1
|
Okpala OE, Rondevaldova J, Kokoska L. Anti-inflammatory drugs as potential antimicrobial agents: a review. Front Pharmacol 2025; 16:1557333. [PMID: 40264668 PMCID: PMC12011823 DOI: 10.3389/fphar.2025.1557333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/13/2025] [Indexed: 04/24/2025] Open
Abstract
The association and causal role of infectious agents in chronic inflammatory diseases have major implications for public health, treatment, and prevention. Pharmacological treatment of combined infectious and inflammatory diseases requires the administration of multiple drugs, including antibiotics and anti-inflammatory drugs. However, this can cause adverse effects, and therefore, dual-action drugs need to be developed. Anti-inflammatory drugs that have already shown antimicrobial properties appear to be promising candidates. NSAIDs, namely aceclofenac, diclofenac, and ibuprofen, were tested in clinical trials with patients diagnosed with uncomplicated urinary tract infections (UTIs) and cellulitis. The administration of ibuprofen, a drug tested in the highest number of studies, resulted in symptom resolution in patients with UTIs. Additionally, ibuprofen caused a high survival rate in mice infected with Pseudomonas aeruginosa and demonstrated potent in vitro antibacterial effects against Bacillus cereus, Escherichia coli, and Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA) (MIC 0.625-2.5 mg/L). For most anti-inflammatory drugs, only data showing their in vitro and in vivo antimicrobial effects are available. Among these, auranofin caused a high survival rate in mice infected with Enterococcus faecium, S. aureus, and Clostridioides difficile. It also produced a strong in vitro growth-inhibitory effect against Streptococcus agalactiae, S. pneumoniae, S. aureus, S. epidermidis, Bacillus subtilis, C. difficile, E. faecalis, E. faecium, and Mycobacterium tuberculosis (MIC 0.0015-5 mg/L). Similarly, aspirin caused a high survival rate in M. tuberculosis-infected mice and strong to moderate in vitro activity against E. coli, B. cereus, P. aeruginosa, Enterobacter aerogenes, Klebsiella pneumoniae and Salmonella choleraesuis (MIC 1.2-5 mg/L). Moreover, topical application of celecoxib resulted in a high reduction in MRSA burden in mice. However, it only caused moderate in vitro effects against S. epidermidis, S. aureus and Bacillus subitilis (MIC 16-64 mg/L). These data suggest that certain non-steroidal anti-inflammatory drugs (NSAIDs) are promising drug candidates for the development of dual-action drugs for the potential treatment of combined infectious and inflammatory diseases such as tuberculosis, musculoskeletal infections and UTIs. Nevertheless, future clinical trials must be conducted to ascertain the antibacterial effect of these NSAIDs before their practical use.
Collapse
Affiliation(s)
| | | | - Ladislav Kokoska
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
2
|
Gaudillat Q, Ben Halima H, Figarol A, Humblot V, Jourdain I, Lakard B, Bausells J, Viau L. Antibacterial Surfaces Prepared through Electropolymerization of N-Heterocyclic Carbene Complexes: A Pivotal Role of the Metal. ACS APPLIED BIO MATERIALS 2025; 8:2299-2311. [PMID: 39963830 DOI: 10.1021/acsabm.4c01813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
N-Heterocyclic carbene (NHC) complexes are known to have antibacterial properties in solutions. However, these complexes have never been immobilized on solid supports to prepare antibacterial surfaces. Here, we tackled this lack and succeeded in immobilizing these NHC complexes on gold surfaces by electropolymerization. For this, we synthesized a series of various NHC complexes of different low-valent transition metals (M = Ag(I), Au(I), Rh(I), Ru(II), Cu(I)) bearing a pyrrole function at the five-membered carbenic cycle. We measured the antibacterial properties of these complexes against two Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and two Gram-positive bacteria (Staphylococcus aureus and Listeria innocua) by determining their minimum inhibitory concentration (MIC) values. All NHC complexes presented interesting antibacterial properties that are metal-dependent. The silver-NHC complex showed higher antibacterial activity against Gram-negative bacteria (MIC = 16 μg·mL-1) than against Gram-positive bacteria (MIC = 32 μg·mL-1) and was poorly efficient against L. innocua. All other metal-NHC complexes were more efficient against Gram-positive bacteria, with MIC values in the range 4-16 μg·mL-1. These NHC complexes were then electropolymerized on gold substrates using their pyrrole function. Efficient incorporation of these NHC species into polypyrrole (PPy) films was confirmed by X-ray photoelectron spectroscopy (XPS) measurements with metal contents ranging from 0.8% (Cu) to 12.3% (Ag). Scanning electron microscopy (SEM) and profilometry measurements ascertain that the homogeneity, structure, and thickness of the films depend on the metal. The antibacterial activities of the polypyrrole films were then determined by the halo inhibition method. A very good match between the antibacterial properties of the films and those of the monomers with Ag(I), Au(I), and Rh(I) complexes was found. For the other complexes, the metallic content was too low to obtain interesting antibacterial properties. The cytotoxicity of the films was finally evaluated on normal human dermal fibroblasts (NHDF). Our study reveals a strong impact of the doping anions of polypyrrole on cell viability.
Collapse
Affiliation(s)
- Quentin Gaudillat
- Université Marie et Louis Pasteur, CNRS, Institut UTINAM (UMR 6213), F-25000 Besançon, France
| | - Hamdi Ben Halima
- Université Marie et Louis Pasteur, CNRS, Institut UTINAM (UMR 6213), F-25000 Besançon, France
| | - Agathe Figarol
- Université Marie et Louis Pasteur, CNRS, Institut FEMTO-ST (UMR 6174), F-25000 Besançon, France
| | - Vincent Humblot
- Université Marie et Louis Pasteur, CNRS, Institut FEMTO-ST (UMR 6174), F-25000 Besançon, France
| | - Isabelle Jourdain
- Université Marie et Louis Pasteur, CNRS, Institut UTINAM (UMR 6213), F-25000 Besançon, France
| | - Boris Lakard
- Université Marie et Louis Pasteur, CNRS, Institut UTINAM (UMR 6213), F-25000 Besançon, France
| | - Joan Bausells
- Institute of Microelectronics of Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Lydie Viau
- Université Marie et Louis Pasteur, CNRS, Institut UTINAM (UMR 6213), F-25000 Besançon, France
| |
Collapse
|
3
|
Chen X, Lv L, Wei S, Liu W. The antimicrobial activity of auranofin and other gold complexes. Future Med Chem 2025; 17:263-265. [PMID: 39813128 PMCID: PMC11792856 DOI: 10.1080/17568919.2025.2453422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Affiliation(s)
- Xiuli Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, Hubei, China
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Pascual LMH, Devy J, Colin M, Chazée L, Guillaneuf A, Marin B, Plantier-Royon R, Gatard S. Biosourced Au(III) Complexes from D-Xylose: Synthesis and Biological Evaluation. ChemMedChem 2025; 20:e202400565. [PMID: 39429067 DOI: 10.1002/cmdc.202400565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
A series of xylose-based ligands was obtained using a convenient approach, in a few steps from D-xylose. The complexation properties of these ligands towards Au3+ cations have been studied through different methods (multinuclear NMR, mass spectrometry, elemental analysis). The biological properties (antibacterial and anti-tumoral) of all the isolated xyloside Au(III) complexes were investigated in vitro. The xyloside Au(III) complexes gave the highest activities against E. coli (vs P. aeruginosa, S. aureus and S. epidermidis). The study also revealed that the nature of the sugar may play an important role in determining the selectivity of the antibacterial effect. Preliminary anti-tumoral evaluations showed that one complex containing a polyamine chain, exhibited interesting anti-proliferative activities on breast tumor cell lines MDA-MB-231 and BT-20. The anti-migratory effect of this complex also showed an average 35 % reduction in cell migration on the same two cancer cell lines.
Collapse
Affiliation(s)
- Laura M H Pascual
- Université de Reims Champagne-Ardenne, CNRS, ICMR, Reims, 51687, Reims Cedex 2, France
| | - Jérôme Devy
- Université de Reims Champagne-Ardenne, CNRS, MEDyC, Reims, France
| | - Marius Colin
- Université de Reims Champagne-Ardenne, BIOS, Reims, France
| | - Lise Chazée
- Université de Reims Champagne-Ardenne, CNRS, MEDyC, Reims, France
| | | | - Béatrice Marin
- Université de Reims Champagne-Ardenne, GEGENAA, Reims, France
| | | | - Sylvain Gatard
- Université de Reims Champagne-Ardenne, CNRS, ICMR, Reims, 51687, Reims Cedex 2, France
| |
Collapse
|
5
|
Pérez-Ramos P, Gabasa Y, Cornielle E, Rodríguez-Solla H, Soto SM, Soengas RG. In the search for new gold metalloantibiotics: In vitro evaluation of Au(III) (C^S)-cyclometallated complexes. J Inorg Biochem 2025; 262:112735. [PMID: 39278055 DOI: 10.1016/j.jinorgbio.2024.112735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
A series of (C^S)-cyclometallated Au(III) cationic complexes of general formula [Au(dppta)(dtc)]+, [Au(dppta)(azmtd)]+ and [Au(dppta)(azc)Cl]+ (dppta = N,N-diisopropyl-P,P-diphenylphosphinothioic amide-κ2C,S; dtc = dithiocarbamate-κ2S,S'; azc = azolium-2-dithiocarboxylate-κ1S; azmdt = azol(in)ium-2-(methoxy)methanedithiol-κ2S,S') were synthetized and tested against a panel of bacterial strains belonging to different Gram-positive and Gram-negative species of the ESKAPE group of pathogens. Among the tested compounds, complex 4c had the higher Therapeutic Index (TI) against multidrug resistant strains of S. aureus, S. epidermidis and A. baumannii, showing a more favourable cytotoxicity profile than the reference gold metalloantibiotic Auranofin. © 2024 xxxxxxxx. Hosting by Elsevier B.V. All rights reserved.
Collapse
Affiliation(s)
- Paula Pérez-Ramos
- Department of Organic and Inorganic Chemistry, University of Oviedo, Instituto Universitario de Química Organometálica Enrique Moles, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Yaiza Gabasa
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Enmanuel Cornielle
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Humberto Rodríguez-Solla
- Department of Organic and Inorganic Chemistry, University of Oviedo, Instituto Universitario de Química Organometálica Enrique Moles, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Sara M Soto
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Raquel G Soengas
- Department of Organic and Inorganic Chemistry, University of Oviedo, Instituto Universitario de Química Organometálica Enrique Moles, C/ Julián Clavería 8, 33006 Oviedo, Spain.
| |
Collapse
|
6
|
Pellegrino M, Checconi P, Ceramella J, Prezioso C, Limongi D, Marra M, Mariconda A, Catalano A, De Angelis M, Nencioni L, Sinicropi MS, Longo P, Aquaro S. Antibacterial and Anti-Influenza Activities of N-Heterocyclic Carbene-Gold Complexes. Pharmaceuticals (Basel) 2024; 17:1680. [PMID: 39770522 PMCID: PMC11677531 DOI: 10.3390/ph17121680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Infectious diseases represent a serious threat due to rising antimicrobial resistance, particularly among multidrug-resistant bacteria and influenza viruses. Metal-based complexes, such as N-heterocyclic carbene-gold (NHC-gold) complexes, show promising therapeutic potential due to their ability to inhibit various pathogens. METHODS Eight NHC-gold complexes were synthesized and tested for antibacterial activity against Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, and for anti-influenza activity in lung and bronchial epithelial cells infected with influenza virus A/H1N1. Antibacterial activity was assessed through the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC), while the viral load was quantified using qRT-PCR. RESULTS Complexes 3, 4, and 6 showed significant antibacterial activity at concentrations of 10-20 µg/mL. Additionally, these complexes significantly reduced viral load, with complexes 3 and 4 markedly inhibiting replication. CONCLUSIONS These findings support the potential use of NHC-gold complexes in combined antimicrobial and antiviral therapies, representing an attractive option for fighting resistant infections.
Collapse
Affiliation(s)
- Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy; (M.P.); (M.M.); (M.S.S.)
| | - Paola Checconi
- Department for the Promotion of Human Sciences and Quality of Life, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; (C.P.); (D.L.)
- Laboratory of Microbiology, IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy; (M.P.); (M.M.); (M.S.S.)
| | - Carla Prezioso
- Department for the Promotion of Human Sciences and Quality of Life, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; (C.P.); (D.L.)
- Laboratory of Microbiology, IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Dolores Limongi
- Department for the Promotion of Human Sciences and Quality of Life, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; (C.P.); (D.L.)
- Laboratory of Microbiology, IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy; (M.P.); (M.M.); (M.S.S.)
| | - Annaluisa Mariconda
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy;
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (L.N.)
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (L.N.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy; (M.P.); (M.M.); (M.S.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | - Stefano Aquaro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Piazzale Salvatore Tommasi 1, Blocco 11, Coppito, 67010 L’Aquila, Italy;
| |
Collapse
|
7
|
Brdová D, Ruml T, Viktorová J. Mechanism of staphylococcal resistance to clinically relevant antibiotics. Drug Resist Updat 2024; 77:101147. [PMID: 39236354 DOI: 10.1016/j.drup.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Staphylococcus aureus, a notorious pathogen with versatile virulence, poses a significant challenge to current antibiotic treatments due to its ability to develop resistance mechanisms against a variety of clinically relevant antibiotics. In this comprehensive review, we carefully dissect the resistance mechanisms employed by S. aureus against various antibiotics commonly used in clinical settings. The article navigates through intricate molecular pathways, elucidating the mechanisms by which S. aureus evades the therapeutic efficacy of antibiotics, such as β-lactams, vancomycin, daptomycin, linezolid, etc. Each antibiotic is scrutinised for its mechanism of action, impact on bacterial physiology, and the corresponding resistance strategies adopted by S. aureus. By synthesising the knowledge surrounding these resistance mechanisms, this review aims to serve as a comprehensive resource that provides a foundation for the development of innovative therapeutic strategies and alternative treatments for S. aureus infections. Understanding the evolving landscape of antibiotic resistance is imperative for devising effective countermeasures in the battle against this formidable pathogen.
Collapse
Affiliation(s)
- Daniela Brdová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| |
Collapse
|
8
|
Baioco KS, Pereira R, Ferreira-Gonçalves T, Coelho JMP, Gaspar MM, Reis CP. Combining Phototherapy and Gold-Based Nanomaterials: A Breakthrough in Basal Cell Carcinoma Treatment. Int J Mol Sci 2024; 25:11494. [PMID: 39519051 PMCID: PMC11545837 DOI: 10.3390/ijms252111494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Basal cell carcinoma (BCC) is the most common type of skin carcinoma worldwide. BCC development is the result of a complex interaction between environmental, phenotypic, and genetic factors. While conventional treatments such as surgery and topical therapies have demonstrated variable efficacy (some of them with limited efficacy), they are not free of adverse side effects, most of them debilitating. Thus, there is a notable gap in the literature regarding alternative and non-invasive therapeutic options. This review aims to address this gap, exploring the potential of photothermal therapy (PTT) combined with metallic nanoparticles, namely gold nanoparticles (AuNPs), as a minimally invasive treatment approach. Through a comprehensive review of the literature in the period from 2014 to 2024, using experimental investigations, this review seeks to elucidate the intricate interplay between genetic factors, environmental influences, and the tumor microenvironment in BCC disease progression, with PTT as a potential therapeutic strategy. Those studies confirmed an enhanced targeting of cancer cells and selective ablation of tumor tissue, using emerging technologies like PTT. A significant tumor reduction, often exceeding 50%, was observed, with some studies reporting complete elimination of the tumor. The main adverse effects noted were localized skin irritation and transient hyperpigmentation, but these were generally minimal and manageable, highlighting the promise of PTT as an effective treatment. Thus, by leveraging the unique properties of AuNPs to enhance the effectiveness of PTT, the targeting of cancer cells can more precisely occur, reducing collateral damage to healthy tissues. This approach not only aims to achieve better clinical results, but also contributes to the broader knowledge base in the field of BCC research. Continued research and clinical trials will be crucial in refining those techniques and validating their efficacy, ultimately paving the way for more effective and less invasive treatments for BCC.
Collapse
Affiliation(s)
- Karolyne Silva Baioco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (K.S.B.); (R.P.); (T.F.-G.); (M.M.G.)
| | - Raquel Pereira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (K.S.B.); (R.P.); (T.F.-G.); (M.M.G.)
| | - Tânia Ferreira-Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (K.S.B.); (R.P.); (T.F.-G.); (M.M.G.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - João M. P. Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (K.S.B.); (R.P.); (T.F.-G.); (M.M.G.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (K.S.B.); (R.P.); (T.F.-G.); (M.M.G.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| |
Collapse
|
9
|
De Prisco M, Manente R, Santella B, Serretiello E, Dell’Annunziata F, Santoro E, Bernardi FF, D’Amore C, Perrella A, Pagliano P, Boccia G, Franci G, Folliero V. Impact of ESKAPE Pathogens on Bacteremia: A Three-Year Surveillance Study at a Major Hospital in Southern Italy. Antibiotics (Basel) 2024; 13:901. [PMID: 39335074 PMCID: PMC11429134 DOI: 10.3390/antibiotics13090901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pose a serious public health threat as they are resistant to multiple antimicrobial agents. Bloodstream infections (BSIs) caused by ESKAPE bacteria have high mortality rates due to the limited availability of effective antimicrobials. This study aimed to evaluate the prevalence and susceptibility of ESKAPE pathogens causing BSIs over three years in a large tertiary hospital in Salerno. METHODS Conducted at the Clinical Microbiology Laboratory of San Giovanni di Dio e ''Ruggi D'Aragona'' Hospital from January 2020 to December 2022, blood culture samples from different departments were incubated in the BD BACTEC™ system for 5 days. Species identification was performed using MALDI-TOF MS, and antimicrobial resistance patterns were determined by the VITEK2 system. RESULTS Out of 3197 species isolated from positive blood cultures, 38.7% were ESKAPE bacteria. Of these, 59.9% were found in blood culture samples taken from men, and the most affected age group was those aged >60 years. (70.6%). Staphylococcus aureus was the main BSI pathogen (26.3%), followed by Klebsiella pneumoniae (15.8%). Significant resistance rates were found, including 35% of Staphylococcus aureus being resistant to oxacillin and over 90% of Acinetobacter baumannii being resistant to carbapenems. CONCLUSIONS These results highlight the urgent need for antimicrobial stewardship programs to prevent incurable infections.
Collapse
Affiliation(s)
- Mariagrazia De Prisco
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy; (M.D.P.); (R.M.); (E.S.); (G.B.)
- U.O.C. of Virology and Microbiology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Roberta Manente
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy; (M.D.P.); (R.M.); (E.S.); (G.B.)
- U.O.C. of Virology and Microbiology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Biagio Santella
- Department of Medicine, Surgery and Dentistry ‘’Scuola Medica Salernitana’’, University of Salerno, 84081 Salerno, Italy; (B.S.); (E.S.); (P.P.)
| | - Enrica Serretiello
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy; (M.D.P.); (R.M.); (E.S.); (G.B.)
| | - Federica Dell’Annunziata
- U.O.C. of Virology and Microbiology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy;
- Department of Medicine, Surgery and Dentistry ‘’Scuola Medica Salernitana’’, University of Salerno, 84081 Salerno, Italy; (B.S.); (E.S.); (P.P.)
| | - Emanuela Santoro
- Department of Medicine, Surgery and Dentistry ‘’Scuola Medica Salernitana’’, University of Salerno, 84081 Salerno, Italy; (B.S.); (E.S.); (P.P.)
| | - Francesca F. Bernardi
- U.O.D. Tutela della Salute e il Coordinamento del Sistema Sanitario Regionale—Regione Campania, 80143 Naples, Italy;
| | - Chiara D’Amore
- U.O.C Clinica Malattie Infettive, Azienda Ospedaliera Universitaria, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy;
| | - Alessandro Perrella
- Unit Emerging Infectious Disease, Ospedali dei Colli, P.O. D. Cotugno, 80131 Naples, Italy;
| | - Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry ‘’Scuola Medica Salernitana’’, University of Salerno, 84081 Salerno, Italy; (B.S.); (E.S.); (P.P.)
| | - Giovanni Boccia
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy; (M.D.P.); (R.M.); (E.S.); (G.B.)
- Department of Medicine, Surgery and Dentistry ‘’Scuola Medica Salernitana’’, University of Salerno, 84081 Salerno, Italy; (B.S.); (E.S.); (P.P.)
- U.O.C Hospital and Epidemiological Hygiene, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy
| | - Gianluigi Franci
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy; (M.D.P.); (R.M.); (E.S.); (G.B.)
- Department of Medicine, Surgery and Dentistry ‘’Scuola Medica Salernitana’’, University of Salerno, 84081 Salerno, Italy; (B.S.); (E.S.); (P.P.)
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry ‘’Scuola Medica Salernitana’’, University of Salerno, 84081 Salerno, Italy; (B.S.); (E.S.); (P.P.)
| |
Collapse
|
10
|
Llamedo A, Rodríguez P, Gabasa Y, Soengas RG, Rodríguez-Solla H, Elorriaga D, García-Alonso FJ, Soto SM. Liposomal formulation of a gold(III) metalloantibiotic: a promising strategy against antimicrobial resistance. Dalton Trans 2024; 53:15205-15214. [PMID: 39221630 DOI: 10.1039/d4dt01867b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A novel lipoformulation was developed by encapsulating cationic (S^C)-cyclometallated gold(III) complex [Au(dppta)(N2Py-PZ-dtc)]+ (AuPyPZ) in liposomes. The liposomal form of compound AuPyPZ has a bactericidal action similar to that of the free drug without any appreciable effect on the viability of mammalian cells. Furthermore, the nanoformulation reduces metalloantibiotic-induced inhibition of hERG and the inhibition of cytochromes, significantly decreasing the potential liabilities of the metallodrug. The obtained metalloantibiotic liposomal formulation shows high stability and suitable properties for drug delivery, representing an effective strategy to fight against drug-resistant bacteria.
Collapse
Affiliation(s)
- Alejandro Llamedo
- Nanovex Biotechnologies S.L., Parque Tecnológico de Asturias Edificio CEEI, 33428 Llanera, Spain
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Pablo Rodríguez
- Nanovex Biotechnologies S.L., Parque Tecnológico de Asturias Edificio CEEI, 33428 Llanera, Spain
| | - Yaiza Gabasa
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel G Soengas
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Humberto Rodríguez-Solla
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - David Elorriaga
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Francisco J García-Alonso
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Sara M Soto
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Pearce KG, Morris LJ, Robinson TP, Johnson AL, Mahon MF, Hill MS. From alkaline earth to coinage metal carboranyls. Dalton Trans 2024; 53:6653-6659. [PMID: 38525661 DOI: 10.1039/d4dt00478g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The β-diketiminato calcium and magnesium complexes, [(BDI)MgnBu] and [(BDI)CaH]2 (BDI = HC{C(Me)NDipp}2; Dipp = 2,6-di-isopropylphenyl), react with ortho-carborane (o-C2B10H12) to provide the respective [(BDI)Ae(o-C2B10H11)] (Ae = Mg or Ca) complexes. While the lighter group 2 species is a monomer with magnesium in a distorted trigonal planar environment, the heavier analogue displays a puckered geometry at calcium in the solid state due to Ca⋯H-B intermolecular interactions. These secondary contacts are, however, readily disrupted upon addition of THF to provide the 4-coordinate monomer, [(BDI)Ca(THF)(o-C2B10H11)]. [(BDI)Mg(o-C2B10H11)] was reacted with [NHCIPrMCl] (NHCIPr = 1,3-bis(isopropyl)imidazol-2-ylidene; M = Cu, Ag, Au) to provide [NHCIPrM(o-C2B10H11)], rare C-bonded examples of coinage metal derivatives of unsubstituted (o-C2B10H11)- and confirming the alkaline earth compounds as viable reagents for the transmetalation of the carboranyl anion.
Collapse
Affiliation(s)
- Kyle G Pearce
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Louis J Morris
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Thomas P Robinson
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Andrew L Johnson
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Mary F Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Michael S Hill
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
12
|
Marques A, Carabineiro SAC, Aureliano M, Faleiro L. Evaluation of Gold Complexes to Address Bacterial Resistance, Quorum Sensing, Biofilm Formation, and Their Antiviral Properties against Bacteriophages. TOXICS 2023; 11:879. [PMID: 37999531 PMCID: PMC10674251 DOI: 10.3390/toxics11110879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023]
Abstract
The worldwide increase in antibiotic resistance poses a significant challenge, and researchers are diligently seeking new drugs to combat infections and prevent bacterial pathogens from developing resistance. Gold (I and III) complexes are suitable for this purpose. In this study, we tested four gold (I and III) complexes, (1) chlorotrimethylphosphine gold(I); (2) chlorotriphenylphosphine gold(I); (3) dichloro(2-pyridinecarboxylate) gold (III); and (4) 1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene gold(I) chloride, for their antibacterial, antibiofilm, antiviral, and anti-quorum sensing activities. Results reveal that 1 significantly inhibits Escherichia coli DSM 1077 and Staphylococcus aureus ATCC 6538, while 2, 3, and 4 only inhibit S. aureus ATCC 6538. The minimum inhibitory concentration (MIC) of 1 for S. aureus ATCC 6538 is 0.59 μg/mL (1.91 μM), and for methicillin-resistant S. aureus strains MRSA 12 and MRSA 15, it is 1.16 μg/mL (3.75 μM). For E. coli DSM 1077 (Gram-negative), the MIC is 4.63 μg/mL (15 μM), and for multi-resistant E. coli I731940778-1, it is 9.25 μg/mL (30 μM). Complex 1 also disrupts biofilm formation in E. coli and S. aureus after 6 h or 24 h exposure. Moreover, 1 and 2 inhibit the replication of two enterobacteria phages. Anti-quorum sensing potential still requires further clarification. These findings highlight the potential of gold complexes as effective agents to combat bacterial and viral infections.
Collapse
Affiliation(s)
- Ana Marques
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Algarve Biomedical Center—Research Institute, 8005-139 Faro, Portugal
| | - Sónia A. C. Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Leonor Faleiro
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Algarve Biomedical Center—Research Institute, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| |
Collapse
|
13
|
Ratia C, Ballén V, Gabasa Y, Soengas RG, Velasco-de Andrés M, Iglesias MJ, Cheng Q, Lozano F, Arnér ESJ, López-Ortiz F, Soto SM. Novel gold(III)-dithiocarbamate complex targeting bacterial thioredoxin reductase: antimicrobial activity, synergy, toxicity, and mechanistic insights. Front Microbiol 2023; 14:1198473. [PMID: 37333656 PMCID: PMC10272563 DOI: 10.3389/fmicb.2023.1198473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Antimicrobial resistance is a pressing global concern that has led to the search for new antibacterial agents with novel targets or non-traditional approaches. Recently, organogold compounds have emerged as a promising class of antibacterial agents. In this study, we present and characterize a (C^S)-cyclometallated Au(III) dithiocarbamate complex as a potential drug candidate. Methods and results The Au(III) complex was found to be stable in the presence of effective biological reductants, and showed potent antibacterial and antibiofilm activity against a wide range of multidrug-resistant strains, particularly gram-positive strains, and gram-negative strains when used in combination with a permeabilizing antibiotic. No resistant mutants were detected after exposing bacterial cultures to strong selective pressure, indicating that the complex may have a low propensity for resistance development. Mechanistic studies indicate that the Au(III) complex exerts its antibacterial activity through a multimodal mechanism of action. Ultrastructural membrane damage and rapid bacterial uptake suggest direct interactions with the bacterial membrane, while transcriptomic analysis identified altered pathways related to energy metabolism and membrane stability including enzymes of the TCA cycle and fatty acid biosynthesis. Enzymatic studies further revealed a strong reversible inhibition of the bacterial thioredoxin reductase. Importantly, the Au(III) complex demonstrated low cytotoxicity at therapeutic concentrations in mammalian cell lines, and showed no acute in vivo toxicity in mice at the doses tested, with no signs of organ toxicity. Discussion Overall, these findings highlight the potential of the Au(III)-dithiocarbamate scaffold as a basis for developing novel antimicrobial agents, given its potent antibacterial activity, synergy, redox stability, inability to produce resistant mutants, low toxicity to mammalian cells both in vitro and in vivo, and non-conventional mechanism of action.
Collapse
Affiliation(s)
- Carlos Ratia
- Barcelona Institute for Global Health (ISGlobal), Universitat de Barcelona, Barcelona, Spain
| | - Victoria Ballén
- Barcelona Institute for Global Health (ISGlobal), Universitat de Barcelona, Barcelona, Spain
| | - Yaiza Gabasa
- Barcelona Institute for Global Health (ISGlobal), Universitat de Barcelona, Barcelona, Spain
| | - Raquel G. Soengas
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, Almería, Spain
| | | | - María José Iglesias
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, Almería, Spain
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Francisco Lozano
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Servei d’Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
- Department de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Elias S. J. Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Selenoprotein Research and the National Tumor Biology Laboratory, Budapest, Hungary
| | - Fernando López-Ortiz
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, Almería, Spain
| | - Sara M. Soto
- Barcelona Institute for Global Health (ISGlobal), Universitat de Barcelona, Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Mertens RT, Gukathasan S, Arojojoye AS, Olelewe C, Awuah SG. Next Generation Gold Drugs and Probes: Chemistry and Biomedical Applications. Chem Rev 2023; 123:6612-6667. [PMID: 37071737 PMCID: PMC10317554 DOI: 10.1021/acs.chemrev.2c00649] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The gold drugs, gold sodium thiomalate (Myocrisin), aurothioglucose (Solganal), and the orally administered auranofin (Ridaura), are utilized in modern medicine for the treatment of inflammatory arthritis including rheumatoid and juvenile arthritis; however, new gold agents have been slow to enter the clinic. Repurposing of auranofin in different disease indications such as cancer, parasitic, and microbial infections in the clinic has provided impetus for the development of new gold complexes for biomedical applications based on unique mechanistic insights differentiated from auranofin. Various chemical methods for the preparation of physiologically stable gold complexes and associated mechanisms have been explored in biomedicine such as therapeutics or chemical probes. In this Review, we discuss the chemistry of next generation gold drugs, which encompasses oxidation states, geometry, ligands, coordination, and organometallic compounds for infectious diseases, cancer, inflammation, and as tools for chemical biology via gold-protein interactions. We will focus on the development of gold agents in biomedicine within the past decade. The Review provides readers with an accessible overview of the utility, development, and mechanism of action of gold-based small molecules to establish context and basis for the thriving resurgence of gold in medicine.
Collapse
Affiliation(s)
- R Tyler Mertens
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sailajah Gukathasan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Adedamola S Arojojoye
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Chibuzor Olelewe
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- University of Kentucky Markey Cancer Center, Lexington, Kentucky 40536, United States
| |
Collapse
|
15
|
Cortat Y, Nedyalkova M, Schindler K, Kadakia P, Demirci G, Nasiri Sovari S, Crochet A, Salentinig S, Lattuada M, Steiner OM, Zobi F. Computer-Aided Drug Design and Synthesis of Rhenium Clotrimazole Antimicrobial Agents. Antibiotics (Basel) 2023; 12:antibiotics12030619. [PMID: 36978486 PMCID: PMC10044843 DOI: 10.3390/antibiotics12030619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
In the context of the global health issue caused by the growing occurrence of antimicrobial resistance (AMR), the need for novel antimicrobial agents is becoming alarming. Inorganic and organometallic complexes represent a relatively untapped source of antibiotics. Here, we report a computer-aided drug design (CADD) based on a 'scaffold-hopping' approach for the synthesis and antibacterial evaluation of fac-Re(I) tricarbonyl complexes bearing clotrimazole (ctz) as a monodentate ligand. The prepared molecules were selected following a pre-screening in silico analysis according to modification of the 2,2'-bipyridine (bpy) ligand in the coordination sphere of the complexes. CADD pointed to chiral 4,5-pinene and 5,6-pinene bipyridine derivatives as the most promising candidates. The corresponding complexes were synthesized, tested toward methicillin-sensitive and -resistant S. aureus strains, and the obtained results evaluated with regard to their binding affinity with a homology model of the S. aureus MurG enzyme. Overall, the title species revealed very similar minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values as those of the reference compound used as the scaffold in our approach. The obtained docking scores advocate the viability of 'scaffold-hopping' for de novo design, a potential strategy for more cost- and time-efficient discovery of new antibiotics.
Collapse
Affiliation(s)
- Youri Cortat
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Miroslava Nedyalkova
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Kevin Schindler
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Parth Kadakia
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Gozde Demirci
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Sara Nasiri Sovari
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Aurelien Crochet
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Marco Lattuada
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Olimpia Mamula Steiner
- Haute école d'Ingénierie et d'Architecture, University of Applied Sciences Western Switzerland HES-SO, Pérolles 80, 1700 Fribourg, Switzerland
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| |
Collapse
|
16
|
Zhang Q, Wang M, Hu X, Yan A, Ho PL, Li H, Sun H. Gold drugs as colistin adjuvants in the fight against MCR-1 producing bacteria. J Biol Inorg Chem 2023; 28:225-234. [PMID: 36662362 DOI: 10.1007/s00775-022-01983-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/22/2022] [Indexed: 01/21/2023]
Abstract
The emergence and rapid spread of the mobile colistin resistance gene mcr-1 among bacterial species and hosts significantly challenge the efficacy of "last-line" antibiotic colistin. Previously, we reported silver nitrate and auranofin serve as colistin adjuvants for combating mcr-1-positive bacteria. Herein, we uncovered more gold-based drugs and nanoparticles, and found that they exhibited varying degree of synergisms with colistin on killing mcr-1-positive bacteria. However, pre-activation of the drugs by either glutathione or N-acetyl cysteine, thus releasing and accumulating gold ions, is perquisite for their abilities to substitute zinc cofactor from MCR-1 enzyme. X-ray crystallography and biophysical studies further supported the proposed mechanism. This study not only provides basis for combining gold-based drugs and colistin for combating mcr-1-positive bacterial infections, but also undoubtedly opens a new horizon for metabolism details of gold-based drugs in overcoming antimicrobial resistance.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics On Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Minji Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xuqiao Hu
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics On Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Pak-Leung Ho
- Carol Yu Centre for Infection, The University of Hong Kong, Sassoon Road, Hong Kong SAR, China.,Department of Microbiology, The University of Hong Kong, Sassoon Road, Hong Kong SAR, China
| | - Hongyan Li
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics On Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| | - Hongzhe Sun
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics On Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
17
|
Aragoni MC, Podda E, Caria V, Carta SA, Cherchi MF, Lippolis V, Murgia S, Orrù G, Pippia G, Scano A, Slawin AMZ, Woollins JD, Pintus A, Arca M. [Au III(N^N)Br 2](PF 6): A Class of Antibacterial and Antibiofilm Complexes (N^N = 2,2'-Bipyridine and 1,10-Phenanthroline Derivatives). Inorg Chem 2023; 62:2924-2933. [PMID: 36728360 PMCID: PMC9930124 DOI: 10.1021/acs.inorgchem.2c04410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A series of new complexes of general formula [AuIII(N^N)Br2](PF6) (N^N = 2,2'-bipyridine and 1,10-phenanthroline derivatives) were prepared and characterized by spectroscopic, electrochemical, and diffractometric techniques and tested against Gram-positive and Gram-negative bacterial strains (Staphylococcus aureus, Streptococcus intermedius, Pseudomonas aeruginosa, and Escherichia coli), showing promising antibacterial and antibiofilm properties.
Collapse
Affiliation(s)
- M. Carla Aragoni
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - Enrico Podda
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy,Centro
Servizi di Ateneo per la Ricerca (CeSAR), Università degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - Veronica Caria
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - Silvia A. Carta
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - M. Francesca Cherchi
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - Vito Lippolis
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - Simone Murgia
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - Germano Orrù
- Dipartimento
di Scienze Chirurgiche, University of Cagliari, Cagliari09042, Italy
| | - Gabriele Pippia
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - Alessandra Scano
- Dipartimento
di Scienze Chirurgiche, University of Cagliari, Cagliari09042, Italy
| | - Alexandra M. Z. Slawin
- EaStCHEM
School of Chemistry, University of St. Andrews, North Haugh, Fife, St. AndrewsKY16 9ST, U.K.
| | - J. Derek Woollins
- EaStCHEM
School of Chemistry, University of St. Andrews, North Haugh, Fife, St. AndrewsKY16 9ST, U.K.,Department
of Chemistry, Khalifa University, Abu Dhabi127788, United Arab Emirates
| | - Anna Pintus
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy,
| | - Massimiliano Arca
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy,
| |
Collapse
|
18
|
Loukelis K, Helal ZA, Mikos AG, Chatzinikolaidou M. Nanocomposite Bioprinting for Tissue Engineering Applications. Gels 2023; 9:103. [PMID: 36826273 PMCID: PMC9956920 DOI: 10.3390/gels9020103] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Bioprinting aims to provide new avenues for regenerating damaged human tissues through the controlled printing of live cells and biocompatible materials that can function therapeutically. Polymeric hydrogels are commonly investigated ink materials for 3D and 4D bioprinting applications, as they can contain intrinsic properties relative to those of the native tissue extracellular matrix and can be printed to produce scaffolds of hierarchical organization. The incorporation of nanoscale material additives, such as nanoparticles, to the bulk of inks, has allowed for significant tunability of the mechanical, biological, structural, and physicochemical material properties during and after printing. The modulatory and biological effects of nanoparticles as bioink additives can derive from their shape, size, surface chemistry, concentration, and/or material source, making many configurations of nanoparticle additives of high interest to be thoroughly investigated for the improved design of bioactive tissue engineering constructs. This paper aims to review the incorporation of nanoparticles, as well as other nanoscale additive materials, to printable bioinks for tissue engineering applications, specifically bone, cartilage, dental, and cardiovascular tissues. An overview of the various bioinks and their classifications will be discussed with emphasis on cellular and mechanical material interactions, as well the various bioink formulation methodologies for 3D and 4D bioprinting techniques. The current advances and limitations within the field will be highlighted.
Collapse
Affiliation(s)
- Konstantinos Loukelis
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece
| | - Zina A. Helal
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FO.R.T.H), 70013 Heraklion, Greece
| |
Collapse
|
19
|
Ratia C, Sueiro S, Soengas RG, Iglesias MJ, López-Ortiz F, Soto SM. Gold(III) Complexes Activity against Multidrug-Resistant Bacteria of Veterinary Significance. Antibiotics (Basel) 2022; 11:antibiotics11121728. [PMID: 36551386 PMCID: PMC9774617 DOI: 10.3390/antibiotics11121728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
The emergence and spread of multidrug-resistant bacteria are a global concern. The lack of new antibiotics in the pipeline points to the need for developing new strategies. In this sense, gold(III) complexes (G3Cs) could be a promising alternative due to their recently described antibacterial activity. The aim of this study was to evaluate the antimicrobial activity of G3Cs alone and in combination with colistin against pathogenic bacteria from veterinary sources. Minimal inhibitory concentration (MIC) values were determined by broth microdilution and compared with clinically relevant antibiotics. Antibiofilm activity was determined by crystal violet staining. Combinations of selected G3Cs with colistin and cytotoxicity in commercial human cell lines were evaluated. Four and seven G3Cs showed antibacterial effect against Gram-negative and Gram-positive strains, respectively, with this activity being higher among Gram-positive strains. The G3Cs showed antibiofilm activity against Gram-negative species at concentrations similar or one to four folds higher than the corresponding MICs. Combination of G3Cs with colistin showed a potential synergistic antibacterial effect reducing concentrations and toxicity of both agents. The antimicrobial and antibiofilm activity, the synergistic effect when combined with colistin and the in vitro toxicity suggest that G3Cs would provide a new therapeutic alternative against multidrug-resistant bacteria from veterinary origin.
Collapse
Affiliation(s)
- Carlos Ratia
- ISGlobal, Hospital Clínic—Universitat de Barcelona, 08036 Barcelona, Spain
| | - Sara Sueiro
- ISGlobal, Hospital Clínic—Universitat de Barcelona, 08036 Barcelona, Spain
| | - Raquel G. Soengas
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Julián Clavería 7, 33006 Oviedo, Spain
| | - María José Iglesias
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, 04120 Almería, Spain
| | - Fernando López-Ortiz
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, 04120 Almería, Spain
- Correspondence: (F.L.-O.); (S.M.S.)
| | - Sara María Soto
- ISGlobal, Hospital Clínic—Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.L.-O.); (S.M.S.)
| |
Collapse
|
20
|
Hao J, Wu L, Lu X, Zeng Y, Jia B, Luo T, He S, Liang L. A stable Fe/Co bimetallic modified biochar for ofloxacin removal from water: adsorption behavior and mechanisms. RSC Adv 2022; 12:31650-31662. [PMID: 36380923 PMCID: PMC9634719 DOI: 10.1039/d2ra05334a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2023] Open
Abstract
In this study, Fe-Co-modified biochar (FMBC) loaded with iron (Fe) and cobalt (Co) bimetals after NaOH activation was prepared by pyrolysis using forestry waste cedar bark as a raw material to study its properties and the adsorption of ofloxacin (OFX). The surface structure and chemical properties were analyzed by BET, SEM-EDS, XRD, XPS, and FTIR characterization, and the results showed that the FMBC possessed a larger specific surface area and abundant surface functional groups. FMBC conformed to pseudo-second-order kinetic and Langmuir isotherm models, indicating that the OFX adsorption process on FMBC was a monolayer adsorption process and controlled by chemisorption. The saturation adsorption capacity of FMBC was 10 times higher than that of cedar bark biochar (BC). In addition, the effects of initial pH and coexisting ions on the adsorption process were investigated, and FMBC showed good adsorption, with the best adsorption capacity at pH = 7. Multiple adsorption mechanisms, including physical and chemical interactions, were involved in the adsorption of OFX by FMBC. TG, metal leaching, different water sources, and VSM tests showed that FMBC had good stability and was easily separated from water. Finally, the reusability performance of FMBC was investigated by various methods, and after five cycles it could still reach 75.78-89.31% of the adsorption capacity before recycling. Therefore, the FMBC synthesized in this study is a promising new adsorbent.
Collapse
Affiliation(s)
- Jiajie Hao
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Lieshan Wu
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Xiaowei Lu
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Yalin Zeng
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Bing Jia
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Tingting Luo
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Shixing He
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Liuling Liang
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre Nanning 530028 China
| |
Collapse
|
21
|
Mármol I, Quero J, Azcárate P, Atrián-Blasco E, Ramos C, Santos J, Gimeno MC, Rodríguez-Yoldi MJ, Cerrada E. Biological Activity of NHC-Gold-Alkynyl Complexes Derived from 3-Hydroxyflavones. Pharmaceutics 2022; 14:pharmaceutics14102064. [PMID: 36297498 PMCID: PMC9612383 DOI: 10.3390/pharmaceutics14102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
In this paper we describe the synthesis of new N-heterocyclic carbene (NHC) gold(I) derivatives with flavone-derived ligands with a propargyl ether group. The compounds were screened for their antimicrobial and anticancer activities, showing greater activity against bacteria than against colon cancer cells (Caco-2). Complexes [Au(L2b)(IMe)] (1b) and [Au(L2b)(IPr)] (2b) were found to be active against both Gram-positive and Gram-negative strains. The mechanism of action of 1b was evaluated by measurement of thioredoxin reductase (TrxR) and dihydrofolate reductase (DHFR) activity, besides scanning electron microscopy (SEM). Inhibition of the enzyme thioredoxin reductase is not observed in either Escherichia Coli or Caco-2 cells; however, DHFR activity is compromised after incubation of E. coli cells with complex 1b. Moreover, loss of structural integrity and change in bacterial shape is observed in the images obtained from scanning electron microscopy (SEM) after treatment E. coli cells with complex 1b.
Collapse
Affiliation(s)
- Inés Mármol
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Departamento de Farmacología y Fisiología, Medicina Legal y Forense, Unidad de Fisiología, Universidad de Zaragoza, CIBERobn, IIS Aragón, IA2, 50013 Zaragoza, Spain
| | - Javier Quero
- Departamento de Farmacología y Fisiología, Medicina Legal y Forense, Unidad de Fisiología, Universidad de Zaragoza, CIBERobn, IIS Aragón, IA2, 50013 Zaragoza, Spain
| | - Paula Azcárate
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Elena Atrián-Blasco
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Carla Ramos
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Avenida do Atlântico No. 644, 4900-348 Viana do Castelo, Portugal
| | - Joana Santos
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Avenida do Atlântico No. 644, 4900-348 Viana do Castelo, Portugal
| | - María Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - María Jesús Rodríguez-Yoldi
- Departamento de Farmacología y Fisiología, Medicina Legal y Forense, Unidad de Fisiología, Universidad de Zaragoza, CIBERobn, IIS Aragón, IA2, 50013 Zaragoza, Spain
- Correspondence: (M.J.R.-Y.); (E.C.)
| | - Elena Cerrada
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Correspondence: (M.J.R.-Y.); (E.C.)
| |
Collapse
|
22
|
Broad Spectrum Functional Activity of Structurally Related Monoanionic Au(III) Bis(Dithiolene) Complexes. Int J Mol Sci 2022; 23:ijms23137146. [PMID: 35806151 PMCID: PMC9266914 DOI: 10.3390/ijms23137146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
The biological properties of sixteen structurally related monoanionic gold (III) bis(dithiolene/diselenolene) complexes were evaluated. The complexes differ in the nature of the heteroatom connected to the gold atom (AuS for dithiolene, AuSe for diselenolene), the substituent on the nitrogen atom of the thiazoline ring (Me, Et, Pr, iPr and Bu), the nature of the exocyclic atom or group of atoms (O, S, Se, C(CN)2) and the counter-ion (Ph4P+ or Et4N+). The anticancer and antimicrobial activities of all the complexes were investigated, while the anti-HIV activity was evaluated only for selected complexes. Most complexes showed relevant anticancer activities against Cisplatin-sensitive and Cisplatin-resistant ovarian cancer cells A2780 and OVCAR8, respectively. After 48 h of incubation, the IC50 values ranged from 0.1–8 µM (A2780) and 0.8–29 µM (OVCAR8). The complexes with the Ph4P+ ([P]) counter-ion are in general more active than their Et4N+ ([N]) analogues, presenting IC50 values in the same order of magnitude or even lower than Auranofin. Studies in the zebrafish embryo model further showed that, despite their marked anticancer effect, the complexes with [P] counter-ion exhibited low in vivo toxicity. In general, the exocyclic exchange of sulfur by oxygen or ylidenemalononitrile (C(CN)2) enhanced the compounds toxicity. Most complexes containing the [P] counter ion exhibited exceptional antiplasmodial activity against the Plasmodium berghei parasite liver stages, with submicromolar IC50 values ranging from 400–700 nM. In contrast, antibacterial/fungi activities were highest for most complexes with the [N] counter-ion. Auranofin and two selected complexes [P][AuSBu(=S)] and [P][AuSEt(=S)] did not present anti-HIV activity in TZM-bl cells. Mechanistic studies for selected complexes support the idea that thioredoxin reductase, but not DNA, is a possible target for some of these complexes. The complexes [P] [AuSBu(=S)], [P] [AuSEt(=S)], [P] [AuSEt(=Se)] and [P] [AuSeiPr(=S)] displayed a strong quenching of the fluorescence intensity of human serum albumin (HSA), which indicates a strong interaction with this protein. Overall, the results highlight the promising biological activities of these complexes, warranting their further evaluation as future drug candidates with clinical applicability.
Collapse
|