1
|
Xing Y, Xie Y, Wang X. Enhancing soil health through balanced fertilization: a pathway to sustainable agriculture and food security. Front Microbiol 2025; 16:1536524. [PMID: 40356641 PMCID: PMC12067421 DOI: 10.3389/fmicb.2025.1536524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Sustainable soil health management is pivotal for advancing agricultural productivity and ensuring global food security. This review comprehensively evaluates the effects of mineral-organic fertilizer ratios on soil microbial communities, enzymatic dynamics, functional gene abundance, and holistic soil health. By integrating bioinformatics, enzyme activity assays, and metagenomic analyses, we demonstrate that balanced fertilization significantly enhances microbial diversity, community stability, and functional resilience against environmental stressors. Specifically, the synergistic application of mineral and organic fertilizers elevates β-glucosidase and urease activities, accelerating organic matter decomposition and nutrient cycling while modulating microbial taxa critical for nutrient transformation and pathogen suppression. Notably, replacing 20-40% of mineral fertilizers with organic alternatives mitigates environmental risks such as greenhouse gas emissions and nutrient leaching while sustaining crop yields. This dual approach improves soil structure, boosts water and nutrient retention capacity, and increases microbial biomass by 20-30%, fostering long-term soil fertility. Field trials reveal yield increases of 25-40% in crops like rice and maize under combined fertilization, alongside enhanced soil organic carbon (110.6%) and nitrogen content (59.2%). The findings underscore the necessity of adopting region-specific, balanced fertilization strategies to optimize ecological sustainability and agricultural productivity. Future research should prioritize refining fertilization frameworks through interdisciplinary approaches, addressing soil-crop-climate interactions, and scaling these practices to diverse agroecosystems. By aligning agricultural policies with ecological principles, stakeholders can safeguard soil health-a cornerstone of environmental sustainability and human wellbeing-while securing resilient food systems for future generations.
Collapse
Affiliation(s)
| | | | - Xiukang Wang
- Key Laboratory of Applied Ecology of Loess Plateau, College of Life Science, Yan'an University, Yan'an, China
| |
Collapse
|
2
|
Sun Y, Liu K, Liu Z, Liu Y, Yang X, Du B, Li X, Li N, Zhou B, Zhu X, Wang H, Peng B, Wang C. Bacillus paralicheniformis SYN-191 isolated from ginger rhizosphere soil and its growth-promoting effects in ginger farming. BMC Microbiol 2025; 25:75. [PMID: 39953394 PMCID: PMC11829480 DOI: 10.1186/s12866-025-03791-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND The use of chemical fertilizers and pesticides and the farming without crop rotation may negatively impact the microbial community and the quality of the soils in ginger farm. It is important to improve soil properties to promote the healthy growth of ginger in ginger farm. RESULTS We isolated and identified the pathogenic Fusarium ramigenum from infected ginger roots. We then isolated a new Bacillus paralicheniformis strain SYN-191 from the rhizosphere soil around healthy ginger roots, and showed B. paralicheniformis SYN-91 could inhibit F. ramigenum growth, degrade proteins, dissolve silicate, and decompose cellulose. SYN-191 treatment significantly improved the agronomic traits of ginger seedlings in healthy soil and continuous cropping soil. Furthermore, SYN-191 treatment restructured the microbial microbiomes in rhizosphere soil, including reducing the number of harmful fungi, such as Fusarium, and increasing the beneficial bacterial populations such as Bacillus and Pseudomonas. Field experiments showed that SYN-191 application increased ginger yield by 26.47% (P < 0.01). Whole-genome sequencing of strain SYN-191 revealed the relevant genes for antibiotic synthesis, potassium dissolution, and cellulose decomposition. CONCLUSIONS A new plant-growth-promoting B. paralicheniformis SYN-191 was obtained. This strain could antagonize ginger root rot pathogenic fungus, improve agronomic traits and ginger yield in field, and improve the microbial community structure in the ginger rhizosphere soil. This study provides a valuable bacterial resource for overcoming obstacles in the continuous cropping of ginger.
Collapse
Affiliation(s)
- Yanan Sun
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China
| | - Kai Liu
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China
| | - Zhongliang Liu
- Tai'an Academy of Agricultural Sciences, Tai'an, 271000, China
| | - Yayu Liu
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China
| | - Xuerong Yang
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China
| | - Binghai Du
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China
| | - Xiang Li
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China
| | - Ningyang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Bo Zhou
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Bingyin Peng
- ARC Centre of Excellence in Synthetic Biology, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Chengqiang Wang
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China.
| |
Collapse
|
3
|
Xing Y, Wang X. Precise application of water and fertilizer to crops: challenges and opportunities. FRONTIERS IN PLANT SCIENCE 2024; 15:1444560. [PMID: 39711591 PMCID: PMC11659019 DOI: 10.3389/fpls.2024.1444560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024]
Abstract
Precision water and fertilizer application technologies have emerged as crucial innovations in sustainable agriculture, addressing the pressing need to enhance crop yield and quality while optimizing resource use and minimizing environmental impacts. This review systematically explores the latest advancements in precision water and fertilizer application technologies. It examines the integration of advanced sensors, remote sensing, and machine learning algorithms in precision agriculture, assessing their roles in optimizing irrigation and nutrient management. The study evaluates various precision techniques, including micro-irrigation systems, variable rate technology (VRT), and predictive modeling, along with their implementation in diverse agricultural settings. Furthermore, the review addresses the challenges posed by soil environmental heterogeneity and emphasizes the necessity for a scientific index system to guide precise applications. Advanced irrigation methods, such as subsurface drip irrigation and micro-sprinkling, improve water-use efficiency and reduce salinity levels, while precision fertilization techniques optimize nutrient uptake and minimize leaching. The integration of machine learning and remote sensing facilitates real-time monitoring and adaptive management, resulting in increased resource use efficiency and reduced environmental pollution. However, the effectiveness of these technologies is contingent upon addressing soil heterogeneity and developing standardized application indices. This review highlights the novel combination of advanced sensing technologies and data analytics in precision agriculture, enabling targeted interventions tailored to specific field conditions. It underscores the importance of integrating soil microbial community dynamics and biochemical indicators with precision management practices to enhance soil fertility and crop performance. Furthermore, the development of predictive models and time series analysis tools represents a significant advancement in anticipating and responding to changing environmental conditions. Precision water and fertilizer application technologies offer substantial benefits for sustainable agricultural practices by improving crop yields, enhancing resource efficiency, and mitigating environmental impacts. The strategic integration of these technologies with tailored agricultural practices and robust monitoring systems is essential for optimizing nutrient cycling and maintaining soil health. Addressing existing challenges through interdisciplinary research and collaborative efforts will further advance the implementation of precision agriculture, contributing to long-term soil sustainability and global food security.
Collapse
Affiliation(s)
| | - Xiukang Wang
- Key Laboratory of Applied Ecology of Loess Plateau, College of Life Science, Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
4
|
Li J, Zuo Y, Zhang J. Rhizosphere Shifts: Reduced Fungal Diversity and Microbial Community Functionality Enhance Plant Adaptation in Continuous Cropping Systems. Microorganisms 2024; 12:2420. [PMID: 39770624 PMCID: PMC11678050 DOI: 10.3390/microorganisms12122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025] Open
Abstract
Continuous cropping problems constitute threats to perennial plant health and survival. Soil conditioners have the potential to enhance plant disease resistance in continuous cropping systems. However, how microbes and metabolites of the rhizosphere respond to soil conditioner addition remains largely unknown, but this knowledge is paramount to providing innovative strategies to enhance plant adaptation in continuous cropping systems. Here, we found that a biochar conditioner significantly improved plant survival rates in a continuous cropping system. The biochar-induced rhizosphere significantly alters the fungal community, causing a decline in fungal diversity and the downregulation of soil microbial community functionality. Specifically, the biochar-induced rhizosphere causes a reduction in the relative abundance of pathogenic Fusarium sp. and phenolic acid concentration, whose variations are the primary causes of continuous cropping problems. Conversely, we observed an unexpected bacterial diversity increase in rhizospheric and non-rhizospheric soils. Our research further identified key microbial taxa in the biochar-induced rhizosphere, namely, Monographella, Acremonium, Geosmithia, and Funneliformis, which enhance soil nutrient availability, suppress Fusarium sp., mitigate soil acidification, and reduce phenolic acid concentrations. Collectively, we highlight the critical role of regular microbial communities and metabolites in determining plant health during continuous cropping and propose a synthetic microbial community framework for further optimizing the ecological functions of the rhizosphere.
Collapse
Affiliation(s)
| | - Yingmei Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, No. 2238 Beijing Road, Kunming 650221, China;
| | - Jinyu Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, No. 2238 Beijing Road, Kunming 650221, China;
| |
Collapse
|
5
|
Cui F, Li Q, Shang S, Hou X, Miao H, Chen X. Effects of cotton peanut rotation on crop yield soil nutrients and microbial diversity. Sci Rep 2024; 14:28072. [PMID: 39543215 PMCID: PMC11564633 DOI: 10.1038/s41598-024-75309-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/03/2024] [Indexed: 11/17/2024] Open
Abstract
Background and Aims Cotton-peanut rotation is a sustainable farming practice that enhances land utilization and promotes the sustainable development of agriculture. Crop rotation can reduce the occurrence of pests and diseases, as different crops have varying levels of resistance to such threats. Additionally, by alternating the types of crops grown, the soil environment is changed, which can lead to the elimination of favorable conditions for pathogens and pests, thereby alleviating the impact of these issues. Furthermore, cotton-peanut rotation can improve soil fertility.To investigate the effects of different crop rotation systems on crop yield, soil nutrients, and soil microbial communities. METHODS Using high-throughput sequencing technology, investigate the soil microbial diversity in the root zone after cotton-peanut rotation.Various planting patterns, including cotton continuous cropping (MC), peanut continuous cropping (HC), peanut-cotton-peanut rotation (HR), and fallow (X), were established to assess variations in crop yield, soil nutrients, and soil microbial diversity. RESULTS Significant differences were observed in crop yield, soil nutrients, and soil microbial community structure among different planting patterns. The HR system significantly increased the output compared with the HC and MC systems. Additionally, HR exhibited significantly lower total nitrogen (N) and basic nitrogen (BN) contents than HC and MC, whereas MC showed lower total potassium (K) and available potassium (AK) contents. HR led to a decrease in soil bacterial diversity but an increase in fungal diversity, with Ascomycota and Mortierellomycota being dominant. Various bacteria (Chloroflexi, Bacteroidota, and Actinobacteriota) associated with organic matter degradation and nutrient cycling were found across different planting systems, enhancing material cycling efficiency. Furthermore, Planctomycetota bacteria related to crop nutrient synthesis and Glomeromycota bacteria aiding plant nutrient absorption were significantly higher in the MC system than in the HR or HC systems. Redundancy analysis indicated a significant negative correlation between crop rotation and soil fungal community, whereas Ascomycota exhibited a significant negative correlation with organic matter. CONCLUSION Peanut-cotton rotation can mitigate soil nutrient loss, enhance beneficial microorganism diversity, suppress harmful bacterial populations, stabilize ecosystems, and boost crop yield.
Collapse
Affiliation(s)
- Fuyang Cui
- Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, China
- College of Biology and Science and Technology, Yili Normal University, Yili, 835000, Xinjiang, China
| | - Qiang Li
- Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, China
| | - Suiteng Shang
- Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, China
| | - Xianfei Hou
- Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, China
| | - Haocui Miao
- Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, China.
| | - Xiaolu Chen
- College of Biology and Science and Technology, Yili Normal University, Yili, 835000, Xinjiang, China.
| |
Collapse
|
6
|
Xu F, Qiu D, Hu Y, Chen X, Li Z, Li Q. Metabolomic Analysis of Specific Metabolites in Codonopsis pilosula Soil Under Different Stubble Conditions. Molecules 2024; 29:5333. [PMID: 39598722 PMCID: PMC11596127 DOI: 10.3390/molecules29225333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/03/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
To investigate the soil-specific metabolites of Codonopsis pilosula under different stubble management practices, this study analyzed differentially abundant metabolites in the rhizosphere soils of rotational (DS) and continuous (LS) cropping systems via liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomic approaches. The results revealed that 66 metabolites, including amino acids and their derivatives, nucleic acids, alcohols, organic acids, amines, fatty acids, purines, and sugars, were significantly different (p < 0.05) between the DS and LS groups. Under continuous cropping, the levels of amines, fatty acids, organic acids, and sugars in the rhizosphere soil were significantly greater (p < 0.05) than those under rotational cropping, whereas the levels of amino acids and their derivatives, nucleic acids, and purines and pyrimidines were significantly lower (p < 0.05). KEGG pathway enrichment analysis revealed that these differentially abundant metabolites were enriched in metabolic pathways such as amino acid metabolism (e.g., alanine, aspartate, and glutamate metabolism), carbon metabolism, the cAMP signaling pathway, ABC transporter proteins, phenylalanine metabolism, and the biosynthesis of plant secondary metabolites. These metabolic pathways were involved in osmoregulation, energy supply, and resilience in plants. In conclusion, inter-root soil metabolites in rotational and continuous cropping of Codonopsis pilosula were able to influence soil physicochemical properties and microbial populations by participating in various biological processes.
Collapse
Affiliation(s)
- Fengbin Xu
- State Key Laboratory of Aridland Crop Science, Agronomy College, Gansu Agricultural University, Lanzhou 730070, China; (F.X.); (Y.H.); (X.C.); (Q.L.)
| | - Daiyu Qiu
- State Key Laboratory of Aridland Crop Science, Agronomy College, Gansu Agricultural University, Lanzhou 730070, China; (F.X.); (Y.H.); (X.C.); (Q.L.)
| | - Yurong Hu
- State Key Laboratory of Aridland Crop Science, Agronomy College, Gansu Agricultural University, Lanzhou 730070, China; (F.X.); (Y.H.); (X.C.); (Q.L.)
| | - Xianxian Chen
- State Key Laboratory of Aridland Crop Science, Agronomy College, Gansu Agricultural University, Lanzhou 730070, China; (F.X.); (Y.H.); (X.C.); (Q.L.)
| | - Zhonghu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Life Sciences College, Northwest University, Xi’an 710069, China;
| | - Qian Li
- State Key Laboratory of Aridland Crop Science, Agronomy College, Gansu Agricultural University, Lanzhou 730070, China; (F.X.); (Y.H.); (X.C.); (Q.L.)
| |
Collapse
|
7
|
Zhang P, Zhou J, He D, Yang Y, Lu Z, Yang C, Zhang D, Li F, Wang J. From Flourish to Nourish: Cultivating Soil Health for Sustainable Floriculture. PLANTS (BASEL, SWITZERLAND) 2024; 13:3055. [PMID: 39519989 PMCID: PMC11548209 DOI: 10.3390/plants13213055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Despite its rapid growth and economic success, the sustainability of the floriculture industry as it is presently conducted is debatable, due to the huge environmental impacts it initiates and incurs. Achieving sustainability requires joint efforts from all stakeholders, a fact that is often neglected in discussions that frequently focus upon economically driven management concerns. This review attempts to raise awareness and collective responsibility among the key practitioners in floriculture by discussing its sustainability in the context of soil health, as soil is the foundation of agriculture systems. Major challenges posed to soil health arise from soil acidification and salinization stimulated by the abusive use of fertilizers. The poisoning of soil biota by pesticide residues and plastic debris due to the excessive application of pesticides and disposal of plastics is another significant issue and concern. The consequence of continuous cropping obstacles are further elucidated by the concept of plant-soil feedback. Based on these challenges, we propose the adoption and implementation of several sustainable practices including breeding stress-resistant and nutrient-efficient cultivars, making sustainable soil management a goal of floriculture production, and the recycling of plastics to overcome and mitigate the decline in soil health. The problems created by flower waste materials are highlighted and efficient treatment by biochar synthesis is suggested. We acknowledge the complexity of developing and implementing the proposed practices in floriculture as there is limited collaboration among the research and operational communities, and the policymakers. Additional research examining the impacts the floriculture industry has upon soils is needed to develop more sustainable production practices that can help resolve the current threats and to bridge the understanding gap between researchers and stakeholders in floriculture.
Collapse
Affiliation(s)
- Peihua Zhang
- Key Laboratory for Flower Breeding of Yunnan Province, Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 650200, China; (Z.L.); (C.Y.)
- Yunnan Seed Laboratory, Kunming 650200, China
- International Agricultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Jie Zhou
- School of Agriculture, Yunnan University, Kunming 650200, China; (J.Z.); (D.H.); (Y.Y.)
| | - Di He
- School of Agriculture, Yunnan University, Kunming 650200, China; (J.Z.); (D.H.); (Y.Y.)
| | - Yiran Yang
- School of Agriculture, Yunnan University, Kunming 650200, China; (J.Z.); (D.H.); (Y.Y.)
| | - Zhenhong Lu
- Key Laboratory for Flower Breeding of Yunnan Province, Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 650200, China; (Z.L.); (C.Y.)
| | - Chunmei Yang
- Key Laboratory for Flower Breeding of Yunnan Province, Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 650200, China; (Z.L.); (C.Y.)
| | - Dongdong Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
| | - Fan Li
- Key Laboratory for Flower Breeding of Yunnan Province, Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 650200, China; (Z.L.); (C.Y.)
- Yunnan Seed Laboratory, Kunming 650200, China
| | - Jihua Wang
- Key Laboratory for Flower Breeding of Yunnan Province, Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 650200, China; (Z.L.); (C.Y.)
- Yunnan Seed Laboratory, Kunming 650200, China
| |
Collapse
|
8
|
Jia M, Wang X, Zhu X, Du Y, Zhou P, Wang G, Wang N, Bai Y. Accumulation of coumaric acid is a key factor in tobacco continuous cropping obstacles. FRONTIERS IN PLANT SCIENCE 2024; 15:1477324. [PMID: 39529931 PMCID: PMC11552174 DOI: 10.3389/fpls.2024.1477324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Introduction Phenolic acids are believed to play a significant role in tobacco continuous cropping obstacles, but the strength and potential mechanisms of different phenolic acids remain unclear. Methods This study evaluated the allelopathic effects of six phenolic acids that exhibited cumulative effects in our previous research. Different concentrations of phenolic acids with the strongest allelopathic effects were added to potting soil to explore their impacts on tobacco growth and physiological characteristics, as well as on soil chemical properties and microbial community structure. Results The results showed that coumaric acid exhibited the strongest direct allelopathic effect. Exogenous coumaric acid significantly reduced soil pH and shifted the soil microbial community from bacteria-dominated to fungi-dominated. Simultaneously, the abundance of bacteria related to nutrient utilization (e.g., Flavisolibacter, Methylobacterium) and fungi related to disease resistance (e.g., Fusicolla, Clonostachys) gradually decreased, along with a reduction in soil catalase, urease, invertase, and acid phosphatase activities. Leaf MDA levels increased continuously with higher concentrations of coumaric acid, while the root resistance hormone (jasmonic acid and the jasmonate-isoleucine complex) levels show the opposite trend. Discussion Coumaric acid may inhibit tobacco growth by influencing the physiological processes in tobacco plants directly and the broader soil microecological balance indirectly. This study provides theoretical guidance for precise mitigation of continuous cropping obstacles in future tobacco cultivation.
Collapse
Affiliation(s)
| | | | | | | | | | - Ge Wang
- College of Tobacco Science, Yunnan Agricultural University,
Kunming, China
| | - Na Wang
- College of Tobacco Science, Yunnan Agricultural University,
Kunming, China
| | - Yuxiang Bai
- College of Tobacco Science, Yunnan Agricultural University,
Kunming, China
| |
Collapse
|
9
|
Du J, Ji Y, Li Y, Liu B, Yu Y, Chen D, Li Z, Zhao T, Xu X, Chang Q, Li Z, Li P, Jiang Y, Chen Y, Lu C, Wei L, Wang C, Li Y, Yin Z, Kong L, Ding X. Microbial volatile organic compounds 2-heptanol and acetoin control Fusarium crown and root rot of tomato. J Cell Physiol 2024; 239:e30889. [PMID: 36183375 DOI: 10.1002/jcp.30889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
Some microbial volatile organic compounds (mVOCs) can act as antagonistic weapons against plant pathogens, but little information is available on the contribution of individual mVOC to biocontrol and how they interact with plant pathogens. In this study, the Bacillus subtilis strain N-18 isolated from the rhizosphere of healthy plants grown in areas where Fusarium crown and root rot (FCRR) of tomato occurs could reduce the 30% of the incidence of FCRR. Moreover, the volatile organic compounds (VOCs) produced by N-18 had inhibitory effects on Fusarium oxysporum f. sp. radicis-lycopersici (FORL). The identification of VOCs of N-18 was analyzed by the solid-phase microextraction coupled to gas chromatography-mass spectrometry. Meanwhile, we conducted sensitivity tests with these potential active ingredients and found that the volatile substances acetoin and 2-heptanol can reduce the 41.33% and 35% of the incidence of FCRR in tomato plants. In addition, the potential target protein of acetoin, found in the cheminformatics and bioinformatics database, was F. oxysporum of hypothetical protein AU210_012600 (FUSOX). Molecular docking results further predicted that acetoin interacts with FUSOX protein. These results reveal the VOCs of N-18 and their active ingredients in response to FORL and provide a basis for further research on regulating and controlling FCRR.
Collapse
Affiliation(s)
- Jianfeng Du
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Yatai Ji
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Yue Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Baoyou Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
- Shandong Pengbo Biotechnology Co., LTD, Tai'an, Shandong, P.R. China
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, P.R. China
| | - Yiming Yu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Dayin Chen
- Shandong Pengbo Biotechnology Co., LTD, Tai'an, Shandong, P.R. China
| | - Zhiwei Li
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, P.R. China
| | - Tianfeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Xinning Xu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Qingle Chang
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, P.R. China
| | - Zimeng Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Pengan Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Yudong Chen
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Lansu Wei
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Cunchen Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Lingguang Kong
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| |
Collapse
|
10
|
Gao D, Gao X, Wang Y, Huo H, Wu Y, Yang Z, Zhang H, Yang X, Li F, Li X. Effects of long-term continuous cultivation on the structure and function of soil bacterial and fungal communities of Fritillaria Cirrhosa on the Qinghai-Tibetan Plateau. Sci Rep 2024; 14:21291. [PMID: 39266574 PMCID: PMC11393089 DOI: 10.1038/s41598-024-70625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/19/2024] [Indexed: 09/14/2024] Open
Abstract
Fritillaria cirrhosa, an endangered medicinal plant in the Qinghai-Tibet Plateau, is facing resource scarcity. Artificial cultivation has been employed to address this issue, but problems related to continuous cultivation hinder successful transplantation. Imbalanced microbial communities are considered a potential cause, yet the overall changes in the microbial community under continuous cropping systems remain poorly understood. Here, we investigated the effects of varying durations of continuous cropping on the bacterial and fungal communities, as well as enzymatic activities, in the rhizospheric soil of F. cirrhosa. Our findings revealed that continuous cropping of F. cirrhosa resulted in soil acidification, nutrient imbalances, and increased enzyme activity. Specifically, after 10 years of continuous cropping, there was a notable shift in the abundance and diversity (e.g., Chao1 index) of soil bacteria and fungi. Moreover, microbial composition analyses revealed a significant accumulation of harmful microorganisms associated with soil-borne diseases (e.g., Luteimonas, Parastagonospora, Pseudogymnoascus) in successively cropped soils, in contrast to the significant reduction of beneficial microorganisms (e.g., Sphingomonas, Lysobacter, Cladosporium) that promote plant growth and development and protect against diseases such as Fusarium sp.These changes led to decreased connectivity and stability within the soil microbial community. Structural equation modeling and redundancy analysis revealed that alkaline hydrolytic nitrogen and available phosphorus directly influenced soil pH, which was identified as the primary driver of soil microbial community changes and subsequently contributed to soil health deterioration. Overall, our results highlight that soil acidification and imbalanced rhizosphere microbial communities are the primary challenges associated with continuous cropping of F. cirrhosa. These findings establish a theoretical foundation for standardized cultivation practices of F. cirrhosa and the bioremediation of continuously cultivated soils.
Collapse
Affiliation(s)
- Dan Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- The Key Laboratory for Health Industry of Bijie, Bijie Medical College, Bijie, 551700, China.
| | - Xusheng Gao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Ye Wang
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330000, China
| | - Huimin Huo
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Yuhan Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Zemin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haobo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Xinyu Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Fengfu Li
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
11
|
Xu L, Ma L, Wei R, Ma Y, Ma T, Dang J, Chen Z, Li S, Ma S, Chen G. Effect of Continuous Cropping on Growth and Lobetyolin Synthesis of the Medicinal Plant Codonopsis pilosula (Franch.) Nannf. Based on the Integrated Analysis of Plant-Metabolite-Soil Factors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19604-19617. [PMID: 39196612 DOI: 10.1021/acs.jafc.4c03664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The integrated plant-metabolite-soil regulation model of C. Pilosula growth and lobetyolin synthesis in response to continuous cropping lacks systematic investigation. In this study, we investigated the regulatory mechanisms of growth and lobetyolin synthesis in C. pilosula under continuous cropping stress based on high-performance liquid chromatography, transcriptome, and microbial sequencing on the root system and rhizosphere soil of C. pilosula from one year of cultivation and five years of continuous cropping. The findings of this study revealed that continuous cropping significantly inhibited the growth of C. pilosula and led to a notable decrease in the lobetyolin content. An effort was made to propose a potential pathway for lobetyolin biosynthesis in C. pilosula, which is closely linked to the expression of genes responsible for glucoside and unsaturated fatty acid chain synthesis. In addition, soil physicochemical properties and soil microorganisms had strong correlations with root growth and synthesis of lobetyolin, suggesting that soil physicochemical properties and microorganisms are the main factors triggering the succession disorder in C. pilosula. This study provides an in-depth interpretation of the regulatory mechanism of acetylenic glycoside synthesis and offers new insights into the triggering mechanism of C. pilosula succession disorder, which will guide future cultivation and industrial development.
Collapse
Affiliation(s)
- Ling Xu
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Lei Ma
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Ruonan Wei
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yantong Ma
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Tingfeng Ma
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Junhong Dang
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhen Chen
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Sheng Li
- State Key Laboratory of Aridland Crop Science, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaoying Ma
- Laboratory and Base Management Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Guiping Chen
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
12
|
Shen M, Wu L, Zhang Y, You R, Xiao J, Kang Y. Leaf litter from Cynanchum auriculatum Royle ex Wight leads to root rot outbreaks by Fusarium solani, hindering continuous cropping. FEMS Microbiol Ecol 2024; 100:fiae068. [PMID: 38684466 PMCID: PMC11099666 DOI: 10.1093/femsec/fiae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
Cynanchum auriculatum Royle ex Wight (CA) is experiencing challenges with continuous cropping obstacle (CCO) due to soil-borne fungal pathogens. The leaf litter from CA is regularly incorporated into the soil after root harvesting, but the impact of this practice on pathogen outbreaks remains uncertain. In this study, a fungal strain D1, identified as Fusarium solani, was isolated and confirmed as a potential factor in CCO. Both leave extract (LE) and root extract (RE) were found to inhibit seed germination and the activities of plant defense-related enzymes. The combinations of extracts and D1 exacerbated these negative effects. Beyond promoting the proliferation of D1 in soil, the extracts also enhanced the hypha weight, spore number, and spore germination rate of D1. Compared to RE, LE exhibited a greater degree of promotion in the activities of pathogenesis-related enzymes in D1. Additionally, caffeic acid and ferulic acid were identified as potential active compounds. LE, particularly in combination with D1, induced a shift in the composition of fungal communities rather than bacterial communities. These findings indicate that the water extract of leaf litter stimulated the growth and proliferation of fungal strain D1, thereby augmenting its pathogenicity toward CA and ultimately contributing to the CCO process.
Collapse
Affiliation(s)
- Min Shen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, 224007, China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng, 224007, China
| | - Limeng Wu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, 224007, China
| | - Yanzhou Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, 224007, China
| | - Ruiqiang You
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, 224007, China
| | - Jiaxin Xiao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Yijun Kang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, 224007, China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng, 224007, China
| |
Collapse
|
13
|
Liu Z, Ying J, Liu C. Changes in Rhizosphere Soil Microorganisms and Metabolites during the Cultivation of Fritillaria cirrhosa. BIOLOGY 2024; 13:334. [PMID: 38785816 PMCID: PMC11117757 DOI: 10.3390/biology13050334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Fritillaria cirrhosa is an important cash crop, and its industrial development is being hampered by continuous cropping obstacles, but the composition and changes of rhizosphere soil microorganisms and metabolites in the cultivation process of Fritillaria cirrhosa have not been revealed. We used metagenomics sequencing to analyze the changes of the microbiome in rhizosphere soil during a three-year cultivation process, and combined it with LC-MS/MS to detect the changes of metabolites. Results indicate that during the cultivation of Fritillaria cirrhosa, the composition and structure of the rhizosphere soil microbial community changed significantly, especially regarding the relative abundance of some beneficial bacteria. The abundance of Bradyrhizobium decreased from 7.04% in the first year to about 5% in the second and third years; the relative abundance of Pseudomonas also decreased from 6.20% in the first year to 2.22% in the third year; and the relative abundance of Lysobacter decreased significantly from more than 4% in the first two years of cultivation to 1.01% in the third year of cultivation. However, the relative abundance of some harmful fungi has significantly increased, such as Botrytis, which increased significantly from less than 3% in the first two years to 7.93% in the third year, and Talaromyces fungi, which were almost non-existent in the first two years of cultivation, significantly increased to 3.43% in the third year of cultivation. The composition and structure of Fritillaria cirrhosa rhizosphere metabolites also changed significantly, the most important of which were carbohydrates represented by sucrose (48.00-9.36-10.07%) and some amino acid compounds related to continuous cropping obstacles. Co-occurrence analysis showed that there was a significant correlation between differential microorganisms and differential metabolites, but Procrustes analysis showed that the relationship between bacteria and metabolites was closer than that between fungi and metabolites. In general, in the process of Fritillaria cirrhosa cultivation, the beneficial bacteria in the rhizosphere decreased, the harmful bacteria increased, and the relative abundance of carbohydrate and amino acid compounds related to continuous cropping obstacles changed significantly. There is a significant correlation between microorganisms and metabolites, and the shaping of the Fritillaria cirrhosa rhizosphere's microecology by bacteria is more relevant.
Collapse
Affiliation(s)
- Zhixiang Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jizhe Ying
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China;
| | - Chengcheng Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
14
|
Yang D, Zhang X, Li Z, Chu R, Shah S, Wang X, Zhang X. Antagonistic effect of Bacillus and Pseudomonas combinations against Fusarium oxysporum and their effect on disease resistance and growth promotion in watermelon. J Appl Microbiol 2024; 135:lxae074. [PMID: 38632051 DOI: 10.1093/jambio/lxae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/19/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
AIMS We aimed to develop an effective bacterial combination that can combat Fusarium oxysporum infection in watermelon using in vitro and pot experiments. METHODS AND RESULTS In total, 53 strains of Bacillus and 4 strains of Pseudomonas were screened. Pseudomonas strains P3 and P4 and Bacillus strains XY-2-3, XY-13, and GJ-1-15 exhibited good antagonistic effects against F. oxysporum. P3 and P4 were identified as Pseudomonas chlororaphis and Pseudomonas fluorescens, respectively. XY-2-3 and GJ-1-15 were identified as B. velezensis, and XY-13 was identified as Bacillus amyloliquefaciens. The three Bacillus strains were antifungal, promoted the growth of watermelon seedlings and had genes to synthesize antagonistic metabolites such as bacilysin, surfactin, yndj, fengycin, iturin, and bacillomycin D. Combinations of Bacillus and Pseudomonas strains, namely, XY-2-3 + P4, GJ-1-15 + P4, XY-13 + P3, and XY-13 + P4, exhibited a good compatibility. These four combinations exhibited antagonistic effects against 11 pathogenic fungi, including various strains of F. oxysporum, Fusarium solani, and Rhizoctonia. Inoculation of these bacterial combinations significantly reduced the incidence of Fusarium wilt in watermelon, promoted plant growth, and improved soil nutrient availability. XY-13 + P4 was the most effective combination against Fusarium wilt in watermelon with the inhibition rate of 78.17%. The number of leaves; aboveground fresh and dry weights; chlorophyll, soil total nitrogen, and soil available phosphorus content increased by 26.8%, 72.12%, 60.47%, 16.97%, 20.16%, and 16.50%, respectively, after XY-13 + P4 inoculation compared with the uninoculated control. Moreover, total root length, root surface area, and root volume of watermelon seedlings were the highest after XY-13 + P3 inoculation, exhibiting increases by 265.83%, 316.79%, and 390.99%, respectively, compared with the uninoculated control. CONCLUSIONS XY-13 + P4 was the best bacterial combination for controlling Fusarium wilt in watermelon, promoting the growth of watermelon seedlings, and improving soil nutrient availability.
Collapse
Affiliation(s)
- Dongya Yang
- School of Wine and Horticulture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| | - Xueqing Zhang
- School of Wine and Horticulture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| | - Zhaoxuan Li
- School of Wine and Horticulture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| | - Rui Chu
- School of Wine and Horticulture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| | - Sadiq Shah
- Department of Food Science and Technology, Garden Campus, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Xiaozhuo Wang
- School of Wine and Horticulture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| | - Xueyan Zhang
- School of Wine and Horticulture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| |
Collapse
|
15
|
Yang K, Zheng Y, Sun K, Wu X, Zhang Z, He C, Xiao P. Rhizosphere microbial markers (micro-markers): A new physical examination indicator for traditional Chinese medicines. CHINESE HERBAL MEDICINES 2024; 16:180-189. [PMID: 38706829 PMCID: PMC11064633 DOI: 10.1016/j.chmed.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/17/2023] [Accepted: 11/18/2023] [Indexed: 05/07/2024] Open
Abstract
Rhizosphere microorganisms, as one of the most important components of the soil microbiota and plant holobiont, play a key role in the medicinal plant-soil ecosystem, which are closely related to the growth, adaptability, nutrient absorption, stress tolerance and pathogen resistance of host plants. In recent years, with the wide application of molecular biology and omics technologies, the outcomes of rhizosphere microorganisms on the health, biomass production and secondary metabolite biosynthesis of medicinal plants have received extensive attention. However, whether or to what extent rhizosphere microorganisms can contribute to the construction of the quality evaluation system of Chinese medicinal materials is still elusive. Based on the significant role of rhizosphere microbes in the survival and quality formation of medicinal plants, this paper proposed a new concept of rhizosphere microbial markers (micro-markers), expounded the relevant research methods and ideas of applying the new concept, highlighted the importance of micro-markers in the quality evaluation and control system of traditional Chinese medicines (TCMs), and introduced the potential value in soil environmental assessment, plant pest control and quality assessment of TCMs. It provides reference for developing ecological planting of TCMs and ensuring the production of high quality TCMs by regulating rhizosphere microbial communities.
Collapse
Affiliation(s)
- Kailin Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Yaping Zheng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Kangmeng Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Xinyan Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Zheng Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| |
Collapse
|
16
|
Zhou F, Pan Y, Zhang X, Deng G, Li X, Xiong Y, Tang L. Accumulation patterns of tobacco root allelopathicals across different cropping durations and their correlation with continuous cropping challenges. FRONTIERS IN PLANT SCIENCE 2024; 15:1326942. [PMID: 38533406 PMCID: PMC10963442 DOI: 10.3389/fpls.2024.1326942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
Introduction Continuous cropping challenges have gradually emerged as pivotal factors limiting the sustainable development of agricultural production. Allelopathicals are considered to be the primary obstacles. However, there is limited information on allelopathic accumulation across various continuous cropping years and its correlation with the associated challenges. Methods Tobacco was subjected to varying planting durations: 1 year (CR), 5 years (CC5), 10 years (CC10), and 15 years (CC15). Results Our findings unveiled discernible disparities in tobacco growth patterns across diverse continuous cropping periods. Notably, the most pronounced challenges were observed in the CC5 category, characterized by yield reduction, tobacco black shank outbreaks, and a decline in beneficial flora. Conversely, CC15 exhibited a substantial reduction in challenges as the continuous cropping persisted with no significant differences when compared to CR. Within the tobacco rhizosphere, we identified 14 distinct allelopathic compounds, with 10 of these compounds displaying noteworthy variations among the four treatments. Redundancy analysis (RDA) revealed that eight allelopathic compounds exhibited autotoxic effects on tobacco growth, with MA, heptadecanoic acid, and VA ranking as the most potent inhibitors. Interaction network highlighted the pivotal roles of VA and EA in promoting pathogen proliferation and impeding the enrichment of 13 beneficial bacterial genera. Furthermore, a structural equation model elucidated that MA and EA primarily exert direct toxic effects on tobacco, whereas VA fosters pathogen proliferation, inhibits the enrichment of beneficial bacteria, and synergistically exacerbates the challenges associated with continuous cropping alongside EA. Discussion These findings suggested discernible disparities in tobacco growth patterns across the various continuous cropping periods. The most pronounced challenges were observed in CC5, whereas CC15 exhibited a substantial reduction in challenges as continuous cropping persisted. VA may play a pivotal role in this phenomenon by interacting with pathogens, beneficial bacterial genera, and EA.
Collapse
Affiliation(s)
- Fangfang Zhou
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yihong Pan
- College of Materials and Chemical Engineering, Southwest Forestry University, Kunming, China
| | | | - Guobing Deng
- College of Materials and Chemical Engineering, Southwest Forestry University, Kunming, China
| | - Xiaoting Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yubin Xiong
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Li Tang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
17
|
Symochko L, Demyanyuk O, Crisan V, Dinca L. Microbial transformation of soil organic matter under varying agricultural management systems in Ukraine. Front Microbiol 2024; 14:1287701. [PMID: 38274742 PMCID: PMC10808755 DOI: 10.3389/fmicb.2023.1287701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction This paper presents comparative studies on the content and structure of organic matter (OM) and the activity of microbiological cellulose destruction in three types of Ukrainian soils intensively used in agricultural production. Methods The highest content of humus in the arable layer (4.9%), OM (410 t ha-1), and total carbon (30.9 mg C g-1 soil) was determined in chernic phaeozems, which is 2.2-2.5 times higher than in albic retisols. The soil of natural ecosystems is characterised by a high content of microbial carbon (Cmic) in the carbon fraction of organic soil compounds. Results and discussion In arable soils, the content and reserves of humus and soil organic matter (SOM) have decreased by an average of 1.5-2 times. The most considerable loss of humus reserves in the soil profile was identified in albic retisols (1.96-1.44 times) and the smallest in chernic phaeozems (1.27-1.81 times). During the long-term systematic application of mineral fertilisers, the Corg content decreased by 8-21% in chernic phaeozems, 12-33% in greyzemic phaeozems, and 6-38% in albic retisols. A significant difference of 2.1-8.0 times was determined regarding the number of aerobic cellulolytic microorganisms and 1.3-3.3 times in the potential cellulolytic activity of the studied soils. The high number of cellulose-destroying microorganisms is characteristic of chernic phaeozems with a high content of OM in the soil; the advantage over other types of studied soils was 1.4 times and 7.8 times for greyzemic phaeozems and albic retisols, respectively. Among the studied soil types, high values of CO2 emissions were identified in chernic phaeozems. Intensive agricultural practices in Ukrainian soils have significantly altered the content and composition of organic matter, leading to reduced humus and soil organic matter reserves. The study also underscores the importance of considering the abundance of cellulose-destroying microorganisms and their potential activity in assessing soil health and sustainability.
Collapse
Affiliation(s)
- Lyudmyla Symochko
- Faculty of Biology, Uzhhorod National University, Uzhhorod, Ukraine
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
- Institute of Agroecology and Environmental Management, Kyiv, Ukraine
| | - Olena Demyanyuk
- Institute of Agroecology and Environmental Management, Kyiv, Ukraine
| | - Vlad Crisan
- Romanian National Institute of Research and Development in Forestry “Marin Dracea” Brasov branch, Braşov, Romania
| | - Lucian Dinca
- Romanian National Institute of Research and Development in Forestry “Marin Dracea” Brasov branch, Braşov, Romania
| |
Collapse
|
18
|
Wang Y, Lin S, Li J, Jia X, Hu M, Cai Y, Cheng P, Li M, Chen Y, Lin W, Wang H, Wu Z. Metagenomics-based exploration of key soil microorganisms contributing to continuously planted Casuarina equisetifolia growth inhibition and their interactions with soil nutrient transformation. FRONTIERS IN PLANT SCIENCE 2023; 14:1324184. [PMID: 38126014 PMCID: PMC10731376 DOI: 10.3389/fpls.2023.1324184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Casuarina equisetifolia (C. equisetifolia) is an economically important forest tree species, often cultivated in continuous monoculture as a coastal protection forest. Continuous planting has gradually affected growth and severely restricted the sustainable development of the C. equisetifolia industry. In this study, we analyzed the effects of continuous planting on C. equisetifolia growth and explored the rhizosphere soil microecological mechanism from a metagenomic perspective. The results showed that continuous planting resulted in dwarfing, shorter root length, and reduced C. equisetifolia seedling root system. Metagenomics analysis showed that 10 key characteristic microorganisms, mainly Actinoallomurus, Actinomadura, and Mycobacterium, were responsible for continuously planted C. equisetifolia trees. Quantitative analysis showed that the number of microorganisms in these three genera decreased significantly with the increase of continuous planting. Gene function analysis showed that continuous planting led to the weakening of the environmental information processing-signal transduction ability of soil characteristic microorganisms, and the decrease of C. equisetifolia trees against stress. Reduced capacity for metabolism, genetic information processing-replication and repair resulted in reduced microbial propagation and reduced microbial quantity in the rhizosphere soil of C. equisetifolia trees. Secondly, amino acid metabolism, carbohydrate metabolism, glycan biosynthesis and metabolism, lipid metabolism, metabolism of cofactors and vitamins were all significantly reduced, resulting in a decrease in the ability of the soil to synthesize and metabolize carbon and nitrogen. These reduced capacities further led to reduced soil microbial quantity, microbial carbon and nitrogen, microbial respiration intensity, reduced soil enzyme nutrient cycling and resistance-related enzyme activities, a significant reduction in available nutrient content of rhizosphere soils, a reduction in the ion exchange capacity, and an impediment to C. equisetifolia growth. This study provides an important basis for the management of continuously planted C. equisetifolia plantations.
Collapse
Affiliation(s)
- Yuhua Wang
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Jianjuan Li
- Editorial Department, Fujian Academy of Forestry Survey and Planning, Fuzhou, China
| | - Xiaoli Jia
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Mingyue Hu
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhong Cai
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengyuan Cheng
- College of Life Science, Longyan University, Longyan, China
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan, China
| | - Yiling Chen
- College of Life Science, Longyan University, Longyan, China
| | - Wenxiong Lin
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Zeyan Wu
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
19
|
Su Y, Zeeshan Ul Haq M, Liu X, Li Y, Yu J, Yang D, Wu Y, Liu Y. A Genome-Wide Identification and Expression Analysis of the Casparian Strip Membrane Domain Protein-like Gene Family in Pogostemon cablin in Response to p-HBA-Induced Continuous Cropping Obstacles. PLANTS (BASEL, SWITZERLAND) 2023; 12:3901. [PMID: 38005798 PMCID: PMC10675793 DOI: 10.3390/plants12223901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Casparian strip membrane domain protein-like (CASPL) genes are key genes for the formation and regulation of the Casparian strip and play an important role in plant abiotic stress. However, little research has focused on the members, characteristics, and biological functions of the patchouli PatCASPL gene family. In this study, 156 PatCASPL genes were identified at the whole-genome level. Subcellular localization predicted that 75.6% of PatCASPL proteins reside on the cell membrane. A phylogenetic analysis categorized PatCASPL genes into five subclusters alongside Arabidopsis CASPL genes. In a cis-acting element analysis, a total of 16 different cis-elements were identified, among which the photo-responsive element was the most common in the CASPL gene family. A transcriptome analysis showed that p-hydroxybenzoic acid, an allelopathic autotoxic substance, affected the expression pattern of PatCASPLs, including a total of 27 upregulated genes and 30 down-regulated genes, suggesting that these PatCASPLs may play an important role in the regulation of patchouli continuous cropping obstacles by affecting the formation and integrity of Casparian strip bands. These results provided a theoretical basis for exploring and verifying the function of the patchouli PatCASPL gene family and its role in continuous cropping obstacles.
Collapse
Affiliation(s)
- Yating Su
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Muhammad Zeeshan Ul Haq
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Xiaofeng Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Yang Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Jing Yu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Dongmei Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Yougen Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Ya Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| |
Collapse
|
20
|
Zhou H, Zhang M, Yang J, Wang J, Chen Y, Ye X. Returning ryegrass to continuous cropping soil improves soil nutrients and soil microbiome, producing good-quality flue-cured tobacco. Front Microbiol 2023; 14:1257924. [PMID: 37876786 PMCID: PMC10591219 DOI: 10.3389/fmicb.2023.1257924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
The widespread and continuous cultivation of tobacco has led to soil degradation and reduced crop yields and quality. Green manure is an essential organic fertilizer that alleviates obstacles to continuous cultivation. However, the plant-soil microecological effects of green manure on flue-cured tobacco cultivation remain unclear. Thus, a positioning trail including two treatments, chemical fertilizer application only (treatment NPK) and chemical fertilizer application with turning ryegrass (treatment NPKG) was conducted, and the effect of ryegrass returning on the soil physicochemical properties, soil microbiome, crop yield, and quality of flue-cured tobacco in continuous cropping soil were investigated. Results showed that returning ryegrass to the field increased the thickness of soil humus layer from 13 cm to 15 cm, reduced the humus layer soil bulk density to 1.29 cm3/g. Ryegrass tilled and returned to the field increased soil organic matter content by 6.89-7.92%, increased rhizosphere soil available phosphorus content by 2.22-17.96%, and converted the soil non-exchangeable potassium into potassium that was available for plant absorption and utilization. Ryegrass tilling and returning to the field increased the potassium content of middle leaves of flue-cured tobacco by 7.69-10.07%, the increased potassium content in flue-cured tobacco was accompanied by increased total sugar, reducing sugar, and the ratio of reducing sugar to nicotine, which facilitated the harmonization of the chemical composition of cured tobacco leaves. Moreover, the increased number of markedly improved operational taxonomic units enhanced the complexity of the soil bacterial community and its compactness after ryegrass tillage and their return to the field. The available potassium, available phosphorus, total potassium content, pH, and sampling period of the rhizosphere soil had considerable effects on the rhizosphere microbial. Ryegrass tilling and returning to the field changed the soil microbiome, which increased the abundance of bulk soil Proteobacteria, rhizosphere soil Fibrobacterota, and microbes with anti-pathogen activity (Lysobacteria, Sphingomonas, Chaetomium, and Minimedusa); and reduced the abundance of pathogenic fungi Neocosmospore genus in the soil. In brief, ryegrass returned to the field, improved soil microecology and restored soil nutrients, and established a new dynamic balance of soil ecology, thereby improving the quality of cultivated land and the quality of flue-cured tobacco.
Collapse
Affiliation(s)
- Hanjun Zhou
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Mingjie Zhang
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
| | - Jiahao Yang
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
| | - Jing Wang
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
| | - Yulu Chen
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
| | - Xiefeng Ye
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
21
|
Kong W, Qiu L, Ishii S, Jia X, Su F, Song Y, Hao M, Shao M, Wei X. Contrasting response of soil microbiomes to long-term fertilization in various highland cropping systems. ISME COMMUNICATIONS 2023; 3:81. [PMID: 37596350 PMCID: PMC10439144 DOI: 10.1038/s43705-023-00286-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Abstract
Soil microbiomes play important roles in supporting agricultural ecosystems. However, it is still not well-known how soil microbiomes and their functionality respond to fertilization in various cropping systems. Here we examined the effects of 36 years of phosphorus, nitrogen, and manure application on soil bacterial communities, functionality and crop productivity in three contrasting cropping systems (i.e., continuous leguminous alfalfa (AC), continuous winter wheat (WC), and grain-legume rotation of winter wheat + millet - pea - winter wheat (GLR)) in a highland region of China's Loess Plateau. We showed that long-term fertilization significantly affected soil bacterial communities and that the effects varied with cropping system. Compared with the unfertilized control, fertilization increased soil bacterial richness and diversity in the leguminous AC system, whereas it decreased those in the GLR system. Fertilization, particularly manure application, enlarged the differences in soil bacterial communities among cropping systems. Soil bacterial communities were mostly affected by the soil organic carbon and nitrogen contents in the WC and GLR systems, but by the soil available phosphorous content in the AC system. Crop productivity was closely associated with the abundance of fertilization-responsive taxa in the three cropping systems. Our study highlights that legume and non-legume cropping systems should be disentangled when assessing the responses of soil microbial communities to long-term fertilizer application.
Collapse
Affiliation(s)
- Weibo Kong
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, 712100, China
| | - Liping Qiu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, 712100, China
| | - Satoshi Ishii
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, 55108, USA
| | - Xiaoxu Jia
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
| | - Fuyuan Su
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, 712100, China
| | - Yu Song
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Mingde Hao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, 712100, China
| | - Mingan Shao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, 712100, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, Shaanxi, China
| | - Xiaorong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, 712100, China.
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
22
|
Chen B, Shao G, Zhou T, Fan Q, Yang N, Cui M, Zhang J, Wu X, Zhang B, Zhang R. Dazomet changes microbial communities and improves morel mushroom yield under continuous cropping. Front Microbiol 2023; 14:1200226. [PMID: 37614603 PMCID: PMC10442562 DOI: 10.3389/fmicb.2023.1200226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Morels (Morchella spp.) are highly prized and popular edible mushrooms. The outdoor cultivation of morels in China first developed at the beginning of the 21st century. Several species, such as Morchella sextelata, M. eximia, and M. importuna, have been commercially cultivated in greenhouses. However, the detriments and obstacles associated with continuous cropping have become increasingly serious, reducing yields and even leading to a complete lack of fructification. It has been reported that the obstacles encountered with continuous morel cropping may be related to changes in the soil microbial community. To study the effect of dazomet treatment on the cultivation of morel under continuous cropping, soil was fumigated with dazomet before morel sowing. Alpha diversity and beta diversity analysis results showed that dazomet treatment altered the microbial communities in continuous cropping soil, which decreased the relative abundance of soil-borne fungal pathogens, including Paecilomyces, Trichoderma, Fusarium, Penicillium, and Acremonium, increased the relative abundance of beneficial soil bacteria, including Bacillius and Pseudomonas. In addition, the dazomet treatment significantly increased the relative abundance of morel mycelia in the soil and significantly improved morel yield under continuous cropping. These results verified the relationship between the obstacles associated with continuous cropping in morels and the soil microbial community and elucidated the mechanism by which the obstacle is alleviated when using dazomet treatment.
Collapse
Affiliation(s)
- Bo Chen
- Institute of Soil and Fertilizer of Guizhou Province, Guiyang, China
| | - Gaige Shao
- Xi'an Agricultural Technology Extension Center, Xi'an, China
| | - Tao Zhou
- Fruit and Vegetable Workstation of Guizhou Province, Guiyang, China
| | - Qinghao Fan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nuolin Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Man Cui
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinwei Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangli Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bangxi Zhang
- Institute of Soil and Fertilizer of Guizhou Province, Guiyang, China
| | - Ruiying Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
23
|
Liu S, Yang G, Wu F, Ge Y, Liu F, Pu C, Wang Z, Shen Y, Zhou X, Luo Y, Li F, Zhang Y, Chen M, Huang L. Traditional Chinese medicine residues promote the growth and quality of Salvia miltiorrhiza Bunge by improving soil health under continuous monoculture. FRONTIERS IN PLANT SCIENCE 2023; 14:1112382. [PMID: 37351215 PMCID: PMC10284172 DOI: 10.3389/fpls.2023.1112382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/12/2023] [Indexed: 06/24/2023]
Abstract
Continuous monoculture of crops has resulted in reduced yields and quality, as well as soil deterioration. Although traditional Chinese medicine residues (TCMRs) are known to promote plant growth and soil health, few studies have investigated their effectiveness in continuous monoculture soils. Here, we studied the impact of chemical fertilizers (CF) and four TCMRs with antibacterial activities on the growth of S. miltiorrhiza (a widely used medicinal plant in China), accumulation of active ingredients in plants, and soil health under continuous monoculture conditions. Compared with no fertilizer (CK) and CF, fermented Sophora flavescens radix residue (SFRf) and fermented and unfermented Moutan cortex residue (MCRf and MCRu, respectively) resulted in a reduction of the disease index of root rot, while CF did not. The CF and four TCMR treatments increased the accumulation of nitrogen (N) (42.8-124.6% and 17.0-101.7%), phosphorous (P) (19.8-74.7% and 8.3-27.4%), and potassium (K) (104.1-212.0% and 9.3-51.8%) in shoots and roots compared to CK. The differences in nutrient accumulation between the CF and TCMR treatments were statistically insignificant, excepted for the N accumulation in the roots. All fertilization treatments increased plant biomass compared to CK, with increases of 25.57-89.86% and 2.62-35.28% in shoots and roots, respectively. The SFRf treatment exhibited the most significant enhancement in both shoot and root biomass. CF significantly reduced the accumulation of seven active ingredients in roots by 23.90-78.95% compared to CK, whereas each TCMR increased accumulation of certain active ingredients. The TCMR treatments effectively improved the health of deteriorated soil by enhancing soil physicochemical properties, restoring the balance of the microbial community, recruiting beneficial bacteria, and reducing the relative abundance of the pathogen Fusarium. The SFRf treatment exhibited superior performance in improving soil health than other treatments. Overall, the TCMRs outperformed CF in restoring soil health and promoting the yield and quality of S. miltiorrhiza. These findings offer guidance for improving the health of continuous cropping soil and recycling TCMRs.
Collapse
Affiliation(s)
- Sha Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guang Yang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Faming Wu
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yang Ge
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fusong Liu
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Chunjuan Pu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihan Wang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ye Shen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuteng Zhou
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuzhi Luo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengsheng Li
- Cultivation Base Department, Laiwu Purple Light Ecological Park Co., Ltd., Jinan, Shandong, China
| | - You Zhang
- Cultivation Base Department, Laiwu Purple Light Ecological Park Co., Ltd., Jinan, Shandong, China
| | - Meilan Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Meng X, Huang X, Li Q, Wang E, Chen C. Application of UPLC-Orbitrap-HRMS targeted metabolomics in screening of allelochemicals and model plants of ginseng. JOURNAL OF PLANT PHYSIOLOGY 2023; 285:153996. [PMID: 37141674 DOI: 10.1016/j.jplph.2023.153996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/17/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
Continuous cropping of ginseng leads to serious declines in yield and quality because of self-toxicity of allelochemicals and other factors in soil. However, because of the long growth cycle and low survival rate of ginseng, rapid screening of autotoxic activity is difficult. Therefore, it is important to analyze the allelochemicals and identify a model plant with autotoxic responses similar to those of ginseng. In this study, UPLC-Orbitrap-HRMS targeted metabolomics and verification of autotoxic activity were used to analyze a problem soil from continuously cropped ginseng. Allelochemical markers were screened by OPLS-DA. Seeds and seedlings of maize, Chinese cabbage, cucumber, green beans, wheat, sunflower, and oats were selected to identify potential model plants. Model plants with autotoxic responses similar to those of ginseng were evaluated by comparing morphological, physiological, and biochemical characteristics. The n-butanol extract of the continuously cropped problem soil had the most significant autotoxic activity. Twenty-three ginsenosides and the contributions to autotoxic effects were screened and evaluated. Of potential model plants, seeds and seedlings of cucumber showed similar growth inhibition to that of ginseng under the action of allelochemicals. Thus, metabolomics can be used to screen allelochemicals in soil and predict the autotoxic effects, and the cucumber plant model can be used to rapidly screen allelopathic activity of ginseng. The study will provide reference for methodology in allelopathy research on ginseng.
Collapse
Affiliation(s)
- Xiangru Meng
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, PR China
| | - Xin Huang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, PR China.
| | - Qiong Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, PR China
| | - Enpeng Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, PR China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, PR China.
| |
Collapse
|
25
|
Chen P, Zhang J, Li M, Fang F, Hu J, Sun Z, Zhang A, Gao X, Li J. Synergistic effect of Bacillus subtilis and Paecilomyces lilacinus in alleviating soil degradation and improving watermelon yield. Front Microbiol 2023; 13:1101975. [PMID: 36713202 PMCID: PMC9881412 DOI: 10.3389/fmicb.2022.1101975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Continuous cropping of watermelon (Citrullus lanatus) may lead to soil degradation. As a soil conditioner, microbial agent has great potential in improving soil function and enhancing plant growth. In this study, we aimed to explore how microbial agent relieves the soil sickness of watermelon by analyzing watermelon performance, soil physicochemical properties and microbial community structures. Results suggested that microbial agent treatments significantly changed the photosynthetic efficiency of upper and lower leaves, which helped improve the growth of watermelon. The single fruit weight, fruit sugar degree and total phosphorus of soil following treatment with a mixture of Paecilomyces lilacinus DZ910 and Bacillus subtilis KC1723 (treatment D_K) were higher than those in single biofertilizer treatments and control. The soil microbial community under microbial agent treatments also changed significantly, indicating the feasibility of using microbial agents as soil remediations. The proportions of Pseudomonas and Flavobacterium, changed significantly after using microbial agents. Pseudomonas increased significantly after B. subtilis KC1723 and D_K treatments, while Flavobacterium increased significantly after using all three kinds of microbial agents compared to control. Increases in these bacteria were positively correlated with agronomic variables of watermelon. The fungi Aspergillus and Neocosmospora in the soil, which create an soil sickness of watermelon, decreased after KC1723 and D_K treatments. Meanwhile, Aspergillus and Neocosmospora were positively related to Myceliophthora incidence and negatively correlated with watermelon growth (single fruit weight and photosynthetic efficiency of upper leaves). Our microbial agent, especially D_K, represents a useful technique for alleviating soil sickness in watermelon.
Collapse
Affiliation(s)
- Peng Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China,Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China,Shandong Provincial Engineering Technology Research Center on Biocontrol of Crop Diseases and Insect Pest, Jinan, China
| | - Jinglei Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mei Li
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China,Shandong Provincial Engineering Technology Research Center on Biocontrol of Crop Diseases and Insect Pest, Jinan, China
| | - Feng Fang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China,Shandong Provincial Engineering Technology Research Center on Biocontrol of Crop Diseases and Insect Pest, Jinan, China
| | - Jindong Hu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zuowen Sun
- Department of Plant Protection, Shandong Agricultural Technology Extension Center, Jinan, China
| | - Ansheng Zhang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China,Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China,Shandong Provincial Engineering Technology Research Center on Biocontrol of Crop Diseases and Insect Pest, Jinan, China
| | - Xingxiang Gao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China,Shandong Provincial Engineering Technology Research Center on Biocontrol of Crop Diseases and Insect Pest, Jinan, China,*Correspondence: Xingxiang Gao, ; Jian Li,
| | - Jian Li
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China,Shandong Provincial Engineering Technology Research Center on Biocontrol of Crop Diseases and Insect Pest, Jinan, China,*Correspondence: Xingxiang Gao, ; Jian Li,
| |
Collapse
|
26
|
Wang J, Li M, Zhou Q, Zhang T. Effects of continuous cropping Jiashi muskmelon on rhizosphere microbial community. Front Microbiol 2023; 13:1086334. [PMID: 36699602 PMCID: PMC9868712 DOI: 10.3389/fmicb.2022.1086334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction The continuous cropping of crops can result in the deterioration of the soil environment and cause a decline in plant health and yield, which complicates agricultural production. However, the effects of continuous melon cropping on rhizospheric microbial communities remain poorly understood. Methods In this study, high-throughput absolute quantification 16S rRNA gene amplicon sequencing was employed to analyze the bacterial community structure of greenhouse rhizosphere soil from Jiashi muskmelon replanted for 0, 1, 2, and 3 years (CK, 1a, 2a, and 3a, respectively). Results The results showed that long- term continuous cropping caused significant changes in soil physicochemical properties. The bacterial absolute abundances increased, but the bacterial community richness and diversity were significantly lost (p < 0.05). The composition of bacterial community was more similar after 2 and 3 years of continuous cropping. The longer the continuous cropping years were, the greater the shift in the bacterial diversity and abundance. Analysis of potential functional components revealed that different bacterial groups were enriched in different continuous cropping years. The significant reduction of the taxa associated with nitrate reduction may be responsible for the loss of soil nitrogen in continuous cropping soil. Discussion In summary, continuous cropping had a significant impact on the bacterial community structure of Jiashi muskmelon rhizospheric soil, and these results will provide a reference for soil management and scientific fertilization of melon and other crops under a continuous cropping regime.
Collapse
Affiliation(s)
- Jilian Wang
- Department of Biologic and Geographic Sciences, Kashi University, Kashi, China,Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi, China
| | - Mingyuan Li
- Department of Biologic and Geographic Sciences, Kashi University, Kashi, China,Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi, China,*Correspondence: Mingyuan Li,
| | - Qian Zhou
- Department of Biologic and Geographic Sciences, Kashi University, Kashi, China,Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi, China
| | - Tian Zhang
- Department of Biologic and Geographic Sciences, Kashi University, Kashi, China,Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi, China
| |
Collapse
|
27
|
Chen Y, Yang L, Zhang L, Li J, Zheng Y, Yang W, Deng L, Gao Q, Mi Q, Li X, Zeng W, Ding X, Xiang H. Autotoxins in continuous tobacco cropping soils and their management. FRONTIERS IN PLANT SCIENCE 2023; 14:1106033. [PMID: 37139103 PMCID: PMC10149998 DOI: 10.3389/fpls.2023.1106033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/29/2023] [Indexed: 05/05/2023]
Abstract
Tobacco belongs to the family Solanaceae, which easily forms continuous cropping obstacles. Continuous cropping exacerbates the accumulation of autotoxins in tobacco rhizospheric soil, affects the normal metabolism and growth of plants, changes soil microecology, and severely reduces the yield and quality of tobacco. In this study, the types and composition of tobacco autotoxins under continuous cropping systems are summarized, and a model is proposed, suggesting that autotoxins can cause toxicity to tobacco plants at the cell level, plant-growth level, and physiological process level, negatively affecting soil microbial life activities, population number, and community structure and disrupting soil microecology. A combined strategy for managing tobacco autotoxicity is proposed based on the breeding of superior varieties, and this approach can be combined with adjustments to cropping systems, the induction of plant immunity, and the optimization of cultivation and biological control measures. Additionally, future research directions are suggested and challenges associated with autotoxicity are provided. This study aims to serve as a reference and provide inspirations needed to develop green and sustainable strategies and alleviate the continuous cropping obstacles of tobacco. It also acts as a reference for resolving continuous cropping challenges in other crops.
Collapse
Affiliation(s)
- Yudong Chen
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- *Correspondence: Long Yang, ; Wanli Zeng, ; Xinhua Ding, ; Haiying Xiang,
| | | | - Jianrong Li
- Yuxi Cigarette Factory, Hongta Tobacco Group Co. Ltd., Yuxi, China
| | - Yalin Zheng
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Wenwu Yang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Lele Deng
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Qian Gao
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Qili Mi
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Xuemei Li
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Wanli Zeng
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
- *Correspondence: Long Yang, ; Wanli Zeng, ; Xinhua Ding, ; Haiying Xiang,
| | - Xinhua Ding
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- *Correspondence: Long Yang, ; Wanli Zeng, ; Xinhua Ding, ; Haiying Xiang,
| | - Haiying Xiang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
- *Correspondence: Long Yang, ; Wanli Zeng, ; Xinhua Ding, ; Haiying Xiang,
| |
Collapse
|
28
|
He Z, Wang Y, Yan Y, Qin S, He H, Mao R, Liang Z. Dynamic analysis of physiological indices and transcriptome profiling revealing the mechanisms of the allelopathic effects of phenolic acids on Pinellia ternata. FRONTIERS IN PLANT SCIENCE 2022; 13:1039507. [PMID: 36340387 PMCID: PMC9635339 DOI: 10.3389/fpls.2022.1039507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Pinellia ternata (Thunb.) is a famous traditional Chinese medicine with high medicinal value, but its culture is strongly hindered by the continuous cropping obstacles (CCO) which are tightly associated with allelopathic effects. Deciphering the response mechanisms of P. ternata to allelochemicals is critical for overcoming the CCO. Here, we elucidate the response of P. ternata to phenolic acids treatment via physiological indices, cellular approaches, and transcriptome analysis. Phenolic acids showed a significant effect on the growth of P. ternata seedlings, similar to the phenotype of continuous cropping. Cellular analysis demonstrated that phenolic acids remarkably induced root cell death. Physiological analysis revealed that phenolic acids induced the overaccumulated of H2O2 and O 2 - in root cells. However, two exogenous antioxidants (L-ascorbic acid and β-gentiobiose) aid in the scavenging of over-accumulated H2O2 and O 2 - by promoting the antioxidant enzyme activity such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT). Transcriptome analysis demonstrated that differentially expressed genes (DEGs) related to the cell wall degeneration and reactive oxygen species (ROS) metabolism were upregulated by phenolic acid treatment. In addition, downregulated DEGs involved in sucrose and starch metabolism and phenylpropanoid biosynthesis pathways decreased the key metabolites contents. Taken together, phenolic acids caused root cell death by inducing the overaccumulation of H2O2 and O 2 - , and L-ascorbic acid and β-gentiobiose effectively alleviated ROS stress. The present study elucidates the underlying mechanism of the allelopathic effect of phenolic acids, offers valuable information for further understanding the mechanism of CCO, and could contribute to improving guidance for further P. ternata production.
Collapse
Affiliation(s)
- Zhigui He
- School of Leisure and Health, Guilin Tourism University, Guilin, China
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yanfeng Wang
- College of Life Sciences, Yan’an University, Yan’an, China
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an, China
| | - Yan Yan
- College of Life Sciences, Yan’an University, Yan’an, China
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an, China
| | - Shaowei Qin
- School of Leisure and Health, Guilin Tourism University, Guilin, China
| | - Huan He
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Renjun Mao
- College of Life Sciences, Yan’an University, Yan’an, China
- College of Life Sciences, Northwest A&F University, Yangling, China
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an, China
| | - Zongsuo Liang
- College of Life Sciences, Northwest A&F University, Yangling, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
29
|
Chen P, Li HQ, Li XY, Zhou XH, Zhang XX, Zhang AS, Liu QZ. Transcriptomic analysis provides insight into defensive strategies in response to continuous cropping in strawberry (Fragaria × ananassa Duch.) plants. BMC PLANT BIOLOGY 2022; 22:476. [PMID: 36203126 PMCID: PMC9540695 DOI: 10.1186/s12870-022-03857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Strawberries are an important economic fruit crop world-wide. In strawberry cultivation, continuous cropping (CC) can seriously threaten yield and quality. However, our understanding of the gene expression changes in response to CC and during subsequent defense processes is limited. In this study, we analyzed the impact of CC on the transcriptome of strawberry roots using RNA-Seq technology to elucidate the effect of CC and the subsequent molecular changes. RESULTS We found that CC significantly affects the growth of strawberry plants. The transcriptome analysis identified 136 differentially expressed genes (DEGs), including 49 up-regulated and 87 down-regulated DEGs. A Gene Ontology (GO) analysis indicated that the up-regulated DEGs were mainly assigned to defense-related GO terms, and most down-regulated DEGs were assigned to nutrient-related GO terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the responsive DEGs were classified in a large number of important biological pathways, such as phenylalanine metabolism, starch and sucrose metabolism, phenylpropanoid biosynthesis, glutathione metabolism and plant-pathogen interaction. We also found that four WRKY transcription factors and three peroxidase genes involved in plant defense pathways were up-regulated in the roots of strawberry plants subjected to CC. CONCLUSION Several unigenes involved in plant defense processes, such as CNGCs, WRKY transcription factors, PR1, and peroxidase genes with highly variable expression levels between non-CC and CC treatments may be involved in the regulation of CC in strawberry. These results indicate that strawberry roots reallocate development resources to defense mechanisms in response to CC. This study will further deepen our understanding of the fundamental regulatory mechanisms of strawberry resource reallocation in response to CC.
Collapse
Affiliation(s)
- Peng Chen
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Shandong Provincial Engineering Technology Research Center on Biocontrol of Crop Diseases and Insect Pest, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 250100 Jinan, China
- Laboratory of Entomology and Nematology, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - He-qin Li
- Shandong Provincial Key Laboratory of Dryland Technology, College of Agronomy, Qingdao Agricultural University, 266109 Qingdao, China
| | - Xing-yue Li
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 610066 Chengdu, China
| | - Xian-hong Zhou
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Shandong Provincial Engineering Technology Research Center on Biocontrol of Crop Diseases and Insect Pest, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 250100 Jinan, China
| | - Xiu-xia Zhang
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Shandong Provincial Engineering Technology Research Center on Biocontrol of Crop Diseases and Insect Pest, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 250100 Jinan, China
| | - An-sheng Zhang
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Shandong Provincial Engineering Technology Research Center on Biocontrol of Crop Diseases and Insect Pest, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 250100 Jinan, China
| | - Qi-zhi Liu
- Laboratory of Entomology and Nematology, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| |
Collapse
|