1
|
Li H, Aytibeke Y, Simayi R, Wei Z, Li Y, Yimit M. Preparation and weather-resistant study of poly(butylene adipate-co-terephthalate)/poly(butylene carbonate-co-terephthalate)/modified cotton stalk lignin composite film. Int J Biol Macromol 2025; 309:142483. [PMID: 40164265 DOI: 10.1016/j.ijbiomac.2025.142483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/17/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
The development of composites for food packaging that have good mechanical and antimicrobial characteristics is still a major challenge. In this study, lignin (VL) was grafted with vinyl triethoxysilane (VTES) via a solvothermal method in an alcohol-water system. The modified lignin (VL) was then melt-blended and co-extruded with poly(butylene adipate-co-terephthalate) (PBAT) along with various ratios of poly(butylene carbonate-co-terephthalate) (PBCT), all within a non-catalyzed system, to fabricate bio-based fully biodegradable composite films. The tensile strength and elongation at break of the specimens increased by 63.54 % and 16.34 %, and UV transmittance at 400 nm decreased by 64.28 %, while the crystallinity increased from 15.61 % to 26.87 % without significant changes in the melt temperature, and the biodegradability of the film was maintained. To assess the antibacterial adhesion effect, the E.coli adherence rate on the sample surface was determined at 24.39 %, using PBAT's bacterial resistance as a reference point. The artificial indoor accelerated aging experiments were conducted to establish a multi-factor coupled aging kinetics model for the film and perform sensitivity analyses concerning temperature, irradiance, and oxygen-to‑nitrogen ratio. The results showed that the incorporation of modified cotton stalk lignin and PBCT reduced the sensitivity of PBAT towards temperature, irradiance and oxygen‑nitrogen ratio, and significantly enhanced the weather resistance of PBAT films. Consequently, these modifications significantly broaden the range of applications in the field of plastic packaging.
Collapse
Affiliation(s)
- Honghuan Li
- Ministry of Education and Autonomous Region Key Laboratory of Petroleum and Natural Gas Fine Chemicals, School of Chemical Engineering, Xinjiang University, Urumqi 830046, China
| | - Yelzati Aytibeke
- Ministry of Education and Autonomous Region Key Laboratory of Petroleum and Natural Gas Fine Chemicals, School of Chemical Engineering, Xinjiang University, Urumqi 830046, China
| | - Rena Simayi
- Ministry of Education and Autonomous Region Key Laboratory of Petroleum and Natural Gas Fine Chemicals, School of Chemical Engineering, Xinjiang University, Urumqi 830046, China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yan Li
- Ministry of Education and Autonomous Region Key Laboratory of Petroleum and Natural Gas Fine Chemicals, School of Chemical Engineering, Xinjiang University, Urumqi 830046, China
| | - Mamatjan Yimit
- Ministry of Education and Autonomous Region Key Laboratory of Petroleum and Natural Gas Fine Chemicals, School of Chemical Engineering, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
2
|
Liu Y, Wen Y, Cai H, Song X, Wang X, Zhang Z. Stress of polyethylene and polylactic acid microplastics on pakchoi(Brassica rapa subsp. chinensis) and soil bacteria: Biochar mitigation. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137301. [PMID: 39847935 DOI: 10.1016/j.jhazmat.2025.137301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/11/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
It remains essential to investigate the differences in phytotoxic effects between conventional and biodegradable microplastics (MPs). Furthermore, the mechanisms by which biochar mitigates the toxic effects of MPs on crops and soil remain poorly understood. The results of this research indicated that, compared to control treatment (CK), the application of 2 % polyethylene (PE) alone led to a significant reduction in the fresh weight of pakchoi by 36.8 % (P < 0.05). In examining the activities of antioxidant, as well as the concentrations of MDA and GSH in pakchoi, the 2 % PE treatment exhibited the highest levels. In contrast, the treatment that received a mixed application of biochar and MPs did not surpass the levels observed in the microplastic-only application. The combination of 0.2 % polylactic acid (PLA) with biochar resulted in a substantial increase in Chao1 index, with improvements of 46.4 % to CK. The findings also suggested that biochar can significantly impact bacterial diversity in soil with MPs, thereby altering the functions and metabolic pathways. Consequently, this modification partly influences the growth characteristics of pakchoi. Notably, PE demonstrated a higher level of toxicity to both plants and soil microorganisms than PLA at same applied quantity. These findings open avenues for innovative sustainable agricultural practices.
Collapse
Affiliation(s)
- Yuqing Liu
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Yujuan Wen
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, China.
| | - Haoxuan Cai
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Xiaochu Wang
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Zhipeng Zhang
- Sichuan Geological Environment Survey and Research Center, Sichuan 610000, China
| |
Collapse
|
3
|
Jin Z, Chen K, Zhu Q, Hu X, Tian S, Xiang A, Sun Y, Yuan M, Yao H. Non-degradable microplastic promote microbial colonization: A meta-analysis comparing the effects of microplastic properties and environmental factors. ENVIRONMENTAL RESEARCH 2025; 270:121053. [PMID: 39920968 DOI: 10.1016/j.envres.2025.121053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/12/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Microplastics serve as favorable substrates for microbial colonization, promoting biofilm formation, which consequently facilitates the accumulation of pollutants and aids in the degradation of microplastics. Hence, obtaining a thorough comprehension of the factors that influence the development of microplastic biofilms is imperative. Nevertheless, there have been conflicting responses concerning biofilm formation in conjunction with microplastic characteristics and environmental conditions. As a result, a meta-analysis was conducted to quantitatively evaluate the impact of microplastic properties and environmental factors on biofilm formation. The findings indicated that the type and size of microplastics significantly influence biofilm growth on their surfaces. Non-degradable microplastics, particularly polyvinyl chloride (PVC) and polystyrene (PS), exhibited higher surface biomass and biodiversity in microplastic-attached biofilms compared to degradable microplastics. Furthermore, it was observed that smaller microplastics were more conducive to microbial colonization. Model selection and correlation analysis further indicated that the environment acts as a substantial predictor of biofilm formation, with prolonged exposure significantly enhancing microbial diversity within biofilms as opposed to short-term exposure. Moreover, meta-regression analysis illustrated a positive correlation between biofilm biomass and alpha-diversity with temperature, while salinity exhibited a negative correlation in diverse aquatic settings. Notably, the ease of biofilm formation on microplastics was observed to be greater in oceans compared to lakes, yet biofilms exhibited a higher diversity increment in lakes than their oceanic counterparts. In the long-term growth of biofilms, initial biomass and diversity are influenced by microplastic characteristics and the surrounding environment, although environmental influences may assume more significance as time progresses.
Collapse
Affiliation(s)
- Zhihui Jin
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Keyi Chen
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Qing Zhu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xiaodie Hu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Sijia Tian
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Airong Xiang
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yaru Sun
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Ming Yuan
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Huaiying Yao
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China.
| |
Collapse
|
4
|
Nava V, Dar JY, De Santis V, Fehlinger L, Pasqualini J, Adekolurejo OA, Burri B, Cabrerizo MJ, Chonova T, Cour M, Dory F, Drost AM, Figler A, Gionchetta G, Halabowski D, Harvey DR, Manzanares‐Vázquez V, Misteli B, Mori‐Bazzano L, Moser V, Rotta F, Schmid‐Paech B, Touchet CM, Gostyńska J. Zooming in the plastisphere: the ecological interface for phytoplankton-plastic interactions in aquatic ecosystems. Biol Rev Camb Philos Soc 2025; 100:834-854. [PMID: 39542439 PMCID: PMC11885710 DOI: 10.1111/brv.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Phytoplankton is an essential resource in aquatic ecosystems, situated at the base of aquatic food webs. Plastic pollution can impact these organisms, potentially affecting the functioning of aquatic ecosystems. The interaction between plastics and phytoplankton is multifaceted: while microplastics can exert toxic effects on phytoplankton, plastics can also act as a substrate for colonisation. By reviewing the existing literature, this study aims to address pivotal questions concerning the intricate interplay among plastics and phytoplankton/phytobenthos and analyse impacts on fundamental ecosystem processes (e.g. primary production, nutrient cycling). This investigation spans both marine and freshwater ecosystems, examining diverse organisational levels from subcellular processes to entire ecosystems. The diverse chemical composition of plastics, along with their variable properties and role in forming the "plastisphere", underscores the complexity of their influences on aquatic environments. Morphological changes, alterations in metabolic processes, defence and stress responses, including homoaggregation and extracellular polysaccharide biosynthesis, represent adaptive strategies employed by phytoplankton to cope with plastic-induced stress. Plastics also serve as potential habitats for harmful algae and invasive species, thereby influencing biodiversity and environmental conditions. Processes affected by phytoplankton-plastic interaction can have cascading effects throughout the aquatic food web via altered bottom-up and top-down processes. This review emphasises that our understanding of how these multiple interactions compare in impact on natural processes is far from complete, and uncertainty persists regarding whether they drive significant alterations in ecological variables. A lack of comprehensive investigation poses a risk of overlooking fundamental aspects in addressing the environmental challenges associated with widespread plastic pollution.
Collapse
Affiliation(s)
- Veronica Nava
- Department of Earth and Environmental SciencesUniversity of Milano‐BicoccaPiazza della Scienza 1Milan20126Italy
| | - Jaffer Y. Dar
- ICAR‐Central Soil Salinity Research InstituteKarnal132001India
- Department of Experimental LimnologyLeibniz Institute of Freshwater Ecology and Inland FisheriesMüggelseedamm 310Berlin12587Germany
| | - Vanessa De Santis
- Water Research Institute, National Research CouncilCorso Tonolli 50Verbania‐PallanzaVerbania28922Italy
| | - Lena Fehlinger
- GEA Aquatic Ecology GroupUniversity of Vic ‐ Central University of CataloniaCarrer de la Laura 13Catalonia08500 VicSpain
| | - Julia Pasqualini
- Department of River EcologyHelmholtz Centre for Environmental Research‐UFZBrückstr. 3aMagdeburg39114Germany
| | - Oloyede A. Adekolurejo
- Ecology and Evolution, School of BiologyUniversity of LeedsLeedsLS2 9JTUK
- Department of BiologyAdeyemi Federal University of EducationOndo CityOndoPMB 520Nigeria
| | - Bryan Burri
- Department F‐A. Forel for Environmental and Aquatic SciencesUniversity of Geneva, 30 Quai Ernest‐Ansermet Sciences IIGenèveCH‐1205Switzerland
| | - Marco J. Cabrerizo
- Department of Ecology & Institute of Water ResearchUniversity of GranadaCampus Fuentenueva s/nGranada18071Spain
- Estación de Fotobiología Playa Unióncasilla de correos 15RawsonChubut9103Argentina
| | - Teofana Chonova
- Department Environmental ChemistryEawag: Swiss Federal Institute of Aquatic Science and TechnologyÜberlandstr. 133DübendorfCH‐8600Switzerland
| | | | - Flavia Dory
- Department of Earth and Environmental SciencesUniversity of Milano‐BicoccaPiazza della Scienza 1Milan20126Italy
| | - Annemieke M. Drost
- Department of Aquatic EcologyNetherlands Institute of EcologyDroevendaalsesteeg 10Wageningen6708 PBThe Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED)University of AmsterdamP.O. Box 94240Amsterdam1090 GEThe Netherlands
| | - Aida Figler
- Department of BioinformaticsSemmelweis UniversityTűzoltó utca 7‐9Budapest1094Hungary
| | - Giulia Gionchetta
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA)Spanish Council of Scientific Research (CSIC)Barcelona0803Spain
| | - Dariusz Halabowski
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental ProtectionUniversity of LodzBanacha 12/16Lodz90‐237Poland
| | - Daniel R. Harvey
- Lake Ecosystems Group, UK Centre for Ecology & HydrologyLancaster Environment CentreLibrary Avenue, BailriggLancasterLA1 4APUK
- Lancaster Environment CentreLancaster UniversityLancasterLA1 4YQUK
| | - Víctor Manzanares‐Vázquez
- Department of Research and DevelopmentCoccosphere Environmental AnalysisC/Cruz 39, 29120 Alhaurín el GrandeMálagaSpain
| | - Benjamin Misteli
- WasserCluster Lunz ‐ Biologische StationDr Carl Kupelwieser Promenade 5Lunz am See3293Austria
| | - Laureen Mori‐Bazzano
- Department F‐A. Forel for Environmental and Aquatic SciencesUniversity of Geneva, 30 Quai Ernest‐Ansermet Sciences IIGenèveCH‐1205Switzerland
| | - Valentin Moser
- Community Ecology, Swiss Federal Institute for ForestSnow and Landscape Research WSLZürcherstrasse 111BirmensdorfCH‐8903Switzerland
- Department of Aquatic EcologyEawag: Swiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 133DübendorfCH‐8600Switzerland
| | - Federica Rotta
- Department of Earth and Environmental SciencesUniversity of PaviaVia Ferrata 1Pavia27100Italy
- Institute of Earth ScienceUniversity of Applied Science and Arts of Southern SwitzerlandVia Flora Ruchat‐Roncati 15MendrisioCH‐6850Switzerland
| | - Bianca Schmid‐Paech
- University Weihenstephan‐Triesdorf of Applied ScienceAm Hofgarten 4Freising85354Germany
| | - Camille M. Touchet
- Université Claude Bernard ‐ Lyon 1, “LEHNA UMR 5023, CNRS, ENTPE3‐6, rue Raphaël DuboisVilleurbanneF‐69622France
| | - Julia Gostyńska
- Department of Hydrobiology, Faculty of BiologyAdam Mickiewicz UniversityUniwersytetu Poznanskiego 6Poznan61‐614Poland
| |
Collapse
|
5
|
Miao L, Jin Z, Ci H, Adyel TM, Deng X, You G, Xu Y, Wu J, Yao Y, Kong M, Hou J. Dynamic changes of leachates of aged plastic debris under different suspended sand concentrations and their toxicity. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136874. [PMID: 39700944 DOI: 10.1016/j.jhazmat.2024.136874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Plastic pollution in aquatic environments poses significant ecological risks, particularly through released leachates. While traditional or non-biodegradable plastics (non-BPs) are well-studied, biodegradable plastics (BPs) have emerged as alternatives that are designed to degrade more rapidly within the environment. However, research on the ecological risks of the leachates from aged BPs in aquatic environments is scarce. This controlled laboratory study investigated the leachate release processes and associated toxicity of traditional non-BPs, i.e., polyethylene terephthalate (PET) and polypropylene (PP) and BPs, i.e., polylactic acid (PLA) combined with polybutylene adipate terephthalate (PBAT) and starch-based plastic (SBP) under different aging time and suspended sand concentrations (0, 50, 100, 250, and 500 mg/L). The results indicated that BPs release significantly higher levels of dissolved organic carbon (DOC) than those of non-BPs, particularly at elevated suspended sand concentrations. The DOC concentrations in PLA+PBAT leachate reached 2.69 mg/L, surpassing those of PET and PP. Additionally, BPs released organic matter of larger molecular weight and protein-like substances. Toxicity tests showed that leachates from BPs inhibited the activity of Daphnia magna more than those from non-BPs. At a suspended sand concentration of 500 mg/L, PLA+PBAT leachate caused a 30 % inhibitory rate of Daphnia magna. Despite enhanced degradability, leachates from BPs may pose increased environmental risks in ecosystems with high suspended sand concentrations. Comprehensive ecological risk assessments are essential for effectively managing and mitigating these hazards of plastic pollution.
Collapse
Affiliation(s)
- Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zhuoyi Jin
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hanlin Ci
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200434, PR China
| | - Tanveer M Adyel
- Centre for Nature Positive Solutions, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xiaoya Deng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yu Yao
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China.
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
6
|
Wang Y, Zhang Y, Li C, Meng S, Wang D, Zhao L, Wang Z. Clonal expression and structural analysis of polylactic acid-degrading enzyme S8SP from Bacillus safensis. Lett Appl Microbiol 2025; 78:ovaf025. [PMID: 39965783 DOI: 10.1093/lambio/ovaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/02/2025] [Accepted: 02/17/2025] [Indexed: 02/20/2025]
Abstract
Polylactic acid (PLA) is one of the most popular biodegradable plastics favored over traditional plastics. However, it is more difficult to degrade than other biodegradable plastics probably due to the low species and number of PLA-degrading microorganisms degrading enzymes in the environment. Therefore, identifying PLA-degrading microorganisms and enzymes is of great significance for the popularization and application of PLA. This study identified a PLA-degrading enzyme, S8 serine peptidase (S8SP), from Bacillus safensis, and the heterologous expression of S8SP was conducted in Escherichia coli. PLA degradation ability of S8SP was investigated using scanning electron microscopy and water contact angle. The surface of S8SP-degraded PLA films showed obvious cracks and pits and exhibited improved hydrophilicity. The molecular weight of S8SP was about 42 kDa, and its optimum temperature and pH were 40°C and 8.0, respectively. S8SP could maintain high stability in the temperature range of 30°C-40°C and pH range of 7.0-9.0. Sodium ions (Na+), potassium ions (K+), Triton X-100, and Tween-80 promoted the enzyme activity of S8SP. S8SP had a high similarity degree to S8 serine peptidase from the genus Bacillus, and had the classical hydrolase-catalyzed triplet structure.
Collapse
Affiliation(s)
- Yujun Wang
- School of Science, Liaodong University, 325 Wenhua Road, Yuanbao District, Dandong 118003, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang 110866, China
| | - Yuanyi Zhang
- School of Science, Liaodong University, 325 Wenhua Road, Yuanbao District, Dandong 118003, China
| | - Chunwang Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang 110866, China
| | - Siqi Meng
- School of Science, Liaodong University, 325 Wenhua Road, Yuanbao District, Dandong 118003, China
| | - Dandan Wang
- School of Science, Liaodong University, 325 Wenhua Road, Yuanbao District, Dandong 118003, China
| | - Lehui Zhao
- School of Science, Liaodong University, 325 Wenhua Road, Yuanbao District, Dandong 118003, China
| | - Zhanyong Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang 110866, China
| |
Collapse
|
7
|
Peng Y, Lu J, Fan L, Zhou J, Dong W, Jiang M. Enzymes offer a promising avenue for enhancing the competitiveness of biodegradable plastics in environmental restoration and the circular economy. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 195:32-43. [PMID: 39884010 DOI: 10.1016/j.wasman.2025.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 12/22/2024] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
As a promising alternative to traditional plastics, the widespread application of biodegradable plastic (BP) will help solve worsening environmental problems. Enzymes such as cutinase, lipase, protease and esterase produced by bacteria and fungi in the environment play a crucial role in the degradation, recycling and valorization of BP by degrading them into low-molecular-weight oligomers or small monomers. These enzymes offering advantages such as high efficiency, cleanliness, safety and environmental friendliness, making them more competitive in environmental restoration and circular economy. This review describes in detail the occurrence and distribution of enzymes involved in the degradation of BPs (represented by PHB, PLA and PCL). Omics methods (metagenomic and proteomic) combined with high-throughput platforms can screen out BP-degrading enzymes in different environments, and then use protein engineering to optimize the degrading enzymes to improve enzymatic degradation efficiency. Finally, we focus on the methods and strategies for the commercialization of degrading enzymes, future research prospects and challenges are also discussed. This review highlights the importance of BP-degrading enzymes in the bio-cycling of BP, and expected to drive the widespread use of BP.
Collapse
Affiliation(s)
- Yujia Peng
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jianqi Lu
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Lingling Fan
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jie Zhou
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Weiliang Dong
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China.
| | - Min Jiang
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| |
Collapse
|
8
|
Wu X, He F, Xu X, Wu L, Rong J, Lin S. Environmental Health and Safety Implications of the Interplay Between Microplastics and the Residing Biofilm. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:118-132. [PMID: 40012871 PMCID: PMC11851218 DOI: 10.1021/envhealth.4c00148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 02/28/2025]
Abstract
The increasing prevalence of microplastics in the environment has raised concerns about their potential environmental and health implications. Biofilms readily colonize microplastics upon their entry into the environment, altering their surface characteristics. While most studies have explored how biofilms influence the adsorption and transportation of other contaminants by microplastics, the reciprocal interplay between microplastics and biofilms and the resulting ecological risks remain understudied. This review comprehensively reviews the impact of microplastic properties on biofilm formation and composition, including the microbial community structure. We then explore the dynamic interactions between microplastics and biofilms, examining how biofilms alter the physicochemical properties, migration, and deposition of microplastics. Furthermore, we emphasize the potential of biofilm-colonized microplastics to influence the environmental fate of other pollutants. Lastly, we discuss how biofilm-microplastic interactions may modify the bioavailability, biotoxicity, and potential health implications of microplastics.
Collapse
Affiliation(s)
- Xiaohan Wu
- College
of Environmental Science and Engineering, Biomedical Multidisciplinary
Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological
Security, Shanghai 200092, China
| | - Fei He
- College
of Environmental Science and Engineering, Biomedical Multidisciplinary
Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological
Security, Shanghai 200092, China
| | - Xueran Xu
- College
of Environmental Science and Engineering, Biomedical Multidisciplinary
Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological
Security, Shanghai 200092, China
| | - Leilei Wu
- College
of Environmental Science and Engineering, Biomedical Multidisciplinary
Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological
Security, Shanghai 200092, China
| | - Jinyu Rong
- College
of Environmental Science and Engineering, Biomedical Multidisciplinary
Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological
Security, Shanghai 200092, China
| | - Sijie Lin
- College
of Environmental Science and Engineering, Biomedical Multidisciplinary
Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological
Security, Shanghai 200092, China
| |
Collapse
|
9
|
Guo W, Li J, Wu Z, Chi G, Lu C, Ma J, Hu Y, Zhu B, Yang M, Chen X, Liu H. Biodegradable and conventional mulches inhibit nitrogen fixation by peanut root nodules - potentially related to microplastics in the soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136423. [PMID: 39536342 DOI: 10.1016/j.jhazmat.2024.136423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Mulching has been demonstrated to improve the soil environment and promote plant growth. However, the effects of mulching and mulch-derived microplastics (MPs) on nitrogen fixation by root nodules remain unclear. In this study, we investigated the effects of polyethylene (PE) and polylactic acid-polybutylene adipate-co-terephthalate (PLA-PBAT) film mulching on nitrogen fixation by root nodules after 4 years of continuous mulching using 15N tracer technology. Additionally, we examined the relationship between nitrogen fixation and MPs. We found a reduction in the proportion of nitrogen fixation by nodules (54.3 %-58.7 %) due to mulching. This decrease may be attributed to reduced dinitrogenase activity and flavonoid content at the seedling stage caused by mulching, and mulching with PLA-PBAT films significantly decreased the abundance of Bradyrhizobium at maturity. Furthermore, combined analysis of nitrogen-fixing bacteria (nifH) and metabolomes indicated that N-lauroylethanolamine may act as a regulatory signal influencing the root nodule nitrogen fixation process and that mulching resulted in significant changes in its content. The mantel test and PLS-PM suggest that microplastic from mulching may harm root nodule nitrogen fixation. This study reveals the influence of mulching on plant nitrogen uptake and the potential threat of mulch-derived microplastics, with a special focus on root nodule nitrogen fixation.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jizhi Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengfeng Wu
- Shandong Peanut Research Institute, Qingdao266100, China
| | - Guangyu Chi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Caiyan Lu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jian Ma
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yanyu Hu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bin Zhu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaoyin Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Huiying Liu
- Liaoning Academy of Agricultural Sciences, Shenyang 110161, China.
| |
Collapse
|
10
|
Liu Y, Cai H, Wen Y, Song X, Wang X, Zhang Z. Research progress on degradation of biodegradable micro-nano plastics and its toxic effect mechanism on soil ecosystem. ENVIRONMENTAL RESEARCH 2024; 262:119979. [PMID: 39270956 DOI: 10.1016/j.envres.2024.119979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/08/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Biodegradable plastics (BPs) are known to decompose into micro-nano plastics (BMNPs) more readily than conventional plastics (CPs). Given the environmental risks posed by BMNPs in soil ecosystems, their impact has garnered increasing attention. However, research focusing on the toxic effects of BMNPs on soils remains relatively limited. The degradation process and duration of BMNPs in soil are influenced by numerous factors, which directly impact the toxic effects of BMNPs. This highlights the urgent need for further research. In this context, this review delineates the classification of BPs, investigates the degradation processes of BPs along with their influencing factors, summarizes the toxic effects on soil ecosystems, and explores the potential mechanisms that underlie these toxic effects. Finally, it provides an outlook on related research concerning BMNPs in soil. The results indicate that specific BMNPs release additives at a faster rate during decomposition, degradation, and aging, with certain compounds exhibiting increased bioavailability. Importantly, a substantial body of research has shown that BMNPs generally manifest more pronounced toxic effects in comparison to conventional micro-nano plastics (CMNPs). The toxic effects associated with BMNPs encompass a decline in soil quality and microbial biomass, disruption of nutrient cycling, inhibition of plant root growth, and negative impacts on invertebrate reproduction, survival, and fertilization rates. The rough and complex surfaces of BMNPs contribute to increased mechanical damage to tested organisms, enhance absorption by microorganisms, and disrupt normal physiological functions. Notably, the toxic effects of BMNPs on soil ecosystems are influenced by factors including concentration, type of BMNPs, exposure conditions, degradation products, and the nature of additives used. Therefore, it is crucial to standardize detection technologies and toxicity testing conditions for BMNPs. In conclusion, this review provides scientific evidence that supports effective prevention and management of BMNP pollution, assessment of its ecological risks, and governance of BMNPs-related products.
Collapse
Affiliation(s)
- Yuqing Liu
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Haoxuan Cai
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Yujuan Wen
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China; Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang, 110000, China; Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang, 110000, China.
| | - Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Xiaochu Wang
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Zhipeng Zhang
- Sichuan Geological Environment Survey and Research Center, Sichuan, 610000, China
| |
Collapse
|
11
|
Miao L, Deng X, Qin X, Huang Y, Su L, Adyel TM, Wang Z, Lu Z, Luo D, Wu J, Hou J. High-altitude aquatic ecosystems offer faster aging rate of plastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175827. [PMID: 39197763 DOI: 10.1016/j.scitotenv.2024.175827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
While research on the aging behavior of plastics in aquatic systems is extensive, studies focusing on high-altitude ecosystems, characterized by higher solar radiation and lower temperatures, remain limited. This study investigated the long-term aging behavior of non-biodegradable plastics (non-BPs), namely polyethylene terephthalate (PET) and polypropylene (PP) and biodegradable plastics (BPs), specifically polylactic acid plus polybutylene adipate-co-terephthalate (PLA + PBAT) and starch-based plastic (SBP), in a tributary of the Yarlung Zangbo River on the high-altitude Tibetan Plateau. Over 84 days of field aging, all four types of plastics exhibited initial rapid aging followed by deceleration. This aging process can be divided into two phases: rapid surface oxidation aging and an aging plateau phase. Notably, PP aged at a rate comparable to BPs, contrary to expectations of faster aging for BPs. Compared to low-altitude aquatic ecosystems, plastics in this study showed a faster aging rate. This was primarily due to intense ultraviolet radiation causing severe photoaging. Furthermore, the lower temperatures contributed to the formation of thinner biofilms. These thinner biofilms exhibited a reduced capacity to block light, further exacerbating the photoaging process of plastics. Statistical analysis results indicated that temperature, total nitrogen TN, and total phosphorus TP were likely the main water quality parameters influencing plastic aging. The varying effects of water properties and nutrients underscore the complex interaction of water quality parameters in high-altitude environments. Given the delicate nature of the high-altitude environment, the environmental impact of plastics, especially BPs, warrants careful consideration.
Collapse
Affiliation(s)
- Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Xiaoya Deng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Xiangchao Qin
- Eco-environmental Monitoring and Scientific Research Center, Yellow River Basin Ecology and Environment Administration, Zhengzhou 450004, People's Republic of China.
| | - Yi Huang
- Tibet Agriculture and Animal Husbandry University, No.100, Yucai West Road, Bayi District, Nyingchi City 860006, People's Republic of China.
| | - Libin Su
- Tibet Agriculture and Animal Husbandry University, No.100, Yucai West Road, Bayi District, Nyingchi City 860006, People's Republic of China.
| | - Tanveer M Adyel
- STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia; Biosciences and Food Technology Discipline, RMIT University, Melbourne, VIC 3000, Australia
| | - Zhiyuan Wang
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, National Energy Administration, Ministry of Transport, Ministry of Water Resources, Nanjing 210029, People's Republic of China
| | - Zhao Lu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Dan Luo
- Tibet Research Academy of Eco-environmental Sciences, No.26, Jinzhu Middle Road, Chengguan District, Lhasa, Tibet Autonomous Region 850030, People's Republic of China.
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
12
|
Brtnicky M, Pecina V, Kucerik J, Hammerschmiedt T, Mustafa A, Kintl A, Sera J, Koutny M, Baltazar T, Holatko J. Biodegradation of poly-3-hydroxybutyrate after soil inoculation with microbial consortium: Soil microbiome and plant responses to the changed environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174328. [PMID: 38945229 DOI: 10.1016/j.scitotenv.2024.174328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Biodegradable plastics play a vital role in addressing global plastics disposal challenges. Poly-3-hydroxybutyrate (P3HB) is a biodegradable bacterial intracellular storage polymer with substantial usage potential in agriculture. Poly-3-hydroxybutyrate and its degradation products are non-toxic; however, previous studies suggest that P3HB biodegradation negatively affects plant growth because the microorganisms compete with plants for nutrients. One possible solution to this issue could be inoculating soil with a consortium of plant growth-promoting and N-fixing microorganisms. To test this hypothesis, we conducted a pot experiment using lettuce (Lactuca sativa L. var. capitata L.) grown in soil amended with two doses (1 % and 5 % w/w) of P3HB and microbial inoculant (MI). We tested five experimental variations: P3HB 1 %, P3HB 1 % + MI, P3HB 5 %, P3HB 5 % + MI, and MI, to assess the impact of added microorganisms on plant growth and P3HB biodegradation. The efficient P3HB degradation, which was directly dependent on the amount of bioplastics added, was coupled with the preferential utilization of P3HB as a carbon (C) source. Due to the increased demand for nutrients in P3HB-amended soil by microbial degraders, respiration and enzyme activities were enhanced. This indicated an increased mineralisation of C as well as nitrogen (N), sulphur (S), and phosphorus (P). Microbial inoculation introduced specific bacterial taxa that further improved degradation efficiency and nutrient turnover (N, S, and P) in P3HB-amended soil. Notably, soil acidification related to P3HB was not the primary factor affecting plant growth inhibition. However, despite plant growth-promoting rhizobacteria and N2-fixing microorganisms originating from MI, plant biomass yield remained limited, suggesting that these microorganisms were not entirely successful in mitigating the growth inhibition caused by P3HB.
Collapse
Affiliation(s)
- Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Vaclav Pecina
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Jiri Kucerik
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic.
| | - Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Adnan Mustafa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; Agricultural Research, Ltd., 664 41 Troubsko, Czech Republic
| | - Jana Sera
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovcirnou 3685, 760 01 Zlin, Czech Republic
| | - Marek Koutny
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovcirnou 3685, 760 01 Zlin, Czech Republic
| | - Tivadar Baltazar
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| |
Collapse
|
13
|
Liu X, Chen JP, Wang L, Shao Z, Xiao X, Wang J. Editorial: Microplastics and microorganisms in the environment, volume II. Front Microbiol 2024; 15:1464294. [PMID: 39165578 PMCID: PMC11333443 DOI: 10.3389/fmicb.2024.1464294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Affiliation(s)
- Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - J. Paul Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Lei Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Zongze Shao
- Third Research Institute of the Ministry of Natural Resources, Xiamen, China
| | - Xiang Xiao
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Jiao Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
14
|
Ruan J, Liao C, Li P, Li X, Zuo Y. Synergistic preparation of a straw fiber/polylactic acid composite with high toughness and strength through interfacial compatibility enhancement and elastomer toughening. Int J Biol Macromol 2024; 275:133621. [PMID: 38960248 DOI: 10.1016/j.ijbiomac.2024.133621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/22/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Plant fiber-reinforced polylactic acid (PLA) composites are extensively utilized in eco-friendly packaging, sports equipment, and various other applications due to their environmental benefits and cost-effectiveness. However, PLA suffers from brittleness and poor toughness, which restricts its use in scenarios demanding high toughness. To expand the application range of plant fiber-reinforced PLA-based composites and enhance their poor toughness, this study employed a two-step process involving wheat straw fiber (WF) to improve the interfacial compatibility between WF and PLA. Additionally, four elastomeric materials-poly (butylene adipate-co-terephthalate) (PBAT), poly (butylene succinate) (PBS), polycaprolactone (PCL), and polyhydroxyalkanoate (PHA)-were incorporated to achieve a mutual reactive interface enhancement and elastomeric toughening. The results demonstrated that Fe3+/TsWF/PLA/PBS exhibited a tensile strength, elongation at break, and impact strength of 34.01 MPa, 14.23 %, and 16.2 kJ/m2, respectively. These values represented a 2.4 %, 86.7 %, and 119 % increase compared to the unmodified composites. Scanning electron microscopy analysis revealed no fiber exposure in the cross-section, indicating excellent interfacial compatibility. Furthermore, X-ray diffraction and differential scanning calorimetry tests confirmed improvements in the crystalline properties of the composites. This work introduces a novel approach for preparing fiber-reinforced PLA-based composites with exceptional toughness and strength.
Collapse
Affiliation(s)
- Jiuchang Ruan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Chenggang Liao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Ping Li
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Xingong Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Yingfeng Zuo
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China.
| |
Collapse
|
15
|
Wang N, Zhang R, Wang Y, Zhang L, Sun A, Zhang Z, Shi X. Accumulation and growth toxicity mechanisms of fluxapyroxad revealed by physiological, hepatopancreas transcriptome, and gut microbiome analysis in Pacific white shrimp (Litopenaeus vannamei). JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135206. [PMID: 39029191 DOI: 10.1016/j.jhazmat.2024.135206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/15/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Fluxapyroxad (FX), a typical succinate dehydrogenase inhibitor fungicide, is causing increased global concerns due to its fungicide effects. However, the accumulation and grow toxicity of FX to Litopenaeus vannamei (L. vannamei) is poorly understand. Therefore, the accumulation pattern of FX in L. vannamei was investigated for the first time in environmental concentrations. FX accumulated rapidly in shrimp muscle. Meanwhile, growth inhibition was observed and the mechanism derived by primarily accelerated glycolipid metabolism and reduced glycolipid content. Moreover, exposure to environmental concentrations of FX induced significant growth inhibition and oxidative stress and inhibited oxidative phosphorylation and TCA cycle in L. vannamei. The endocytosis signaling pathway genes were activated, thereby driving growth toxicity. Oxidative phosphorylation and cytosolic gene expression were further rescued in elimination experiments, demonstrating the mechanism of growth toxicity by FX exposure. The results revealed that FX persistently altered the gut microbiome of L. vannamei using gut microbiome sequencing, particularly with increased Garcinia Purple Pseudoalteromonas luteoviolacea for organic pollutant degradation. This study provided new insights into the potential toxicity of FX to marine organisms, emphasizing the need for further investigation and potential regulatory considerations.
Collapse
Affiliation(s)
- Ningbo Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Rongrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yinan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Liuquan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Aili Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Zeming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo 315211, PR China.
| |
Collapse
|
16
|
Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F. Plastisphere-hosted viruses: A review of interactions, behavior, and effects. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134533. [PMID: 38749241 DOI: 10.1016/j.jhazmat.2024.134533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
Microbial communities, including bacteria, diatoms, and fungi, colonize plastic surfaces, forming biofilms known as the "plastisphere." Recent research has revealed that plastispheres also host a wide range of viruses, sparking interest in microbial ecology and virology. This shared habitat allows viruses to replicate, interact, infect, and spread, potentially impacting the environment and human health. Consequently, viruses attached to microplastics are now recognized to have broad effects on cellular and immune responses. However, the ecology and implications of viruses hosted in plastisphere habitats remain poorly understood, highlighting their fundamental importance as a subject of study. This review explores various pathways for virus attachment to plastispheres, factors influencing these interactions, their impacts within plastisphere and host-associated environments, and associated issues. It also summarizes current research and identifies knowledge gaps. We anticipate that this paper will help improve our predictive understanding of plastisphere viruses in natural settings and emphasizes the need for more research in real-world environments to advance the field.
Collapse
Affiliation(s)
- Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México.
| | - V C Shruti
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México
| |
Collapse
|
17
|
Piyathilake U, Lin C, Bolan N, Bundschuh J, Rinklebe J, Herath I. Exploring the hidden environmental pollution of microplastics derived from bioplastics: A review. CHEMOSPHERE 2024; 355:141773. [PMID: 38548076 DOI: 10.1016/j.chemosphere.2024.141773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/18/2024]
Abstract
Bioplastics might be an ecofriendly alternative to traditional plastics. However, recent studies have emphasized that even bioplastics can end up becoming micro- and nano-plastics due to their degradation under ambient environmental conditions. Hence, there is an urgent need to assess the hidden environmental pollution caused by bioplastics. However, little is known about the evolutionary trends of bibliographic data, degradation pathways, formation, and toxicity of micro- and nano-scaled bioplastics originating from biodegradable polymers such as polylactic acid, polyhydroxyalkanoates, and starch-based plastics. Therefore, the prime objective of the current review was to investigate evolutionary trends and the latest advancements in the field of micro-bioplastic pollution. Additionally, it aims to confront the limitations of existing research on microplastic pollution derived from the degradation of bioplastic wastes, and to understand what is needed in future research. The literature survey revealed that research focusing on micro- and nano-bioplastics has begun since 2012. This review identifies novel insights into microbioplastics formation through diverse degradation pathways, including photo-oxidation, ozone-induced degradation, mechanochemical degradation, biodegradation, thermal, and catalytic degradation. Critical research gaps are identified, including defining optimal environmental conditions for complete degradation of diverse bioplastics, exploring micro- and nano-bioplastics formation in natural environments, investigating the global occurrence and distribution of these particles in diverse ecosystems, assessing toxic substances released during bioplastics degradation, and bridging the disparity between laboratory studies and real-world applications. By identifying new trends and knowledge gaps, this study lays the groundwork for future investigations and sustainable solutions in the realm of sustainable management of bioplastic wastes.
Collapse
Affiliation(s)
- Udara Piyathilake
- Environmental Science Division, National Institute of Fundamental Studies (NIFS), Kandy, 2000, Sri Lanka
| | - Chuxia Lin
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC, 3125, Australia
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Jochen Bundschuh
- School of Engineering, Faculty of Health, Engineering and Sciences, The University of Southern Queensland, West Street, 4350, QLD, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Indika Herath
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
18
|
Hu L, He L, Cai L, Wang Y, Wu G, Zhang D, Pan X, Wang YZ. Deterioration of single-use biodegradable plastics in high-humidity air and freshwaters over one year: Significant disparities in surface physicochemical characteristics and degradation rates. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133170. [PMID: 38064942 DOI: 10.1016/j.jhazmat.2023.133170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 02/08/2024]
Abstract
More single-use plastics are accumulating in the environment, and likewise biodegradable plastics (BPs), which are being vigorously promoted, cannot escape the fate. Currently, studies on the actual degradation of BPs in open-air and freshwaters are underrepresented despite they are potentially headmost leakage and contamination sites for disposable BPs. Herein, we compared the degradation behavior of six BP materials and non-degradable polypropylene (PP) plastics over a 1-year in situ suspension in the high-humidity air, a eutrophic river, and an oligotrophic lake. Moreover, a 3-months laboratory incubation was performed to detect the release of dissolved organic carbon (DOC) from BPs. In both air and freshwaters, poly(p-dioxanone) (PPDO) degraded significantly while PP and polylactic acid (PLA) showed no signs of degradation. The average degradation rates of three poly(butylene adipate-co-terephthalate) (PBAT)-based films varied: 100% in river, 55% in lake, and 10% in air. In addition to PLA, surface chemical groups, hydrophilicity, and thermal stability of BPs changed, and microplastics were found on their surfaces. Correspondingly, BPs with faster degradation rates released relatively higher amounts of DOC. Environmental microbial and chemical characteristics may contribute to differences in BP degradation besides polymer specificity. Altogether, our results indicate the need for appropriate monitoring of BPs.
Collapse
Affiliation(s)
- Lingling Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312000, China
| | - Linlin He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Li Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yumeng Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gang Wu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Daoyong Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
19
|
Ülger-Vatansever B, Onay TT, Demirel B. Evaluation of bioplastics biodegradation under simulated landfill conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17779-17787. [PMID: 37792201 DOI: 10.1007/s11356-023-30195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Bioplastics that are generated from renewable sources have been regarded as an alternative to conventional plastics. Polylactic acid (PLA) is one of the mostly produced bioplastics because of its long shelf life for various applications. Even though bioplastics have drawn attention recently, their ultimate fate in landfills is still unknown. In this study, a standardized laboratory-scale lysimeter experiment was performed for the simulation of landfill conditions in order to evaluate the biodegradability of PLA during municipal solid waste stabilization. The reactors were loaded with municipal solid waste (MSW) taken from an operating landfill, certified PLA cups, and seed sludge. Various phases of landfill stabilization were simulated; hence, the reactors were operated under aerobic, semi-aerobic, and anaerobic conditions, respectively. Throughout the operation, both leachate and biogas generation in the reactors were regularly monitored. At the end of each phase, bioplastic cups were removed from the reactors, gently cleaned, weighed, and examined under a scanning electron microscope (SEM). The experimental results indicated that bioplastics did not undergo significant biodegradation during the first two stabilization phases (aerobic and semi-aerobic). On the other hand, it was observed that the cups were much softer and whiter at the end of the anaerobic phase. The weight of cups decreased by 12.8% on average, and their surfaces were prominently damaged after the completion of the last phase indicating the potential signs of biodegradation.
Collapse
Affiliation(s)
| | - Turgut Tüzün Onay
- Institute of Environmental Sciences, Boğaziçi University, Bebek/İstanbul, 34342, Turkey
| | - Burak Demirel
- Institute of Environmental Sciences, Boğaziçi University, Bebek/İstanbul, 34342, Turkey
| |
Collapse
|
20
|
He Y, Deng X, Jiang L, Hao L, Shi Y, Lyu M, Zhang L, Wang S. Current advances, challenges and strategies for enhancing the biodegradation of plastic waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167850. [PMID: 37844647 DOI: 10.1016/j.scitotenv.2023.167850] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Due to its highly recalcitrant nature, the growing accumulation of plastic waste is becoming an urgent global problem. Biodegradation is one of the best possible approaches for the treatment of plastic waste in an environmentally friendly manner, but our current knowledge on the underlying mechanisms, as well as strategies for the development and enhancement of plastic biodegradation are still limited. This review aims to provide an updated and comprehensive overview of current research on plastic waste biodegradation, focusing on enhancement strategies with ongoing research significance, including the mining of highly efficient plastic-degrading microorganisms/enzymes, utilization of synergistic additives, novel pretreatment approaches, modification via molecular engineering, and construction of bacterial/enzyme consortia systems. Studying these strategies can (i) enrich the high-performance microbial/enzymes toolbox for plastic degradation, (ii) provide methods for recycling and upgrading plastics, as well as (iii) enable further molecular modification and functional optimization of plastic-degrading enzymes to realize economically viable biodegradation of plastics. To the best of our knowledge, this is the first review to discuss in detail strategies to enhance biodegradation of plastics. Finally, some recommendations for future research on plastic biodegradation are listed, hoping to provide the best direction for tackling the plastic waste dilemma in the future.
Collapse
Affiliation(s)
- Yuehui He
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xilong Deng
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Jiang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lijuan Hao
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yong Shi
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
21
|
Pan H, Zhao X, Zhou X, Yan H, Han X, Wu M, Chen F. Research progress on the role of biofilm in heavy metals adsorption-desorption characteristics of microplastics: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122448. [PMID: 37640222 DOI: 10.1016/j.envpol.2023.122448] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Microplastics (MPs) have been found to be widely distributed in aquatic environments, where they will interact with toxic heavy metals and result in more serious adverse effects on the aquatic environments and organisms. However, after entering the aquatic environments, MPs are quickly covered by biofilms, which significantly modify MPs properties and relevant heavy metals adsorption-desorption characteristics In order to better understand the adsorption behavior of heavy metals on biofilm developed MPs (BMPs), we comprehensively reviewed representative studies in this area. First, we summarized the formation process of biofilms on MPs. Subsequently, we reviewed the current understanding on the influence of biofilm formation on the properties of MPs and discussed the metal adsorption-desorption characteristics of MPs affected by these changes. Finally, based on the systematic literature review, some future research needs and strategies were proposed to further understand the interactions between MPs and heavy metals.
Collapse
Affiliation(s)
- Haixia Pan
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819 China
| | - Xin Zhao
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819 China.
| | - Xiuyan Zhou
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819 China
| | - Hua Yan
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819 China
| | - Xiaoyu Han
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819 China
| | - Mingsong Wu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819 China
| | - Fang Chen
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819 China
| |
Collapse
|
22
|
Kumar V, Tang X. New Horizons in Nanofiller-Based Polymer Composites II. Polymers (Basel) 2023; 15:4259. [PMID: 37959939 PMCID: PMC10649845 DOI: 10.3390/polym15214259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Nanofiller-based polymer composites are a hot-topic research area with significant industrial potential [...].
Collapse
Affiliation(s)
- Vineet Kumar
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Xiaowu Tang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China;
| |
Collapse
|
23
|
Zhang Q, Huang J, Zhou N. Toughening Enhancement Mechanism and Performance Optimization of Castor-Oil-Based Polyurethane Cross-Linked Modified Polybutylene Adipate/Terephthalate Composites. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6256. [PMID: 37763534 PMCID: PMC10532669 DOI: 10.3390/ma16186256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
In this study, polyol castor oil (CO) and toluene-2,4-diisocyanate (TDI) were selected to modify PBAT, and castor-oil-based polyurethane (COP) was produced in a PBAT matrix using melt-blending and hot-pressing technology to study the effect of network cross-linking structure on various properties of bio-based polyester PBAT, aiming to introduce CO and TDI to improve the mechanical properties of composite materials. The results showed that when the total addition of CO and TDI was 15%, and the ratio of the hydroxyl group of CO to the isocyanate group of TDI was 1:1, the mechanical properties were the best. The tensile strength of the composite was 86.19% higher than that of pure PBAT, the elongation at break was 70.09% higher than that of PBAT, and the glass transition temperature was 7.82 °C higher than that of pure PBAT. Therefore, the composite modification of PBAT by CO and TDI can effectively improve the heat resistance and mechanical properties of PBAT-based composites.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Jin Huang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Soft-Matter Material Chemistry, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Na Zhou
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
24
|
Zhang L, You H, Chen J, Huang B, Cui Y, Hossain KB, Chen Q, Cai M, Qian Q. Surface structures changes and biofilm communities development of degradable plastics during aging in coastal seawater. MARINE POLLUTION BULLETIN 2023; 193:114996. [PMID: 37301614 DOI: 10.1016/j.marpolbul.2023.114996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 06/12/2023]
Abstract
Biodegradable plastics (BPs) are a suitable alternative to conventional plastics. Still, their excessive or unplanned use may disrupt the abundance and community structure of the microbial population. To this end, a 58-day experiment in which biodegradable plastic objects, such as bags and boxes, were exposed to near-coastal seawater was conducted. They also assessed how they affected the diversity and organization of bacterial populations in seawater and on the surface of BPs products. It is evident that after the exposure time, both BP's bag and box products deteriorate in the ocean to varying degrees. The results of high-throughput sequencing of bacterial communities in seawater and those colonized on BPs products reveal significant differences in microbial community structures between seawater and BPs plastic samples. These suggest that the degradation of biodegradable plastics is shadowed by microorganisms and exposure time, while BP products influence the structural characteristics of microbial communities.
Collapse
Affiliation(s)
- Lin Zhang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Huimin You
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jianfei Chen
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Baoquan Huang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Yaozong Cui
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Kazi Belayet Hossain
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Qinghua Chen
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Minggang Cai
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China.
| | - Qingrong Qian
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
25
|
Zhou Q, Zhang J, Fang Q, Zhang M, Wang X, Zhang D, Pan X. Microplastic biodegradability dependent responses of plastisphere antibiotic resistance to simulated freshwater-seawater shift in onshore marine aquaculture zones. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121828. [PMID: 37187278 DOI: 10.1016/j.envpol.2023.121828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/17/2023]
Abstract
MPs carrying ARGs can travel between freshwater and seawater due to intensive land-sea interaction in onshore marine aquaculture zones (OMAZ). However, the response of ARGs in plastisphere with different biodegradability to freshwater-seawater shift is still unknown. In this study, ARG dynamics and associated microbiota on biodegradable poly (butyleneadipate-co-terephthalate) (PBAT) and non-biodegradable polyethylene terephthalate (PET) MPs were investigated through a simulated freshwater-seawater shift. The results exhibited that freshwater-seawater shift significantly influenced ARG abundance in plastisphere. The relative abundance of most studied ARGs decreased rapidly in plastisphere after they entered seawater from freshwater but increased on PBAT after MPs entered freshwater from seawater. Besides, the high relative abundance of multi-drug resistance (MDR) genes occurred in plastisphere, and the co-change between most ARGs and mobile genetic elements indicated the role of horizontal gene transfer on ARG regulation. Proteobacteria was dominant phylum in plastisphere and the dominant genera, such as Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Afipia, Gemmobacter and Enhydrobacter, were significantly associated with qnrS, tet and MDR genes in plastisphere. Moreover, after MPs entered new water environment, the ARGs and microbiota genera in plastisphere changed significantly and tended to converge with those in receiving water. These results indicated that MP biodegradability and freshwater-seawater interaction influenced potential hosts and distributions of ARGs, of which biodegradable PBAT posed a high risk in ARG dissemination. This study would be helpful for understanding the impact of biodegradable MP pollution on spread of antibiotic resistance in OMAZ.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jun Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qunkai Fang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaonan Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
26
|
Li K, Jia W, Xu L, Zhang M, Huang Y. The plastisphere of biodegradable and conventional microplastics from residues exhibit distinct microbial structure, network and function in plastic-mulching farmland. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130011. [PMID: 36155295 DOI: 10.1016/j.jhazmat.2022.130011] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The inhomogeneity of plastisphere and soil may result in different microbial communities, thus potentially affecting soil functions. Biodegradable plastics offer an alternative to conventional plastics, nevertheless, the inadequate end-of-life treatment of biodegradable plastics may release more microplastics. Herein, we collected PE and PBAT/PLA microplastics in plastic-mulching farmland in Hebei, China. The bacterial communities of soil, PE and PBAT/PLA plastisphere were investigated using 16 S high-throughput sequencing. We found that the structure of bacterial communities in PBAT/PLA plastisphere were significantly distinct from PE plastisphere and soil. The alpha diversities in PBAT/PLA plastisphere were significantly lower than PE plastisphere and soil. Statistical analysis of differentially ASVs suggested that PBAT/PLA microplastics act as a filter, enriching taxa with the capability to degrade plastic polymers such as Proteobacteria and Actinobacteria. Compared to PE plastisphere, PBAT/PLA plastisphere has networks of less complexity, lower modularity, and more competitive interactions. Predicted metabolic pathways involved in human diseases, carbohydrate metabolism, amino acid metabolism, and xenobiotic biodegradation and metabolism were promoted in PBAT/PLA plastisphere, along with the facilitation in abundance of genes associated with carbon and nitrogen cycling. Our results highlighted the uniqueness of plastisphere of biodegradable microplastics from conventional microplastics and their potential impact on soil functions.
Collapse
Affiliation(s)
- Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Weiqian Jia
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Libo Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Mengjun Zhang
- Marine Institute for Bioresources and Environment, Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China.
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Marine Institute for Bioresources and Environment, Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
27
|
Wicaksono JA, Purwadaria T, Yulandi A, Tan WA. Bacterial dynamics during the burial of starch-based bioplastic and oxo-low-density-polyethylene in compost soil. BMC Microbiol 2022; 22:309. [PMID: 36536283 PMCID: PMC9764577 DOI: 10.1186/s12866-022-02729-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Plastic waste accumulation is one of the main ecological concerns in the past decades. A new generation of plastics that are easier to degrade in the environment compared to conventional plastics, such as starch-based bioplastics and oxo-biodegradable plastics, is perceived as a solution to this issue. However, the fate of these materials in the environment are unclear, and less is known about how their presence affect the microorganisms that may play a role in their biodegradation. In this study, we monitored the dynamics of bacterial community in soil upon introduction of commercial carrier bags claimed as biodegradable: cassava starch-based bioplastic and oxo-low-density polyethylene (oxo-LDPE). Each type of plastic bag was buried separately in compost soil and incubated for 30, 60, 90, and 120 days. Following incubation, soil pH and temperature as well as the weight of remaining plastics were measured. Bacterial diversity in soil attached to the surface of remaining plastics was analyzed using Illumina high-throughput sequencing of the V3-V4 region of 16SrRNA gene. RESULTS After 120 days, the starch-based bioplastic weight has decreased by 74%, while the oxo-LDPE remained intact with only 3% weight reduction. The bacterial composition in soil fluctuated over time with or without the introduction of either type of plastic. While major bacterial phyla remained similar for all treatment in this study, different types of plastics led to different soil bacterial community structure. None of these bacteria were abundant continuously, but rather they emerged at specific time points. The introduction of plastics into soil increased not only the population of bacteria known for their ability to directly utilize plastic component for their growth, but also the abundance of those that may interact with direct degraders. Bacterial groups that are involved in nitrogen cycling also arose throughout burial. CONCLUSIONS The introduction of starch-based bioplastic and oxo-LDPE led to contrasting shift in soil bacterial population overtime, which may determine their fate in the environment.
Collapse
Affiliation(s)
- Joshua Abednego Wicaksono
- grid.443450.20000 0001 2288 786XMaster of Biotechnology Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Jalan Raya Cisauk – Lapan no. 10, Tangerang, Indonesia
| | - Tresnawati Purwadaria
- grid.443450.20000 0001 2288 786XBiotechnology Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Jalan Raya Cisauk – Lapan no. 10, Tangerang, Indonesia
| | - Adi Yulandi
- grid.443450.20000 0001 2288 786XBiotechnology Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Jalan Raya Cisauk – Lapan no. 10, Tangerang, Indonesia
| | - Watumesa Agustina Tan
- grid.443450.20000 0001 2288 786XBiotechnology Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Jalan Raya Cisauk – Lapan no. 10, Tangerang, Indonesia
| |
Collapse
|
28
|
Liao C, Xiao Y, Chen K, Li P, Wu Y, Li X, Zuo Y. Synergistic modification of polylactic acid by oxidized straw fibers and degradable elastomers: A green composite with good strength and toughness. Int J Biol Macromol 2022; 221:773-783. [PMID: 36096256 DOI: 10.1016/j.ijbiomac.2022.09.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
Polylactic acid-based (PLA) composites are widely used in biomedicine, electrical components, food packaging and other fields, but their unsatisfactory mechanical properties such as high brittleness and poor toughness, cause problems in functional applications. This work developed a green and environmentally friendly strategy to improve PLA mechanical properties. Flexible polybutylene succinate (PBS) and alkaline hydrogen peroxide (AHP) treated straw fibers (SF) synergistically modified PLA. AHP is decomposed into a large amount of HOO-, which oxidizes the hydroxyl groups in SF to carboxyl groups to obtain oxidized straw fiber (OSF), which reacts with PLA in the molten state to form new ester bonds. The tensile strength of the OSF/PLA composite is 41.78 MPa, 38 % higher than the SF/PLA composite. The impact toughness of OSF/PBS/PLA composite is 14.47 KJ/m2 increased by 54 % after the adding PBS, while the tensile strength was also better than the control group. The synergistic action of PLA and PBS in OSF is attributed to the formation of new chemical bonds, efficient crystallization, and compatible interface. This study provides a new strategy to produce fiber-reinforced PLA composites with good toughness. It takes positive significance for developing degradable plastics with good performance and controllable cost.
Collapse
Affiliation(s)
- Chenggang Liao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Yuanping Xiao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Kang Chen
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Ping Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Xingong Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Yingfeng Zuo
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China.
| |
Collapse
|
29
|
Zhou Q, Zhang J, Zhang M, Wang X, Zhang D, Pan X. Persistent versus transient, and conventional plastic versus biodegradable plastic? -Two key questions about microplastic-water exchange of antibiotic resistance genes. WATER RESEARCH 2022; 222:118899. [PMID: 35940152 DOI: 10.1016/j.watres.2022.118899] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/24/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
The ubiquitous microplastics (MPs) in water environment play an important role in the dissemination of antibiotic resistance genes (ARGs) due to their exchange between floating MPs and receiving waters. However, whether the ARG exchange is persistent or transient and what are the differences in ARG exchange between conventional plastics and biodegradable plastics are the two key issues to be addressed. In this study, biodegradable PBAT and non-biodegradable PET MPs were chosen to explore the MP-water ARG exchange after the MPs floated to the receiving waters. The results demonstrated that the active exchange of ARGs between MPs and receiving waters occurred, which, however, were transient for most of ARGs. The relative abundance of ARGs both on the MPs and in the waters rapidly decreased to the initial or lower levels within 4 weeks. Approximately 25-50% (ARG subtype number ratio) of studied ARG subtypes were introduced into the receiving waters by MPs, and 35-65% of studied ARG subtypes went through fluctuation in terms of abundance on MPs and in the receiving water. ARGs tended to converge between MPs and the receiving waters with time. Furthermore, the ARG exchange between MPs and waters facilitated horizontal gene transfer (HGT). IntI1 and tnpA05 played the crucial roles in HGT, which was indicated by their correlated change with most ARGs; in contrast, tnpA04 showed the obvious lagging responses. The biodegradable MP of PBAT generally accumulated higher levels of most ARGs including multidrug resistant genes than the non-biodegradable MP of PET. The transient exchange of most ARGs between MPs and water implies that the on-off hitchhiking of ARGs on MPs in aquatic environment may not exert significant influence on ARG transmission. However, compared with the conventional plastics, the biodegradable MPs might pose much higher ARG dissemination risks due to the higher enrichment of ARGs particularly with people's ever-increasingly usage. Enough attention must be paid to this emerging issue.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaonan Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
30
|
Wang J, Peng C, Dai Y, Li Y, Jiao S, Ma X, Liu X, Wang L. Slower antibiotics degradation and higher resistance genes enrichment in plastisphere. WATER RESEARCH 2022; 222:118920. [PMID: 35964510 DOI: 10.1016/j.watres.2022.118920] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) are increasingly entering the urban aquatic ecosystems, and the environmental significance and health risks of plastisphere, a special biofilm on MPs, have received widespread attention. In this study, MPs of polylactic acid (PLA) and polyvinyl chloride (PVC) and quartzite were incubated in an urban water environment, and the tetracycline (TC) degradation ability was compared. Approximatedly 24% of TC biodegraded in 28 d in the water-quartzite system, which is significantly higher than that in the water-PLA (17.3%) and water-PVC systems (16.7%). Re-incubation of microorganisms in biofilms affirmed that quartzite biofilm has a higher TC degradation capacity than the plastisphere. According to high-throughput sequencing of 16S rRNA and metagenomic analysis, quartzite biofilm contained more abundant potential TC degrading bacteria, genes related to TC degradation (eutG, aceE, and DLAT), and metabolic pathways related to TC degradation. An oligotrophic environment on the quartzite surface might lead to the higher metabolic capacity of quartzite biofilm for unconventional carbons, e.g., TC. It is also found that, compared with quartzite biofilm, the distinct microbes in the plastisphere carried more antibiotic resistance genes (ARGs). Higher affinity of MPs surface to antibiotics may lead to higher antibiotics stress on the plastisphere, which further amplify the carrying capacity for ARGs of microorganisms in the plastisphere. Compared to the nondegradable PVC MPs, surface of the biodegradable PLA plastics harbored significantly higher amounts of biomass and ARGs. Compared to the mineral particles, the capability of plastisphere has lower ability to degrade unconventional carbon sources such as the refractory organic pollutants, due to the abundance of carbon sources (adsorbed organic carbon and endogenous organic carbon) on the MPs surface. Meanwhile, the stronger adsorption capacity for pollutants also leads to higher pollutant stress (such as antibiotic stress) in plastisphere, which in turn affects the microbiological characteristics of the plastisphere itself, such as carrying more ARGs.
Collapse
Affiliation(s)
- Jiao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Chu Peng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yexin Dai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yang Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Shipu Jiao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China.
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
31
|
Li X, Meng L, Zhang Y, Qin Z, Meng L, Li C, Liu M. Research and Application of Polypropylene Carbonate Composite Materials: A Review. Polymers (Basel) 2022; 14:2159. [PMID: 35683832 PMCID: PMC9182813 DOI: 10.3390/polym14112159] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
The greenhouse effect and plastic pollution caused by the accumulation of plastics have led to a global concern for environmental protection, as well as the development and application of biodegradable materials. Polypropylene carbonate (PPC) is a biodegradable polymer with the function of "carbon sequestration", which has the potential to mitigate the greenhouse effect and the plastic crisis. It has the advantages of good ductility, oxygen barrier and biocompatibility. However, the mechanical and thermal properties of PPC are poor, especially the low thermal degradation temperature, which limits its industrial use. In order to overcome this problem, PPC can be modified using environmentally friendly materials, which can also reduce the cost of PPC-based products to a certain extent and enhance their competitiveness in terms of improving their mechanical and thermal properties. In this paper, we present different perspectives on the synthesis, properties, degradation, modification and post-modification applications of PPC. The modification part mainly introduces the influence of inorganic materials, natural polymer materials and degradable polymers on the performance of PPC. It is hoped that this work will serve as a reference for the early promotion of PPC.
Collapse
Affiliation(s)
- Xiangrui Li
- School of Materials Science and Engineering, Beihua University, Jilin City 132013, China; (X.L.); (L.M.); (Y.Z.); (Z.Q.)
| | - Lingyu Meng
- School of Materials Science and Engineering, Beihua University, Jilin City 132013, China; (X.L.); (L.M.); (Y.Z.); (Z.Q.)
| | - Yinliang Zhang
- School of Materials Science and Engineering, Beihua University, Jilin City 132013, China; (X.L.); (L.M.); (Y.Z.); (Z.Q.)
| | - Zexiu Qin
- School of Materials Science and Engineering, Beihua University, Jilin City 132013, China; (X.L.); (L.M.); (Y.Z.); (Z.Q.)
| | - Lipeng Meng
- Jilin Forestry Research Institute, Jilin City 130117, China;
| | - Chunfeng Li
- School of Materials Science and Engineering, Beihua University, Jilin City 132013, China; (X.L.); (L.M.); (Y.Z.); (Z.Q.)
| | - Mingli Liu
- School of Materials Science and Engineering, Beihua University, Jilin City 132013, China; (X.L.); (L.M.); (Y.Z.); (Z.Q.)
| |
Collapse
|