1
|
Kumar R, Mondal B, Bordoloi N. Application of straw-derived biochar: a sustainable approach to improve soil quality and crop yield and reduce N 2O emissions in paddy soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60804-60818. [PMID: 39392575 DOI: 10.1007/s11356-024-35269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
The burning of agricultural straw is a pressing environmental issue, and identifying effective strategies for the rational utilization of straw resources is decisive for achieving sustainable development. Owing to its high carbon content and exceptional stability, straw biochar produced via pyrolysis has emerged as a key focus in multidisciplinary research. However, the efficacy of biochar in mitigating nitrous oxide (N2O) emissions from paddy soils is not consistent. A 2-year field experiment was conducted and investigated the impact of biochar derived from two feedstocks (rice straw and wheat straw, pyrolyzed at 450 °C) on N2O emissions, global warming potential (GWP), greenhouse gas intensity (GHGI), nitrogen use efficiency (NUE), crop yield, and soil quality. The static chamber technique was used for collecting N2O gas samples, and concentrations were analyzed through gas chromatography methods. The treatment combinations included BR0 (control), BR1 (NPK at the recommended dose, 120:60:40 kg ha-1), BR2 (wheat straw biochar, 5 t ha-1), and BR3 (rice straw biochar, 5 t ha-1). The results exhibited that cumulative N2O emissions from BR2 and BR3 treatments decreased by 10.55% and 13.75% respectively, compared to BR1. Lower GWP and GHGI were observed under both biochar treatments compared with BR1. The highest rice grain yield (3.48 Mg ha-1) and NUE (76.72%) were recorded from BR3, which also exhibited the lowest yield-scaled N2O emission. We observed positive correlations between soil nitrate, ammonia and water-filled pore spaces, while NUE showed negative correlations with N2O emissions. Significant (p < 0.05) improvements in soil quality were also detected in both the biochar treated plots, indicated by increased soil pH, water holding capacity, porosity, and nutrient contents. Overall, the results suggest that applying biochar at a rate of 5 t ha-1 in paddy soil is a viable nutrient management strategy with the potential to reduce reliance on inorganic fertilizers, mitigate N2O emissions, and contribute to sustainable food production.
Collapse
Affiliation(s)
- Raushan Kumar
- Department of Environmental Sciences, Central University of Jharkhand, Cheri Manatu, Ranchi, 835222, India
| | - Bipradeep Mondal
- Department of Environmental Sciences, Central University of Jharkhand, Cheri Manatu, Ranchi, 835222, India
| | - Nirmali Bordoloi
- Department of Environmental Sciences, Central University of Jharkhand, Cheri Manatu, Ranchi, 835222, India.
| |
Collapse
|
2
|
Liu J, Fan X, Ni J, Cai M, Cai D, Jiang Y, Mo A, Miran W, Peng T, Long X, Yang F. Mitigation of uranium toxicity in rice by Sphingopyxis sp. YF1: Evidence from growth, ultrastructure, subcellular distribution, and physiological characteristics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108958. [PMID: 39053315 DOI: 10.1016/j.plaphy.2024.108958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Uranium (U) contamination of rice is an urgent ecological and agricultural problem whose effective alleviation is in great demand. Sphingopyxis genus has been shown to remediate heavy metal-contaminated soils. Rare research delves into the mitigation of uranium (U) toxicity to rice by Sphingopyxis genus. In this study, we exposed rice seedlings for 7 days at U concentrations of 0, 10, 20, 40, and 80 mg L-1 with or without the Sphingopyxis sp. YF1 in the rice nutrient solution. Here, we firstly found YF1 colonized on the root of rice seedlings, significantly mitigated the growth inhibition, and counteracted the chlorophyll content reduction in leaves induced by U. When treated with 1.1 × 107 CFU mL-1 YF1 with the amendment of 10 mg L-1 U, the decrease of U accumulation in rice seedling roots and shoots was the largest among all treatments; reduced by 39.3% and 32.1%, respectively. This was associated with the redistribution of the U proportions in different organelle parts, leading to the alleviation of the U damage to the morphology and structure of rice root. Interestingly, we found YF1 significantly weakens the expression of antioxidant enzymes genes (CuZnSOD,CATA,POD), promotes the up-regulation of metal-transporters genes (OsHMA3 and OsHMA2), and reduces the lipid peroxidation damage induced by U in rice seedlings. In summary, YF1 is a plant-probiotic with potential applications for U-contaminated rice, benefiting producers and consumers.
Collapse
Affiliation(s)
- Jun Liu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Xinting Fan
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Juan Ni
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Meihan Cai
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Danping Cai
- The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuanyuan Jiang
- The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Aili Mo
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Waheed Miran
- School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Tangjian Peng
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xizi Long
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Fei Yang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
3
|
Vadakkan K, Sathishkumar K, Raphael R, Mapranathukaran VO, Mathew J, Jose B. Review on biochar as a sustainable green resource for the rehabilitation of petroleum hydrocarbon-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173679. [PMID: 38844221 DOI: 10.1016/j.scitotenv.2024.173679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Petroleum pollution is one of the primary threats to the environment and public health. Therefore, it is essential to create new strategies and enhance current ones. The process of biological reclamation, which utilizes a biological agent to eliminate harmful substances from polluted soil, has drawn much interest. Biochars are inexpensive, environmentally beneficial carbon compounds extensively employed to remove petroleum hydrocarbons from the environment. Biochar has demonstrated an excellent capability to remediate soil pollutants because of its abundant supply of the required raw materials, sustainability, affordability, high efficacy, substantial specific surface area, and desired physical-chemical surface characteristics. This paper reviews biochar's methods, effectiveness, and possible toxic effects on the natural environment, amended biochar, and their integration with other remediating materials towards sustainable remediation of petroleum-polluted soil environments. Efforts are being undertaken to enhance the effectiveness of biochar in the hydrocarbon-based rehabilitation approach by altering its characteristics. Additionally, the adsorption, biodegradability, chemical breakdown, and regenerative facets of biochar amendment and combined usage culminated in augmenting the remedial effectiveness. Lastly, several shortcomings of the prevailing methods and prospective directions were provided to overcome the constraints in tailored biochar studies for long-term performance stability and ecological sustainability towards restoring petroleum hydrocarbon adultered soil environments.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| | - Rini Raphael
- Department of Zoology, Carmel College (Autonomous), Mala, Kerala 680732, India
| | | | - Jennees Mathew
- Department of Chemistry, Morning Star Home Science College, Angamaly, Kerala 683589, India
| | - Beena Jose
- Department of Chemistry, Vimala College (Autonomous), Thrissur 680009, Kerala, India
| |
Collapse
|
4
|
Zhu C, Lin Z, Fen W, Jiajia W, Xiang Z, Kai C, Yu Z, Kelai Z, Yelin J, Salin KR. Suitability of coconut bran and biochar as a composite substrate for lettuce cultivation in aquaponic systems. Heliyon 2024; 10:e35515. [PMID: 39170356 PMCID: PMC11336761 DOI: 10.1016/j.heliyon.2024.e35515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Growth substrates are essential for aquaponic systems and play an important role in vegetable growth and water quality. In this study, we explored an innovative combination of coconut bran and coconut shell biochar (CSB) as a composite growth substrate for lettuce cultivation in aquaponic systems. The study included the control (100 % coconut bran as the growth substrate) and treatment groups (T1-T5; containing 10 %, 20 %, 30 %, 40 %, and 50 % CSB as the growth substrate, respectively). The substrate properties; lettuce growth performance; and soil enzyme activity, nitrogen content, and abundance of microbial communities in the substrate were analyzed to determine the optimal substrate. Our findings indicated that CSB incorporation significantly altered the properties of the substrate, resulting in increased dry and bulk densities, pH, and water-holding capacity, and decreased electrical conductivity, water-absorption capacity, and porosity. Furthermore, the fresh weight of lettuce was notably increased in the treatment groups. The activities of fluorescein diacetate hydrolase, urease, nitrate reductase, and hydroxylamine reductase initially increased and further decreased, reaching the maximum in the T3 group. Conversely, the activity of nitrite reductase and contents of available nitrogen, nitrate-nitrogen, and ammonium-nitrogen in the substrates initially decreased and further increased, with the minimum values observed in the T3 group. The microbial sequencing results indicated that CSB incorporation significantly increased the microbial diversity and relative abundance of microorganisms associated with nitrogen transformation. Moreover, 30 % CSB incorporation exhibited the greatest effect on lettuce growth, with a 34.5 % and 31.6 % increase in fresh weight compared to the control during the growth and harvest periods, respectively. This study indicated the enormous potential of biochar in the research and development of green technologies for substrate amendment in aquaponic systems.
Collapse
Affiliation(s)
- Chen Zhu
- Key Laboratory of Aquaculture and Stock Enhancement for Anhui Province, Fishery Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Zuo Lin
- Key Laboratory of Aquaculture and Stock Enhancement for Anhui Province, Fishery Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Aquaculture and Aquatic Resources Management, SERD, Asian Institute of Technology, Pathumthani, 12120, Thailand
| | - Wang Fen
- Key Laboratory of Aquaculture and Stock Enhancement for Anhui Province, Fishery Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Wang Jiajia
- Key Laboratory of Aquaculture and Stock Enhancement for Anhui Province, Fishery Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Zhou Xiang
- Key Laboratory of Aquaculture and Stock Enhancement for Anhui Province, Fishery Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Cui Kai
- Key Laboratory of Aquaculture and Stock Enhancement for Anhui Province, Fishery Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Zhang Yu
- Chuzhou Huixiangbenjue Agricultural Development Co., Ltd., Chuzhou, 239000, China
| | - Zhang Kelai
- Hefei Liuxing Blue Agriculture Co., Ltd, Hefei, 230031, China
| | - Jiang Yelin
- Key Laboratory of Aquaculture and Stock Enhancement for Anhui Province, Fishery Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Anhui Yutao Agriculture Co., Ltd., Hefei, 230031, China
| | - Krishna R. Salin
- Aquaculture and Aquatic Resources Management, SERD, Asian Institute of Technology, Pathumthani, 12120, Thailand
| |
Collapse
|
5
|
Sun Z, Sun C, Zhang T, Liu J, Wang X, Feng J, Li S, Tang S, Jin K. Soil microbial community variation among different land use types in the agro-pastoral ecotone of northern China is likely to be caused by anthropogenic activities. Front Microbiol 2024; 15:1390286. [PMID: 38841072 PMCID: PMC11150776 DOI: 10.3389/fmicb.2024.1390286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024] Open
Abstract
There are various types of land use in the agricultural and pastoral areas of northern China, including natural grassland and artificial grassland, scrub land, forest land and farmland, may change the soil microbial community However, the soil microbial communities in these different land use types remain poorly understood. In this study, we compared soil microbial communities in these five land use types within the agro-pastoral ecotone of northern China. Our results showed that land use has had a considerable impact on soil bacterial and fungal community structures. Bacterial diversity was highest in shrubland and lowest in natural grassland; fungal diversity was highest in woodland. Microbial network structural complexity also differed significantly among land use types. The lower complexity of artificial grassland and farmland may be a result of the high intensity of anthropogenic activities in these two land-use types, while the higher structural complexity of the shrubland and woodland networks characterised by low-intensity management may be a result of low anthropogenic disturbance. Correlation analysis of soil properties (e.g., soil physicochemical properties, soil nutrients, and microbiomass carbon and nitrogen levels) and soil microbial communities demonstrated that although microbial taxa were correlated to some extent with soil environmental factors, these factors did not sufficiently explain the microbial community differences among land use types. Understanding variability among soil microbial communities within agro-pastoral areas of northern China is critical for determining the most effective land management strategies and conserving microbial diversity at the regional level.
Collapse
Affiliation(s)
- Zhaokai Sun
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Chongzhi Sun
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Tongrui Zhang
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Jia Liu
- School of Grass Academy, Qingdao Agriculture University, Qingdao, China
| | - Xinning Wang
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Jing Feng
- School of Grass Academy, Qingdao Agriculture University, Qingdao, China
| | - Shucheng Li
- Anhui Science and Technology University, College of Agriculture, Huainan, China
| | - Shiming Tang
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Ke Jin
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Department of International Cooperation, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Yang J, Xiang J, Goh SG, Xie Y, Nam OC, Gin KYH, He Y. Food waste compost and digestate as novel fertilizers: Impacts on antibiotic resistome and potential risks in a soil-vegetable system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171346. [PMID: 38438039 DOI: 10.1016/j.scitotenv.2024.171346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
As a novel agricultural practice, the reuse of food waste compost and digestate as fertilizers leads to a circular economy, but inevitably introduces bio-contaminants such as antibiotic resistance genes (ARGs) into the agroecosystem. Moreover, heavy metal and antibiotic contamination in farmland soil may exert selective pressures on the evolution of ARGs, posing threats to human health. This study investigated the fate, influencing mechanisms and potential risks of ARGs in a soil-vegetable system under different food waste fertilization and remediation treatments and soil contamination conditions. Application of food waste fertilizers significantly promoted the pakchoi growth, but resulted in the spread of ARGs from fertilizers to pakchoi. A total of 56, 80, 84, 41, and 73 ARGs, mobile genetic elements (MGEs) and metal resistance genes (MRGs) were detected in the rhizosphere soil (RS), bulk soil (BS), control soil (CS), root endophytes (RE), and leaf endophytes (LE), respectively. Notably, 7 genes were shared in the above five subgroups, indicating a specific soil-root-endophytes transmission pathway. 36 genes were uniquely detected in the LE, which may originate from airborne ARGs. The combined application of biochar and fertilizers reduced the occurrence of ARGs and MGEs to some extent, showing the remediation effect of biochar. The average abundance of ARGs in the RS, BS and CS was 3.15 × 10-2, 1.31 × 10-2 and 2.35 × 10-1, respectively. Rhizosphere effects may reduce the abundance of ARGs in soil. The distribution pattern of ARGs was influenced by the types of soil, endophyte and contaminant. MGEs is the key driver shaping ARGs dynamics. Soil properties and pakchoi growth status may affect the bacterial composition, and consequently regulate ARGs fate, while endophytic ARGs were more impacted by biotic factors. Moreover, the average daily doses of ARGs from pakchoi consumption is 107-109 copies/d/kg, and its potential health risks should be emphasized.
Collapse
Affiliation(s)
- Jun Yang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Jinyi Xiang
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Shin Giek Goh
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yu Xie
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ong Choon Nam
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China.
| |
Collapse
|
7
|
Zhao J, Yu X, Zhang C, Hou L, Wu N, Zhang W, Wang Y, Yao B, Delaplace P, Tian J. Harnessing microbial interactions with rice: Strategies for abiotic stress alleviation in the face of environmental challenges and climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168847. [PMID: 38036127 DOI: 10.1016/j.scitotenv.2023.168847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Rice, which feeds more than half of the world's population, confronts significant challenges due to environmental and climatic changes. Abiotic stressors such as extreme temperatures, drought, heavy metals, organic pollutants, and salinity disrupt its cellular balance, impair photosynthetic efficiency, and degrade grain quality. Beneficial microorganisms from rice and soil microbiomes have emerged as crucial in enhancing rice's tolerance to these stresses. This review delves into the multifaceted impacts of these abiotic stressors on rice growth, exploring the origins of the interacting microorganisms and the intricate dynamics between rice-associated and soil microbiomes. We highlight their synergistic roles in mitigating rice's abiotic stresses and outline rice's strategies for recruiting these microorganisms under various environmental conditions, including the development of techniques to maximize their benefits. Through an in-depth analysis, we shed light on the multifarious mechanisms through which microorganisms fortify rice resilience, such as modulation of antioxidant enzymes, enhanced nutrient uptake, plant hormone adjustments, exopolysaccharide secretion, and strategic gene expression regulation, emphasizing the objective of leveraging microorganisms to boost rice's stress tolerance. The review also recognizes the growing prominence of microbial inoculants in modern rice cultivation for their eco-friendliness and sustainability. We discuss ongoing efforts to optimize these inoculants, providing insights into the rigorous processes involved in their formulation and strategic deployment. In conclusion, this review emphasizes the importance of microbial interventions in bolstering rice agriculture and ensuring its resilience in the face of rising environmental challenges.
Collapse
Affiliation(s)
- Jintong Zhao
- Gembloux Agro-Bio Tech, University of Liege, TERRA - Teaching & Research Center, Plant Sciences, 5030 Gembloux, Belgium; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoxia Yu
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, Jiangxi 330000, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Sanya Institute, Hainan, Academy of Agricultural Sciences, Sanya 572000, China
| | - Ligang Hou
- Rice Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin 136100, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pierre Delaplace
- Gembloux Agro-Bio Tech, University of Liege, TERRA - Teaching & Research Center, Plant Sciences, 5030 Gembloux, Belgium
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
8
|
Akumuntu A, Hong JK, Jho EH, Omidoyin KC, Park SJ, Zhang Q, Zhao X. Biochar derived from rice husk: Impact on soil enzyme and microbial dynamics, lettuce growth, and toxicity. CHEMOSPHERE 2024; 349:140868. [PMID: 38052311 DOI: 10.1016/j.chemosphere.2023.140868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
This study was set to investigate the effects of rice husk biochar (RHB) on soil characteristics and growth of lettuce (Lactuca sativa). A comprehensive research approach was employed to examine the effect of different RHB concentrations (i.e., 0-1.5%) on soil pH, soil enzyme activities (i.e., alkaline phosphatase, beta-glucosidase, and dehydrogenase), soil microbial community, lettuce growth, and earthworm toxicity. The results showed that, within the studied RHB concentration range, the RHB application did not have significant effects on the soil pH. However, the enzyme activities were increased with increasing RHB concentration after the 28 d-lettuce growth period. The RHB application also increased the abundances of the bacterial genera Massilia and Bacillus and fungal genus Trichocladium having the plant growth promoting abilities. Furthermore, the study revealed that the root weight and number of lettuce leaves were significantly increased in the presence of the RHB, and the growth was dependent on the RHB concentration. The improved lettuce growth can be explained by the changes in the enzyme and microbial dynamics, which have resulted from the increased nutrient availability with the RHB application. Additionally, the earthworm toxicity test indicated that the tested RHB concentrations can be safely applied to soil without any significant ecotoxicity. In conclusion, this study underscores the potential of RHB as a soil amendment with positive effects on crop growth, highlighting the utilization of agricultural byproducts to enhance soil biological quality and plant growth through biochar application.
Collapse
Affiliation(s)
- Athanasie Akumuntu
- Department of Agricultural Chemistry, Chonnam National University, Gwangju, 61186, South Korea
| | - Jin-Kyung Hong
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, South Korea
| | - Eun Hea Jho
- Department of Agricultural Chemistry, Chonnam National University, Gwangju, 61186, South Korea; Department of Agricultural and Biological Chemistry, Chonnam National University, Gwangju, 61186, South Korea.
| | - Kehinde Caleb Omidoyin
- Department of Agricultural Chemistry, Chonnam National University, Gwangju, 61186, South Korea
| | - Seong-Jik Park
- Department of Bioresources and Rural Systems Engineering, Hankyong National University, Anseong, 17579, South Korea.
| | - Qianru Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
9
|
Zhou G, Chen L, Zhang C, Ma D, Zhang J. Bacteria-Virus Interactions Are More Crucial in Soil Organic Carbon Storage than Iron Protection in Biochar-Amended Paddy Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19713-19722. [PMID: 37983953 DOI: 10.1021/acs.est.3c04398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Iron oxides supposedly provide physicochemical protection for soil organic carbon (SOC) under anoxic conditions. Likewise, biochar can modulate the composition of soil microbial communities. However, how Fe oxides and microbial communities influence the fate of SOC with biochar amendment remains unresolved, especially the effect of the bacteria-virus interaction on SOC dynamics. Here, we performed a four-month pot experiment using rice seedlings with a biochar amendment under waterlogged conditions. Then, soil aggregate sizes were examined to explore the factors influencing the SOC patterns and the underlying mechanisms. We found that biochar altered soil enzyme activities, especially in macroaggregates. Fe oxides and necromass exhibited significant negative relationships with SOC. Bacterial communities were notably associated with viral communities. Here, the keystone ecological cluster (module 1) and keystone taxa in the bacteria-virus network showed significant negative correlations with SOC. However, Fe oxides exhibited substantial positive relationships with module 1. In contrast to the prevailing view, the SOC increase was not primarily driven by Fe oxides but strongly influenced by bacteria-virus interactions and keystone taxa. These findings indicate that biochar governs microbial-mediated SOC accumulation in paddy soil and ascertains the role of viruses in regulating the bacterial community, thus predicting SOC stock.
Collapse
Affiliation(s)
- Guixiang Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lin Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Congzhi Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Donghao Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
10
|
Jiao Y, Li Y, Dou W, Zhang W, Liu H. Biochar alleviates the crop failure of rice production induced by low-nitrogen cultivation mode by regulating the soil microbes taxa composition. Arch Microbiol 2023; 205:361. [PMID: 37902877 DOI: 10.1007/s00203-023-03700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 11/01/2023]
Abstract
To improve the nitrogen utilization efficiency and a series of environmental problems caused by excessive application of nitrogen fertilizer, actual agricultural production often reduced the usage ratio of nitrogen fertilizer. However, the reduction in nitrogen fertilizer not only affects the soil microenvironment but also leads to adverse effects on rice yield. Due to its unique properties, biochar can regulate soil nutrient distribution and significantly affect soil microbial community structure/functions. To further understand the effects of different levels of biochar on soil nutrient indicators, soil microorganisms and crop growth under the nitrogen-reduction condition, our experiment with four groups was set up as followed: 0%, 2.5% and 5% biochar application rates with 99 kg/hm2 nitrogen fertilizer and one control group (the actual fertilizer standard used in the field:110 kg/hm2) without no exogenous biochar supplement. The rice yield and soil nutrient indexes were observed, and the differences between groups were analyzed based on multiple comparisons. 16S ribosomal RNA and ITS sequencing were used to analyze the community structure of soil bacteria and fungi. Redundancy analysis was performed to obtain the correlation relationships between microbial community marker species, soil nutrient indexes, and rice yield. Path analysis was used to determine the mechanism by which soil nutrient indexes affect rice yield. The results showed that a higher application rate of biochar led to a significant increased trend in the soil pH, organic matter and total nitrogen content. In addition, a high concentration of biochar under nitrogen-reduction condition decreased the soil bacterial diversity but elevated the fungal diversity. Different concentrations of biochar resulted in these changes in the relative abundance of soil bacteria/fungi but did not alter the dominant species taxa. Taken together, appropriate usage for biochar under the nitrogen-reduction background could induce alteration in soil nutrient indicators, microbial communities and crop yields. These results provide a theoretical basis for exploring scientific, green and efficient fertilization strategies in the rice cultivation industry. Notably, the interaction relationship between rhizosphere microorganisms in rice and soil microbial taxa are not yet clear, so further research on its detailed effects on rice production is needed. In addition, the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis for the physiological functions of the soil microbes could only predict the potential metabolic pathways. Therefore, the next-generation metagenome techonology might be performed to explore detailed metabolic differences and accurate taxa alteration at the "species" level.
Collapse
Affiliation(s)
- Yan Jiao
- School of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Yutao Li
- School of Life Science, Northeast Normal University, Changchun, 130117, China
| | - Wanyu Dou
- School of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Wenlong Zhang
- School of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Hui Liu
- School of Engineering, Northeast Agricultural University, Harbin, 150030, China.
- School of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Bagheri Novair S, Cheraghi M, Faramarzi F, Asgari Lajayer B, Senapathi V, Astatkie T, Price GW. Reviewing the role of biochar in paddy soils: An agricultural and environmental perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115228. [PMID: 37423198 DOI: 10.1016/j.ecoenv.2023.115228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
The main challenge of the twenty-first century is to find a balance between environmental sustainability and crop productivity in a world with a rapidly growing population. Soil health is the backbone of a resilient environment and stable food production systems. In recent years, the use of biochar to bind nutrients, sorption of pollutants, and increase crop productivity has gained popularity. This article reviews key recent studies on the environmental impacts of biochar and the benefits of its unique physicochemical features in paddy soils. This review provides critical information on the role of biochar properties on environmental pollutants, carbon and nitrogen cycling, plant growth regulation, and microbial activities. Biochar improves the soil properties of paddy soils through increasing microbial activities and nutrient availability, accelerating carbon and nitrogen cycle, and reducing the availability of heavy metals and micropollutants. For example, a study showed that the application of a maximum of 40 t ha-1 of biochar from rice husks prior to cultivation (at high temperature and slow pyrolysis) increases nutrient utilization and rice grain yield by 40%. Biochar can be used to minimize the use of chemical fertilizers to ensure sustainable food production.
Collapse
Affiliation(s)
- Sepideh Bagheri Novair
- Department of Soil Science, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| | - Meysam Cheraghi
- Department of Soil Science, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| | - Farzaneh Faramarzi
- Department of Agronomy and Plant Breeding, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| | | | | | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| | - G W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
12
|
Zhang Y, Du H, Chen Y, Wei H, Dai Q, Liu J, Li Z. Influence of biochar-based urea substituting urea on rice yield, bacterial community and nitrogen cycling in paddy fields. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2794-2805. [PMID: 36369962 DOI: 10.1002/jsfa.12333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND There is an increasing understanding of the importance of biochar-based fertilizers in agroecosystems. However, no research has evaluated the effects of partial substitution of urea with biochar-based urea on rice yields and soil microbial communities. We therefore investigated the rice yields, bacterial communities, and gene abundance involved in nitrogen in silty clay and sandy loam soil paddy fields treated with urea (U), total substitution of urea with biochar-based urea (BSU), partial substitution of urea with biochar-based urea in basal and tillering fertilizers (BSU1), and partial substitution of urea with biochar-based urea in panicle fertilizers (BSU2). RESULTS Compared with U, applying biochar-based urea increased rice yields, with BSU2 having the most notable effect. Principal coordinate analysis revealed that bacterial communities treated with BSU2 in both soils were significantly different from those treated with U and BSU, most probably due to the decrease in pH caused by the decrease in the concentration of ammonium. The relative abundance of Subdivision3_genera_incertae_sedis, Azotobacter, Geobacter, Buchnera, and Terrimonas in silty clay soils and Saccharibacteria_genera_incertae_sedis and Geobacter in sandy loam soils significantly increased when treated with BSU2 and was positively correlated with rice yields, indicating that the improvements in rice yield were associated with changes in bacterial communities. Based upon amoA/narG related to nitrate accumulation and norB/nosZ related to nitrous oxide emissions, BSU2 enabled a lower risk of nitrate leaching and nitrous oxide emissions in both soils, in comparison with the U and BSU treatments. CONCLUSION The BSU2 treatment had a stronger yield-increasing effect than biochar-based urea alone and lowered the risk of nitrogen pollution, which is beneficial to the sustainable development of paddy fields. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| | - Haimeng Du
- Jiangsu Key Laboratory of Crop Genetic and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Yinglong Chen
- Jiangsu Key Laboratory of Crop Genetic and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Huanhe Wei
- Jiangsu Key Laboratory of Crop Genetic and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Qigen Dai
- Jiangsu Key Laboratory of Crop Genetic and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jiumei Liu
- Technology Development Research Institute of Testing and Certification, Jiangxi General Institute of Testing and Certification, Nanchang, China
| | - Zhijiang Li
- Jiangxi Xinbang Biochemical Co., Ltd., Jiujiang, China
| |
Collapse
|
13
|
Carrascosa A, Pascual JA, López-García Á, Romo-Vaquero M, De Santiago A, Ros M, Petropoulos SA, Alguacil MDM. Effects of inorganic and compost tea fertilizers application on the taxonomic and functional microbial diversity of the purslane rhizosphere. FRONTIERS IN PLANT SCIENCE 2023; 14:1159823. [PMID: 37152179 PMCID: PMC10159062 DOI: 10.3389/fpls.2023.1159823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023]
Abstract
Introduction Soil fertility is a major determinant of plant-microbial interactions, thus, directly and indirectly affecting crop productivity and ecosystem functions. In this study, we analysed for the first time the effects of fertilizer addition on the cropping of purslane (Portulaca oleracea) with particular attention to the taxonomic and functional characteristics of their associated soil microbiota. Methods We tested the effects of different doses of inorganic fertilization differing in the amount of N:P:K namely IT1 (300:100:100); IT2 (300:200:100); IT3 (300:200:200); and IT4 (600:100:100) (ppm N:P:K ratio) and organic fertilization (compost tea) which reached at the end of the assay the dose of 300 ppm N. Results and discussion Purslane growth and soil quality parameters and their microbial community structure, abundance of fungal functional groups and prevailing bacterial metabolic functions were monitored. The application of compost tea and inorganic fertilizers significantly increased the purslane shoot biomass, and some soil chemical properties such as pH and soil enzymatic activities related to C, N and P biogeochemical cycles. The bacterial and fungal community compositions were significantly affected by the organic and chemical fertilizers input. The majority of inorganic fertilization treatments decreased the fungal and bacterial diversity as well as some predictive bacterial functional pathways. Conclusions These findings suggest that the inorganic fertilization might lead to a change of microbial functioning. However, in order to get stronger evidence that supports the found pattern, longer time-frame experiments that ideally include sampling across different seasons are needed. Thus, further research is still needed to investigate the effects of fertilizations on purslane productivity under commercial field conditions.
Collapse
Affiliation(s)
- Angel Carrascosa
- CSIC-Centro de Edafología y Biología Aplicada del Segura, Department of Soil and Water Conservation, Murcia, Spain
| | - Jose Antonio Pascual
- CSIC-Centro de Edafología y Biología Aplicada del Segura, Department of Soil and Water Conservation, Murcia, Spain
| | - Álvaro López-García
- Instituto Interuniversitario de investigación del Sistema Tierra en Andalucía, Universidad de Jaén, Jaén, Spain
| | - María Romo-Vaquero
- CSIC-Centro de Edafología y Biología Aplicada del Segura, Department of Food Science and Technology, Campus de Espinardo, Murcia, Spain
| | - Ana De Santiago
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Área de Protección Vegetal, Subárea de gestión y usos de suelos agrícolas y forestales, Instituto de Investigación Finca la Orden, Badajoz, Spain
| | - Margarita Ros
- CSIC-Centro de Edafología y Biología Aplicada del Segura, Department of Soil and Water Conservation, Murcia, Spain
| | - Spyridon A. Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Maria Del Mar Alguacil
- CSIC-Centro de Edafología y Biología Aplicada del Segura, Department of Soil and Water Conservation, Murcia, Spain
- *Correspondence: Maria Del Mar Alguacil,
| |
Collapse
|
14
|
Zhang M, Liu Y, Wei Q, Gu X, Liu L, Gou J. Biochar application ameliorated the nutrient content and fungal community structure in different yellow soil depths in the karst area of Southwest China. FRONTIERS IN PLANT SCIENCE 2022; 13:1020832. [PMID: 36352867 PMCID: PMC9638009 DOI: 10.3389/fpls.2022.1020832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The influence of biochar on the change of nutrient content and fungal community structure is still not clear, especially in different yellow soil depths in karst areas. A soil column leaching simulation experiment was conducted to investigate the influence of biochar on soil content, enzymatic activity, and fungal community diversity and structural composition. Three biochar amounts were studied, namely, 0%(NB, no biochar), 1.0%(LB, low-application-rate biochar), and 4.0% (HB, high-application-rate biochar). The results showed that biochar increased the pH value and the contents of soil organic matter (SOM), total nitrogen (TN), available phosphorus (AP), and available potassium (AK) but reduced the microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN). Furthermore, this effect was enhanced with increasing biochar amount. Biochar was conducive to improving the nutrient availability in topsoil (0-20 cm), especially TN, AK, and MBN. Meanwhile, biochar affected the enzymatic activity, especially the sucrase activity. Biochar affected the diversity and structure of the fungal community, of which HB treatment had the most obvious effect. Among these treatments, Aspergillus, unclassified_Chaetomiaceae, Mortierella, Spizellomyces, Penicillium, Fusarium, and unclassified_Chromista fungal genera were the highest. Moreover, biochar inhibited the growth of harmful pathogens and increased the abundance of beneficial fungi in soil, and the effect was enhanced with increasing biochar amount and soil depth. Redundancy analysis (RDA) showed that AK was an important factor in yellow soil, although the main environmental factors affecting the fungal community structure were different in different soil depths. Overall, biochar had a positive effect on improving the land productivity and micro-ecological environment of yellow soil in the karst area.
Collapse
|
15
|
Du M, Zhang J, Wang G, Liu C, Wang Z. Response of bacterial community composition and co-occurrence network to straw and straw biochar incorporation. Front Microbiol 2022; 13:999399. [PMID: 36246223 PMCID: PMC9563622 DOI: 10.3389/fmicb.2022.999399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
Microbial decomposition plays a crucial role in the incorporation of straw and straw biochar (SSB) into soil. Lime concretion black soil (LCBS) is a typical low-medium crop yield soil, and it is also one of the main soil types for grain production in China. However, the link between SSB additions and soil bacterial communities in LCBS remains unclear. This study explored the effects of SSB incorporation on bacterial community composition, structure and co-occurrence network patterns at different soil depths and maize growth stages. The results showed that soil PH, soil organic matter and total nitrogen significantly affected the seasonality and stratification of the soil bacterial community. The composition and diversity of bacterial communities were significantly affected by growth period and treatment rather than soil depth. Specifically, the bacterial community diversity increased significantly with crop growth at 0–20 cm, decreased the relative abundance of Actinobacteria, and increased the relative abundance of Proteobacteria and Acidobacteria. SF (straw with fertilizer) and BF (straw biochar with fertilizer) treatments decreased bacterial community diversity. Co-occurrence networks are more complex in BF, S (straw), and SF treatments, and the number of edge network patterns is increased by 92.5, 40, and 60% at the maturity stage compared with F (fertilizer) treatment, respectively. Moreover, the positive effect of straw biochar on the bacterial network pattern increased with time, while the effect of straw weakened. Notably, we found that rare species inside keystone taxa (Gemmatimonadetes and Nitrospirae) play an indispensable role in maintaining bacterial network construction in LCBS. This study offers a comprehensive understanding of the response of soil bacterial communities to SSB addition in LCBS areas, and provides a reference for further improvement of LCBS productivity.
Collapse
Affiliation(s)
- Mingcheng Du
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, China
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, China
- Yangtze Institute for Conservation and Development, Nanjing, China
- Research Center for Climate Change, Nanjing, China
| | - Jianyun Zhang
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, China
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, China
- Yangtze Institute for Conservation and Development, Nanjing, China
- Research Center for Climate Change, Nanjing, China
| | - Guoqing Wang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, China
- Yangtze Institute for Conservation and Development, Nanjing, China
- Research Center for Climate Change, Nanjing, China
- *Correspondence: Guoqing Wang,
| | - Cuishan Liu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, China
- Yangtze Institute for Conservation and Development, Nanjing, China
- Research Center for Climate Change, Nanjing, China
| | - Zhenlong Wang
- Wudaogou Experimental Station for Hydrology and Water Resources, Bengbu, China
- Anhui Hydraulic Research Institute, Huai River Commission, Bengbu, China
| |
Collapse
|
16
|
Song Y, Zhao Q, Guo X, Ali I, Li F, Lin S, Liu D. Effects of biochar and organic-inorganic fertilizer on pomelo orchard soil properties, enzymes activities, and microbial community structure. Front Microbiol 2022; 13:980241. [PMID: 35992706 PMCID: PMC9382122 DOI: 10.3389/fmicb.2022.980241] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Fertilizer management can influence soil microbes, soil properties, enzymatic activities, abundance and community structure. However, information on the effects of biochar in combination with organic-inorganic fertilizer after 3 years under pomelo orchard on soil bacterial abundance, soil properties and enzyme activities are not clear. Therefore, we conducted a field experiment with seven treatments, i.e., (1) Ck (control), (2) T1 (2 kg biochar plant–1), (3) T2 (4 kg biochar plant–1), (4) T3 (2 kg organic-inorganic mixed fertilizer plant–1), (5) T4 (4 kg biochar + 1.7 kg organic-inorganic mixed fertilizer plant–1), (6) T5 (4 kg biochar + 1.4 kg organic-inorganic mixed fertilizer plant–1), and (7) T6 (4 kg biochar + 1.1 kg organic-inorganic mixed fertilizer plant–1). The soil microbial communities were characterized using high-throughput sequencing of 16S and internal transcribed spacer (ITS) ribosomal RNA gene amplicons. The results showed that biochar combined with organic-organic fertilizer significantly improved soil properties (pH, alkali hydrolysable nitrogen, available phosphorus, available potassium, and available magnesium) and soil enzymatic activities [urease, dehydrogenase (DHO), invertase and nitrate reductase (NR) activities]. Furthermore, soil bacterial relative abundance was higher in biochar and organic-inorganic treatments as compared to control plots and the most abundant phyla were Acidobacteria (40%), Proteobacteria (21%), Chloroflexi (17%), Planctomycetes (8%), Bacteroidetes (4%), Verrucomicrobia (2%), and Gemmatimonadetes (1%) among others. Among the treatments, Acidothermus, Acidibacter, Candidatus Solibacter and F473 bacterial genera were highest in combined biochar and organic-inorganic treatments. The lowest bacterial abundance and bacterial compositions were recorded in control plots. The correlation analysis showed that soil attributes, including soil enzymes, were positively correlated with Chloroflexi, Planctomycetes, verrucomicrobia, GAL15 and WPS-2 bacterial abundance. This study demonstrated that biochar with organic-inorganic fertilizer improves soil nutrients, enzymatic activities and bacterial abundance.
Collapse
Affiliation(s)
- Yang Song
- Institute of Subtropical Crops of Zhejiang Province, Wenzhou, China
| | - Quan Zhao
- Institute of Subtropical Crops of Zhejiang Province, Wenzhou, China
| | - Xiuzhu Guo
- Institute of Subtropical Crops of Zhejiang Province, Wenzhou, China
| | - Izhar Ali
- College of Agriculture, Guangxi University, Nanning, China
| | - Fayong Li
- Institute of Subtropical Crops of Zhejiang Province, Wenzhou, China
| | - Shaosheng Lin
- Institute of Subtropical Crops of Zhejiang Province, Wenzhou, China
| | - Dongfeng Liu
- Institute of Subtropical Crops of Zhejiang Province, Wenzhou, China
- *Correspondence: Dongfeng Liu,
| |
Collapse
|
17
|
Iqbal A, Ali I, Yuan P, Khan R, Liang H, Wei S, Jiang L. Combined Application of Manure and Chemical Fertilizers Alters Soil Environmental Variables and Improves Soil Fungal Community Composition and Rice Grain Yield. Front Microbiol 2022; 13:856355. [PMID: 35910624 PMCID: PMC9330912 DOI: 10.3389/fmicb.2022.856355] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Soil microorganisms play vital roles in energy flow and soil nutrient cycling and, thus, are important for crop production. A detailed understanding of the complex responses of microbial communities to diverse organic manure and chemical fertilizers (CFs) is crucial for agroecosystem sustainability. However, little is known about the response of soil fungal communities and soil nutrients to manure and CFs, especially under double-rice cropping systems. In this study, we investigated the effects of the application of combined manure and CFs to various fertilization strategies, such as no N fertilizer (Neg-CF); 100% chemical fertilizer (Pos-CF); 60% cattle manure (CM) + 40% CF (high-CM); 30% CM + 70% CF (low-CM); 60% poultry manure (PM) + 40% CF (high-PM), and 30% PM + 70% CF (low-PM) on soil fungal communities' structure and diversity, soil environmental variables, and rice yield. Results showed that synthetic fertilizer plus manure addition significantly increased the soil fertility and rice grain yield compared to sole CFs' application. Moreover, the addition of manure significantly changed the soil fungal community structure and increased the relative abundance of fungi such as phyla Ascomycota, Basidiomycota, Mortierellomycota, and Rozellomycota. The relative abundances dramatically differed at each taxonomic level, especially between manured and non-manured regimes. Principal coordinates analysis (PCoA) exhibited greater impacts of the addition of manure amendments than CFs on fungal community distributions. Redundancy analysis showed that the dominant fungal phyla were positively correlated with soil pH, soil organic C (SOC), total N, and microbial biomass C, and the fungal community structure was strongly affected by SOC. Network analysis explored positive relationships between microorganisms and could increase their adaptability in relevant environments. In addition, the structural equation model (SEM) shows the relationship between microbial biomass, soil nutrients, and rice grain yield. The SEM showed that soil nutrient contents and their availability directly affect rice grain yield, while soil fungi indirectly affect grain yield through microbial biomass production and nutrient levels. Our results suggest that manure application combined with CFs altered soil biochemical traits and soil fungal community structure and counteracted some of the adverse effects of the synthetic fertilizer. Overall, the findings of this research suggest that the integrated application of CF and manure is a better approach for improving soil health and rice yield.
Collapse
Affiliation(s)
- Anas Iqbal
- College of Life Science and Technology, Guangxi University, Nanning, China
- College of Agriculture, Guangxi University, Nanning, China
| | - Izhar Ali
- College of Agriculture, Guangxi University, Nanning, China
| | - Pengli Yuan
- College of Agriculture, Guangxi University, Nanning, China
| | - Rayyan Khan
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - He Liang
- College of Agriculture, Guangxi University, Nanning, China
| | - Shanqing Wei
- College of Agriculture, Guangxi University, Nanning, China
| | - Ligeng Jiang
- College of Life Science and Technology, Guangxi University, Nanning, China
- College of Agriculture, Guangxi University, Nanning, China
- *Correspondence: Ligeng Jiang
| |
Collapse
|
18
|
Ali N, Lin Y, Jiang L, Ali I, Ahmed I, Akhtar K, He B, Wen R. Biochar and Manure Applications Differentially Altered the Class 1 Integrons, Antimicrobial Resistance, and Gene Cassettes Diversity in Paddy Soils. Front Microbiol 2022; 13:943880. [PMID: 35847108 PMCID: PMC9277118 DOI: 10.3389/fmicb.2022.943880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
Integrons are genetic components that are critically involved in bacterial evolution and antimicrobial resistance by assisting in the propagation and expression of gene cassettes. In recent decades, biochar has been introduced as a fertilizer to enhance physiochemical properties and crop yield of soil, while manure has been used as a fertilizer for centuries. The current study aimed to investigate the impact of biochar, manure, and a combination of biochar and manure on integrons, their gene cassettes, and relative antimicrobial resistance in paddy soil. Field experiments revealed class 1 (CL1) integrons were prevalent in all samples, with higher concentration and abundance in manure-treated plots than in biochar-treated ones. The gene cassette arrays in the paddy featured a broad pool of cassettes with a total of 35% novel gene cassettes. A majority of gene cassettes encoded resistance to aminoglycosides, heat shock protein, heavy metals, pilus secretory proteins, and twin-arginine translocases (Tat), TatA, TatB, and TatC. Both in combination and solo treatments, the diversity of gene cassettes was increased in the manure-enriched soil, however, biochar reduced the gene cassettes’ diversity and their cassettes array. Manure considerably enhanced CL1 integrons abundance and antimicrobial resistance, whereas biochar amendments significantly reduced integrons and antimicrobial resistance. The results highlighted the differential effects of biochar and manure on integrons and its gene cassette arrays, showing increased abundance of integrons and antibiotic resistance upon manure application and decrease of the same with biochar. The use of biochar alone or in combination with manure could be a beneficial alternative to mitigate the spread of antimicrobial resistance and bacterial evolution in the environment, specifically in paddy soils.
Collapse
Affiliation(s)
- Niyaz Ali
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yinfu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ligeng Jiang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Izhar Ali
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Ishtiaq Ahmed
- Department of Regional Science Operations, La Trobe Rural Health School, Albury-Wodonga, VIC, Australia
| | - Kashif Akhtar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bing He
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
- *Correspondence: Bing He,
| | - Ronghui Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, Nanning, China
- Ronghui Wen,
| |
Collapse
|