, Ecologia e Scienze della Terra, University of Calabria, Ponte Pietro Bucci 4b, Rende, 87036, Italy
| | - Andy F S Taylor
- Ecological Sciences, The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Philippe Vernon
- UMR 6553 EcoBio CNRS, University of Rennes, Biological Station, Paimpont, 35380, France
| | - Johan J van Tol
- Department of Soil, Crop and Climate Sciences, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Donghui Wu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130102, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Yunga Wu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Zhijing Xie
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Bettina Weber
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, Innsbruck, 6020, Austria
| | - Julia Seeber
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
- Department of Ecology, Universität Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| |
Collapse
|
2
|
Zeng Z, Huang R, Li W. Elevation Determines Fungal Diversity, and Land Use Governs Community Composition: A Dual Perspective from Gaoligong Mountains. Microorganisms 2024; 12:2378. [PMID: 39597766 PMCID: PMC11596228 DOI: 10.3390/microorganisms12112378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Soil fungi are closely tied to their surrounding environment. While numerous studies have reported the effects of land-use practices or elevations on soil fungi, our understanding of how their community structure and diversity vary with elevation across different land-use practices remains limited. In the present study, by collecting soil samples from four different land uses in the Gaoligong Mountain area, namely shrublands (SLs), coffee plantations (CPs), cornfields (CFs), and citrus orchards (COs), and combining them with the changes in altitude gradients (low: 900 m, medium: 1200 m, high: 1500 m), high-throughput sequencing technology was used to analyze the composition and diversity of soil fungal communities based on the collected soil samples. The results showed that the interaction between land-use types and elevation significantly influenced the structure and diversity of fungal communities, although their relative importance in shaping fungal diversity or community structure varied. Specifically, elevation posed a stronger effect on fungal community alpha-diversity and functional guilds, whereas land-use types had a greater influence over fungal community composition. Our study reveals the individual and combined effects of land-use practices and elevation on the structure and diversity of soil fungal communities in the Gaoligong Mountain region, enhancing our understanding of the distribution patterns and driving mechanisms of soil fungal communities in this biodiversity-rich region.
Collapse
Affiliation(s)
| | | | - Wei Li
- College of Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China; (Z.Z.); (R.H.)
| |
Collapse
|
3
|
Yan Z, Yang S, Chen L, Zou Y, Zhao Y, Yan G, Wang H, Wu Y. Responses of soil fungal community composition and function to wetland degradation in the Songnen Plain, northeastern China. FRONTIERS IN PLANT SCIENCE 2024; 15:1441613. [PMID: 39315367 PMCID: PMC11416943 DOI: 10.3389/fpls.2024.1441613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024]
Abstract
Introduction Wetlands are ecosystems that have a significant impact on ecological services and are essential for the environment. With the impacts of rapid population growth, wetland reclamation, urbanization, and land use change, wetlands have undergo severe degradation or loss. However, the response of soil fungal communities to wetland degradation remains unknown. It is crucial to comprehend how the diversity and population dynamics of soil fungi respond to varying levels of degradation and ecological progression in the wetlands of the Songnen Plain. Methods In this study, high- throughput sequencing technology to analyze the variety and abundance of soil fungi in the undegraded (UD), light degraded (LD), moderate degraded (MD), and severe degraded (SD) conditions in the Halahai Nature Reserve of Songnen Plain. This study also explored how these fungi are related to the soil's physicochemical properties in wetlands at various degradation levels. Results The findings indicated that Basidiomycota and Ascomycota were the primary phyla in the Songnen Plain, with Ascomycota increasing and Basidiomycota decreasing as wetland degradation progressed. Significant differences were observed in soil organic carbon (SOC), total nitrogen (TN),and soil total potassium (TK) among the succession degradation stages. With the deterioration of the wetland, there was a pattern of the Shannon and Chao1 indices increasing and then decreasing. Non-metric Multidimensional Scaling (NMDS) analysis indicated that the fungal community structures of UD and LD were quite similar, whereas MD and SD exhibited more distinct differences in their fungal community compositions. Redundancy analysis (RDA) results indicated that Soil Water content (SWC) and total nitrogen (TN) were the primary environmental factors influencing the dominant fungal phylum. According to the FUNGuild prediction, Ectomycorrhizal and plant pathogens gradually declining with wetland degradation. Discussion In general, our findings can offer theoretical support develop effective solutions for the preservation and rehabilitation of damaged wetlands.
Collapse
Affiliation(s)
- Zhizhi Yan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Shuhan Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Lei Chen
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yu Zou
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Yupeng Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Guang Yan
- Halahai Provincial Nature Reserve, Qiqihar, China
| | - He Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yining Wu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Heilongjiang Academy of Sciences Institute of Natural Resources and Ecology, Harbin, China
| |
Collapse
|
4
|
Wang C, Yu J, Zhang J, Zhu B, Zhao W, Wang Z, Yang T, Yu C. A review of factors affecting the soil microbial community structure in wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46760-46768. [PMID: 38967845 DOI: 10.1007/s11356-024-34132-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
Microbial community in wetland soils is crucial for maintaining the stability of the wetland ecosystem. Nevertheless, the soil microbial community is sensitive to the environmental stress in wetlands. This leads to the possibility that the microbial community structure may be influenced by environmental factors. To gain an in-depth understanding in the response of microbial community structure in wetland soils under different environmental factors, this review comprehensively explores the factors of natural conditions (e.g., different types of wetland, soil physical and chemical properties, climate conditions), biological factors (e.g., plants, soil animals), and human activities (e.g., land use, soil pollution, grazing). Those factors can affect microbial community structure and activities in wetland soils through different ways such as (i) affecting the wetland soil environment in which soil microorganisms survived in, (ii) influencing the available nutrients (e.g., carbon, nitrogen) required for microbial activity, and (iii) the direct effects on soil microorganisms (toxicity or promotion of resistant species). This review can provide references for the conservation of microbial diversity in wetland soils, the maintenance of wetland ecosystem balance, and the wetland ecological restoration.
Collapse
Affiliation(s)
- Chunyong Wang
- School of Chemical and Environmental Engineering, Liaoning University of Technology, No. 169, Shiying Street, Jinzhou, 121001, Liaoning Province, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Jiaqi Yu
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116000, China
| | - Junyu Zhang
- School of Chemical and Environmental Engineering, Liaoning University of Technology, No. 169, Shiying Street, Jinzhou, 121001, Liaoning Province, China
| | - Bo Zhu
- School of Chemical and Environmental Engineering, Liaoning University of Technology, No. 169, Shiying Street, Jinzhou, 121001, Liaoning Province, China
| | - Weinong Zhao
- School of Chemical and Environmental Engineering, Liaoning University of Technology, No. 169, Shiying Street, Jinzhou, 121001, Liaoning Province, China
| | - Ziyu Wang
- School of Chemical and Environmental Engineering, Liaoning University of Technology, No. 169, Shiying Street, Jinzhou, 121001, Liaoning Province, China
| | - Tianhao Yang
- School of Chemical and Environmental Engineering, Liaoning University of Technology, No. 169, Shiying Street, Jinzhou, 121001, Liaoning Province, China
| | - Changwu Yu
- School of Chemical and Environmental Engineering, Liaoning University of Technology, No. 169, Shiying Street, Jinzhou, 121001, Liaoning Province, China
| |
Collapse
|
5
|
Bereczki K, Tóth EG, Szili-Kovács T, Megyes M, Korponai K, Lados BB, Illés G, Benke A, Márialigeti K. Soil Parameters and Forest Structure Commonly Form the Microbiome Composition and Activity of Topsoil Layers in Planted Forests. Microorganisms 2024; 12:1162. [PMID: 38930544 PMCID: PMC11205539 DOI: 10.3390/microorganisms12061162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Soil bacterial communities play a remarkable role in nutrient cycling, significantly affecting soil organic material content, soil fertility, and, in an indirect way, plant succession processes. Conversely, vegetation type influences microbial soil life. The present study compared the bacterial microbiome composition, diversity and catabolic activity profile of topsoil samples collected under three different forest types (a twice-coppiced black locust stand, a young, naturally reforested, and a middle-aged mixed pedunculate oak stand) planted on former arable land in the early 20th century. Diversity indices determined during 16S ribosomal RNA sequencing-based metagenome analysis indicated that the black locust stand had the highest soil bacterial community diversity. At the phylum level, Acidobacteriota, Actinobacteriota, Proteobacteria, Verrucomicrobiota, Bacteroidota, and Gemmatimonadota were the most abundant taxa in the forest soils. Concerning soil parameters, redundancy analysis revealed that pH had the highest impact on bacterial community structure and pH, and soil organic carbon content on the samples' respiration patterns. As for catabolic activity, the recently clearcut oak forest showed the lowest substrate-induced respiration, and citrate was the main driver for the inter-stand variability of microbial activity. Our results confirm that soil parameters and forest type influence the composition and functioning of the soil bacterial microbiome.
Collapse
Affiliation(s)
- Katalin Bereczki
- Doctoral School of Environmental Sciences, Eötvös Loránd University, 1117 Budapest, Hungary;
- Department of Forest Management and Ecology, Forest Research Institute, University of Sopron, 9600 Sárvár, Hungary;
| | - Endre György Tóth
- National Coalition of Independent Scholars (NCIS), Brattleboro, VT 05301, USA;
| | - Tibor Szili-Kovács
- Institute for Soil Sciences, Centre for Agricultural Research, 1022 Budapest, Hungary;
| | - Melinda Megyes
- Doctoral School of Environmental Sciences, Eötvös Loránd University, 1117 Budapest, Hungary;
| | - Kristóf Korponai
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, 2462 Martonvásár, Hungary;
| | - Botond Boldizsár Lados
- Department of Forestry Breeding, Forest Research Institute, University of Sopron, 9600 Sárvár, Hungary; (B.B.L.); (A.B.)
| | - Gábor Illés
- Department of Forest Management and Ecology, Forest Research Institute, University of Sopron, 9600 Sárvár, Hungary;
| | - Attila Benke
- Department of Forestry Breeding, Forest Research Institute, University of Sopron, 9600 Sárvár, Hungary; (B.B.L.); (A.B.)
| | - Károly Márialigeti
- Department of Microbiology, Eötvös Loránd University, 1117 Budapest, Hungary;
| |
Collapse
|
6
|
Li Z, Yang Y, Liu J, Jiang W, Gao Y. Effects of water volume of drip irrigation on soil bacterial communities and its association with soil properties in jujube cultivation. Front Microbiol 2024; 14:1321993. [PMID: 38312501 PMCID: PMC10836404 DOI: 10.3389/fmicb.2023.1321993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/22/2023] [Indexed: 02/06/2024] Open
Abstract
Introduction Jujube is one of an important crop in Xinjiang, China, a area suffered by water scarcity and DI has been proven as a suitable mode for jujube cultivation. Soil bacterial community play a vital role in biogeochemical cycles to support the crop growth, and water content is considered as one of the important factors for them. However, limited research has explored the optimum irrigation strategies, such as water volume of DI, to maximize the benefits of jujube cultivation by regulating the soil bacterial communities. Methods Therefore, in this study, we conducted DI experiments on jujube fields in Xinjiang with three different water volume levels, and measured the soil properties and bacterial communities of the flowering and fruit setting (FFS) and end of growth (EG) stages. Results and discussion Significant lower jujube yield and soil available nutrients were observed in samples with low water amount. In addition, we discovered significant effects of the water amount of DI and jujube growth stages on soil bacterial communities. Based on the compare of samples among different growth stages and water amounts some growth stage related bacterial genera (Mycobacterium, Bradyrhizobium, and Bacillus) and water amount-related bacterial phyla (Chloroflexi, Nitrospirota, and Myxococcota) were recognized. Moreover, according to the results of null model, soil bacterial communities were governed by stochastic and deterministic processes under middle and low water volumes of DI, respectively. Finally, we deduced that middle water amount (600 mm) could be the optimal condition of DI for jujube cultivation because the higher jujube yield, deterministic assembly, and stronger correlations between soil properties and bacterial community under this condition. Our findings provide guidance for promoting the application of DI in jujube cultivation, and further research is needed to investigate the underlying mechanisms of soil bacterial community to promote the jujube yield.
Collapse
Affiliation(s)
- Zhaoyang Li
- College of Water Hydraulic and Architectural Engineering, Tarim University, Alar, China
- Laboratory of Modern Agricultural Engineering, Tarim University, Alar, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, China
| | - Yuhui Yang
- College of Water Hydraulic and Architectural Engineering, Tarim University, Alar, China
- Laboratory of Modern Agricultural Engineering, Tarim University, Alar, China
| | - Jiangfan Liu
- College of Water Hydraulic and Architectural Engineering, Tarim University, Alar, China
| | - Wenge Jiang
- College of Water Hydraulic and Architectural Engineering, Tarim University, Alar, China
| | - Yang Gao
- College of Water Hydraulic and Architectural Engineering, Tarim University, Alar, China
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
| |
Collapse
|
7
|
Wang Y, Zheng G, Zhao Y, Bo H, Li C, Dong J, Wang Y, Yan S, Zhang F, Liu J. Different bacterial and fungal community patterns in restored habitats in coal-mining subsidence areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104304-104318. [PMID: 37700132 DOI: 10.1007/s11356-023-29744-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/03/2023] [Indexed: 09/14/2023]
Abstract
Soil microbiota, which plays a fundamental role in ecosystem functioning, is sensitive to environmental changes. Studying soil microbial ecological patterns can help to understand the consequences of environmental disturbances on soil microbiota and hence ecosystem services. The different habitats with critical environmental gradients generated through the restoration of coal-mining subsidence areas provide an ideal area to explore the response of soil microbiota to environmental changes. Here, based on high-throughput sequencing, we revealed the patterns of soil bacterial and fungal communities in habitats with different land-use types (wetland, farmland, and grassland) and with different restored times which were generated during the ecological restoration of a typical coal-mining subsidence area in Jining City, China. The α-diversity of bacterial was higher in wetland than in farmland and grassland, while that of fungi had no discrepancy among the three habitats. The β-diversity of bacterial community in the grassland was lower than in the farmland, and fungal community was significant different in all three habitats, showing wetland, grassland, and farmland from high to low. The β-diversity of the bacterial community decreased with restoration time while that of the fungal community had no significant change in the longer-restoration-time area. Furthermore, soil electrical conductivity was the most important driver for both bacterial and fungal communities. Based on the taxonomic difference among different habitats, we identified a group of biomarkers for each habitat. The study contributes to understand the microbial patterns during the ecological restoration of coal-mining subsidence areas, which has implications for the efficient ecological restoration of subsidence areas.
Collapse
Affiliation(s)
- Yijing Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Guodong Zheng
- Technology Innovation Center of Restoration and Reclamation in Mining induced Subsidence Land, Ministry of Natural Resources, Shandong Provincial Lunan Geology and Exploration Institute (Shandong Provincial Bureau of Geology and Mineral Resources No.2 Geological Brigade), Jining, 272000, China.
| | - Yongkang Zhao
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Huaizhi Bo
- Technology Innovation Center of Restoration and Reclamation in Mining induced Subsidence Land, Ministry of Natural Resources, Shandong Provincial Lunan Geology and Exploration Institute (Shandong Provincial Bureau of Geology and Mineral Resources No.2 Geological Brigade), Jining, 272000, China
| | - Changchao Li
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Junyu Dong
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yan Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Shuwan Yan
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Fanglong Zhang
- Technology Innovation Center of Restoration and Reclamation in Mining induced Subsidence Land, Ministry of Natural Resources, Shandong Provincial Lunan Geology and Exploration Institute (Shandong Provincial Bureau of Geology and Mineral Resources No.2 Geological Brigade), Jining, 272000, China
| | - Jian Liu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| |
Collapse
|
8
|
Guo Y, Gu S, Wu K, Tanentzap AJ, Yu J, Liu X, Li Q, He P, Qiu D, Deng Y, Wang P, Wu Z, Zhou Q. Temperature-mediated microbial carbon utilization in China's lakes. GLOBAL CHANGE BIOLOGY 2023; 29:5044-5061. [PMID: 37427534 DOI: 10.1111/gcb.16840] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/05/2023] [Indexed: 07/11/2023]
Abstract
Microbes play an important role in aquatic carbon cycling but we have a limited understanding of their functional responses to changes in temperature across large geographic areas. Here, we explored how microbial communities utilized different carbon substrates and the underlying ecological mechanisms along a space-for-time substitution temperature gradient of future climate change. The gradient included 47 lakes from five major lake regions in China spanning a difference of nearly 15°C in mean annual temperatures (MAT). Our results indicated that lakes from warmer regions generally had lower values of variables related to carbon concentrations and greater carbon utilization than those from colder regions. The greater utilization of carbon substrates under higher temperatures could be attributed to changes in bacterial community composition, with a greater abundance of Cyanobacteria and Actinobacteriota and less Proteobacteria in warmer lake regions. We also found that the core species in microbial networks changed with increasing temperature, from Hydrogenophaga and Rhodobacteraceae, which inhibited the utilization of amino acids and carbohydrates, to the CL500-29-marine-group, which promoted the utilization of all almost carbon substrates. Overall, our findings suggest that temperature can mediate aquatic carbon utilization by changing the interactions between bacteria and individual carbon substrates, and the discovery of core species that affect carbon utilization provides insight into potential carbon sequestration within inland water bodies under future climate warming.
Collapse
Affiliation(s)
- Yao Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
| | - Songsong Gu
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, the People's Republic of China
| | - Kaixuan Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, School of the Environment, Trent University, Peterborough, Ontario, Canada
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Junqi Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
| | - Xiangfen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
| | - Qianzheng Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
| | - Peng He
- School of Environmental Studies, China University of Geosciences, Wuhan, the People's Republic of China
| | - Dongru Qiu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
| | - Ye Deng
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, the People's Republic of China
| | - Pei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- School of Environmental Studies, China University of Geosciences, Wuhan, the People's Republic of China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
| |
Collapse
|
9
|
Fu L, Xie R, Ma D, Zhang M, Liu L. Variations in soil microbial community structure and extracellular enzymatic activities along a forest-wetland ecotone in high-latitude permafrost regions. Ecol Evol 2023; 13:e10205. [PMID: 37332520 PMCID: PMC10269122 DOI: 10.1002/ece3.10205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023] Open
Abstract
Permafrost degradation by global warming is expected to alter the hydrological processes, which results in changes in vegetation species composition and gives rise to community succession. Ecotones are sensitive transition areas between ecosystem boundaries, attract particular interest due to their ecological importance and prompt responses to the environmental variables. However, the characteristics of soil microbial communities and extracellular enzymes along the forest-wetland ecotone in high-latitude permafrost region remain poorly understood. In this study, we evaluated the variations of soil bacterial and fungal community structures and soil extracellular enzymatic activities of 0-10 cm and 10-20 cm soil layers in five different wetland types along environmental gradients, including Larix gmelinii swamp (LY), Betula platyphylla swamp (BH), Alnus sibirica var. hirsute swamp (MCY), thicket swamp (GC), and tussock swamp (CC). The relative abundances of some dominant bacterial (Actinobacteria and Verrucomicrobia) and fungal (Ascomycota and Basidiomycota) phyla differed significantly among different wetlands, while bacterial and fungal alpha diversity was not strongly affected by soil depth. PCoA results showed that vegetation type, rather than soil depth explained more variation of soil microbial community structure. β-glucosidase and β-N-acetylglucosaminidase activities were significantly lower in GC and CC than in LY, BH, and MCY, while acid phosphatase activity was significantly higher in BH and GC than LY and CC. Altogether, the data suggest that soil moisture content (SMC) was the most important environmental factor contributing to the bacterial and fungal communities, while extracellular enzymatic activities were closely related to soil total organic carbon (TOC), nitrate nitrogen (NO 3 - -N ) and total phosphorus (TP).
Collapse
Affiliation(s)
- Lingyu Fu
- College of Geographical SciencesHarbin Normal UniversityHarbinChina
| | - Ruifeng Xie
- College of Geographical SciencesHarbin Normal UniversityHarbinChina
| | - Dalong Ma
- College of Geographical SciencesHarbin Normal UniversityHarbinChina
| | - Man Zhang
- College of Geographical SciencesHarbin Normal UniversityHarbinChina
| | - Lin Liu
- College of Geographical SciencesHarbin Normal UniversityHarbinChina
| |
Collapse
|
10
|
Chen X, Wang Y, Wang Y, Zhang Y, Shen Y, He X, Xiao C. A Natural Moisture Gradient Affects Soil Fungal Communities on the South Shore of Hulun Lake, Inner Mongolia, China. J Fungi (Basel) 2023; 9:jof9050549. [PMID: 37233260 DOI: 10.3390/jof9050549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 04/30/2023] [Indexed: 05/27/2023] Open
Abstract
Soil moisture content (SWC) can change the diversity and composition of soil fungal communities by affecting soil texture and soil nutrients. To explore the response of soil fungal communities to moisture in the grassland ecosystem on the south shore of Hulun Lake, we set up a natural moisture gradient that was subdivided into high (HW), medium (MW), and low (LW) water contents. Vegetation was investigated by quadrat method, and aboveground biomass was collected by the mowing method. Soil physicochemical properties were obtained by internal experiments. The composition of the soil fungal community was determined using high-throughput sequencing technology. The results showed significant differences in soil texture, nutrients, and fungal species diversity under the moisture gradients. Although there was significant clustering of fungal communities in different treatments, the fungal community composition was not significantly different. According to the phylogenetic tree, the Ascomycota and Basidiomycota were the most important branches. The fungal species diversity was smaller when SWC was higher, and in this environment (HW), the fungal-dominant species were significantly related to SWC and soil nutrients. At this time, soil clay formed a protective barrier for the survival of the dominant classes Sordariomycetes and Dothideomycetes and increased their relative abundance. In summary, the fungal community responded significantly to SWC on the southern shore of the Hulun Lake ecosystem in Inner Mongolia, China, and the fungal community composition of the HW group was stable and easier to survive.
Collapse
Affiliation(s)
- Xin Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yujue Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yao Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yushu Zhang
- Beijing Key Laboratory of Ecological Function Assessment and Regulation Technology of Green Space, Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China
| | - Yuting Shen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiaojia He
- The Administrative Center for China's Agenda 21, Beijing 100038, China
| | - Chunwang Xiao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
11
|
Wu D, Bai H, Zhao C, Peng M, Chi Q, Dai Y, Gao F, Zhang Q, Huang M, Niu B. The characteristics of soil microbial co-occurrence networks across a high-latitude forested wetland ecotone in China. Front Microbiol 2023; 14:1160683. [PMID: 37025633 PMCID: PMC10072330 DOI: 10.3389/fmicb.2023.1160683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/02/2023] [Indexed: 04/08/2023] Open
Abstract
To understand the effect of seasonal variations on soil microbial communities in a forested wetland ecotone, here, we investigated the dynamics of the diversities and functions of both soil bacterial and fungal communities inhabiting three wetland types (forested wetland, shrub wetland and herbaceous vegetation wetland) from forest-wetland ecotone of northern Xiaoxing'an Mountains spanning different seasons. β-diversity of soil microbial communities varied significantly among different vegetation types (Betula platyphylla-Larix gmelinii, Alnus sibirica, Betula ovalifolia, and Carex schmidtii wetlands). We totally detected 34 fungal and 14 bacterial indicator taxa among distinctive groups by using Linear discriminant analysis effect size (LEfSe) analysis, and identified nine network hubs as the most important nodes detected in whole fungi, bacteria, and fungi-bacteria networks. At the vegetation type-level, bacterial and fungal microbiome living in C. schmidtii wetland soil possessed fewer positive interactions and lower modularity than those in other types of wetland soil. Furthermore, we also discovered that ectomycorrhizal fungi were dominant in the fungal microbiota existing in forested and shrub wetland soils, whereas arbuscular mycorrhizal fungi were predominated in those residing in herbaceous vegetation wetland soil. The distribution of the predicted bacterial functional enzymes also obviously varied among different vegetation-types. In addition, the correlation analysis further revealed that the key fungal network modules were significantly affected by the contents of total N and soil water-soluble K, whereas most of the bacterial network modules were remarkably positively driven by the contents of total N, soil water-soluble K, Mg and Na. Our study suggested that vegetation type are substantive factors controlling the diversity, composition and functional group of soil microbiomes from forest-wetland ecotone of northern Xiaoxing'an Mountains.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Hui Bai
- Key Laboratory of Fast-Growing Tree Cultivating of Heilongjiang Province, Forestry Science Research Institute of Heilongjiang Province, Harbin, China
| | - Caihong Zhao
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Mu Peng
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Qi Chi
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yaping Dai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Fei Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Qiang Zhang
- Institute of Economic Forest of Xinjiang Academy of Forestry Sciences, Urumqi, China
| | - Minmin Huang
- Institute of Economic Forest of Xinjiang Academy of Forestry Sciences, Urumqi, China
| | - Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
12
|
Kang P, Pan Y, Yang P, Hu J, Zhao T, Zhang Y, Ding X, Yan X. A comparison of microbial composition under three tree ecosystems using the stochastic process and network complexity approaches. Front Microbiol 2022; 13:1018077. [PMID: 36299726 PMCID: PMC9589112 DOI: 10.3389/fmicb.2022.1018077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/22/2022] [Indexed: 10/26/2023] Open
Abstract
Soil microbes act as "players" in regulating biogeochemical cycles, whereas environmental heterogeneity drives microbial community assembly patterns and is influenced by stochastic and deterministic ecological processes. Currently, the limited understanding of soil microbial community assembly patterns and interactions under temperate forest stand differences pose a challenge in studying the soil microbial involvement during the succession from coniferous to broad-leaved forests. This study investigated the changes in soil bacterial and fungal community diversity and community structure at the regional scale and identified the pathways influencing soil microbial assembly patterns and their interactions. The results showed that broad-leaved forest cover in temperate forests significantly increased soil pH, and effectively increased soil water content, total carbon (TC), total nitrogen (TN), and total phosphorus (TP) contents. Both soil bacterial and fungal alpha diversity indices were correlated with soil physicochemical properties, especially in broad-leaved forest. The bacterial and fungal community composition of coniferous forest was dominated by deterministic process (bacteria: 69.4%; fungi: 88.9%), while the bacterial community composition of broad-leaved forest was dominated by stochastic process (77.8%) and the fungal community composition was dominated by deterministic process (52.8%). Proteobacteria, Acidobacteriota, Actinobacteriota, and Verrucomicrobiota were the dominant phyla of soil bacterial communities in temperate forests. Whereas Ascomycota, Mortierellomycota, Basidiomycota, and Rozellomycota were the dominant phyla of soil fungal communities in temperate forests. Most members of dominant phylum were regulated by soil physical and chemical properties. In addition, the succession from temperate coniferous forest to broad-leaved forest was conducive to maintaining the complex network of soil bacteria and fungi, and the top 20 degree of the major taxa in the network reflected the positive response of microbial interactions to the changes of soil nutrients during forest succession. This study not only shows the mechanism by which species differences in temperate forests of northern China affect soil microbial community assembly processes, but also further emphasizes the importance of the soil microbiome as a key ecosystem factor through co-occurrence network analysis.
Collapse
Affiliation(s)
- Peng Kang
- School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People’s Republic of China, Yinchuan, Ningxia, China
- Innovation Team for Genetic Improvement of Economic Forests, North Minzu University, Yinchuan, Ningxia, China
| | - Yaqing Pan
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Pan Yang
- School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Jinpeng Hu
- School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Tongli Zhao
- School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Yaqi Zhang
- School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Xiaodong Ding
- School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People’s Republic of China, Yinchuan, Ningxia, China
| | - Xingfu Yan
- School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People’s Republic of China, Yinchuan, Ningxia, China
| |
Collapse
|
13
|
Liu Y, Ding C, Su D, Wang T, Wang T. Solar park promoted microbial nitrogen and phosphorus cycle potentials but reduced soil prokaryotic diversity and network stability in alpine desert ecosystem. Front Microbiol 2022; 13:976335. [PMID: 36160250 PMCID: PMC9493309 DOI: 10.3389/fmicb.2022.976335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Solar park (SP) is rapidly growing throughout the planet due to the increasing demand for low-carbon energy, which represents a remarkable global land-use change with implications for the hosting ecosystems. Despite dozens of studies estimating the environmental impacts of SP based on local microclimate and vegetation, responses of soil microbial interactions and nutrient cycle potentials remain poorly understood. To bridge this gap, we investigated the diversity, community structure, complexity, and stability of co-occurrence network and soil enzyme activities of soil prokaryotes and fungi in habitats of ambient, the first, and sixth year since solar park establishment. Results revealed different response patterns of prokaryotes and fungi. SP led to significant differences in both prokaryotic and fungal community structures but only reduced prokaryotic alpha diversity significantly. Co-occurrence network analysis revealed a unimodal pattern of prokaryotic network features and more resistance of fungal networks to environmental variations. Microbial nitrogen and phosphorus cycle potentials were higher in SP and their variances were more explained by network features than by diversity and environmental characteristics. Our findings revealed for the first time the significant impacts of SP on soil prokaryotic and fungal stability and functional potentials, which provides a microbial insight for impact evaluation and evidence for the optimization of solar park management to maximize the delivery of ecosystem services from this growing land use.
Collapse
Affiliation(s)
- Yu Liu
- College of Grassland, Beijing Forestry University, Beijing, China
| | - Chengxiang Ding
- Academy of Animal Husbandry and Veterinary Science, Qinghai University, Xining, China
- Chengxiang Ding,
| | - Derong Su
- College of Grassland, Beijing Forestry University, Beijing, China
- *Correspondence: Derong Su,
| | - Tiemei Wang
- College of Grassland, Beijing Forestry University, Beijing, China
| | - Tao Wang
- College of Grassland, Beijing Forestry University, Beijing, China
| |
Collapse
|