1
|
Ma W, Lin M, Shen P, Chi H, Zhang W, Zhu J, Tian S, Liu P. Exploring methanogenic archaea and their thermal responses in the glacier-fed stream sediments of Rongbuk River basin, Mt. Everest. FEMS Microbiol Ecol 2025; 101:fiaf044. [PMID: 40275524 PMCID: PMC12038898 DOI: 10.1093/femsec/fiaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/06/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025] Open
Abstract
Glacier-fed streams (GFS) are emergent sources of greenhouse gas methane, and methanogenic archaea in sediments contribute largely to stream methane emissions. However, little is known about the methanogenic communities in GFS sediments and their key environmental driving factors. This study analyzed stream sediments from the Rongbuk River basin on Mt. Everest for methanogenic communities and their temperature responses through anaerobic microcosm incubations at 5°C and 15°C. Diverse methanogens were identified, including acetoclastic, hydrogenotrophic, and hydrogen-dependent methylotrophic types. Substantial methane and CO2 production were detected across altitudes and increased significantly at 15°C, with both methane and CO2 production rates negatively correlated with altitude. The temperature sensitivity of CO2 production also showed a negative altitude correlation. Methanogens increased substantially over long-term incubation, dominating the archaeal community. At 15°C, the relative abundance of several methanogenic groups was strongly correlated with altitude, with positive correlations observed for Methanomassiliicoccaceae and Methanoregulaceae, and negative correlations for Methanocellaceae, respectively. Besides altitude, phosphorus, carbon to nitrogen ratio, and pH also affected methanogenic structure, methane and CO2 production, and temperature sensitivities. This study offers new insights into methanogens and methane production in GFS sediments, improving our understanding of GFS carbon cycling and its potential responses to climate change.
Collapse
Affiliation(s)
- Wei Ma
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Pan-third Pole Biogeochemical Cycling, Gansu Province 730000, China
| | - Miao Lin
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Pan-third Pole Biogeochemical Cycling, Gansu Province 730000, China
| | - Peihua Shen
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Pan-third Pole Biogeochemical Cycling, Gansu Province 730000, China
| | - Hongfei Chi
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Pan-third Pole Biogeochemical Cycling, Gansu Province 730000, China
| | - Weizhen Zhang
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Pan-third Pole Biogeochemical Cycling, Gansu Province 730000, China
- Chayu Monsoon Corridor Observation and Research Station for Multi-Sphere Changes, Xizang Autonomous Region, Chayu 860600, China
| | - Jingyi Zhu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Pan-third Pole Biogeochemical Cycling, Gansu Province 730000, China
| | - Shaoyi Tian
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Pan-third Pole Biogeochemical Cycling, Gansu Province 730000, China
| | - Pengfei Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Pan-third Pole Biogeochemical Cycling, Gansu Province 730000, China
- Chayu Monsoon Corridor Observation and Research Station for Multi-Sphere Changes, Xizang Autonomous Region, Chayu 860600, China
| |
Collapse
|
2
|
Xing T, Liu Y, Dong X, Ji M, Deng Y, Liu P. Glacier melting promotes methane emission via increased methanogenic activity in the foreland alpine meadow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176947. [PMID: 39426539 DOI: 10.1016/j.scitotenv.2024.176947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Annual glacier melting alters hydrothermal conditions of the foreland alpine meadows, and causes significant fluctuations in methane (CH4) flux. Previously we found that Tibetan glacier foreland alpine meadow shifts to CH4 source from sink during the melting season, but the potential mechanisms remain unclear. This study, via combination of in-situ measurement of seasonal CH4 flux and survey of microbial species that may involve in CH4 metabolism, explores the causes of glacier melting on CH4 flux in a glacier foreland alpine meadow on Tibetan Plateau. We determined a pronounced CH4 emission (13.95 μg·m-2·h-1) in August (melting season) but CH4 uptake in June (-3.76 μg·m-2·h-1) and October (-17.77 μg·m-2·h-1), and 1.4-fold higher soil moisture in August than the other two months. This showed a direct correlation of CH4 flux with glacier melting increased soil water. Additionally, glacier melting caused more CH4 fluxes increase in hollows than in hummocks. Amplicon sequencing determined 126-fold higher abundance of mcrA, the methanogenic marker gene, in August than in June and October, and a higher relative abundance of a fungal phylum Mortierellomycota and syntrophic bacteria that convert the fatty acids, the degradation intermediates of organic complexes to CO2 and acetate, the methanogenic substrates like in August. However, no seasonal variation of pmoA, the marker gene of aerobic methanotrophs, was observed. It appears that glacier melting promotes the CH4 producing but not the consuming microorganisms, thus leading to increased CH4 emission. The findings of this work indicate that global warming resulted glacier melting would increase global CH4 emissions, and in turn worsens global warming, so an alarming positive feedback loop.
Collapse
Affiliation(s)
- Tingting Xing
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China; Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China.
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Mukan Ji
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China
| | - Yongcui Deng
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Pengfei Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Qu Y, Zhao Y, Yao X, Wang J, Liu Z, Hong Y, Zheng P, Wang L, Hu B. Salinity causes differences in stratigraphic methane sources and sinks. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 19:100334. [PMID: 38046178 PMCID: PMC10692758 DOI: 10.1016/j.ese.2023.100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 12/05/2023]
Abstract
Methane metabolism, driven by methanogenic and methanotrophic microorganisms, plays a pivotal role in the carbon cycle. As seawater intrusion and soil salinization rise due to global environmental shifts, understanding how salinity affects methane emissions, especially in deep strata, becomes imperative. Yet, insights into stratigraphic methane release under varying salinity conditions remain sparse. Here we investigate the effects of salinity on methane metabolism across terrestrial and coastal strata (15-40 m depth) through in situ and microcosm simulation studies. Coastal strata, exhibiting a salinity level five times greater than terrestrial strata, manifested a 12.05% decrease in total methane production, but a staggering 687.34% surge in methane oxidation, culminating in 146.31% diminished methane emissions. Salinity emerged as a significant factor shaping the methane-metabolizing microbial community's dynamics, impacting the methanogenic archaeal, methanotrophic archaeal, and methanotrophic bacterial communities by 16.53%, 27.25%, and 22.94%, respectively. Furthermore, microbial interactions influenced strata system methane metabolism. Metabolic pathway analyses suggested Atribacteria JS1's potential role in organic matter decomposition, facilitating methane production via Methanofastidiosales. This study thus offers a comprehensive lens to comprehend stratigraphic methane emission dynamics and the overarching factors modulating them.
Collapse
Affiliation(s)
- Ying Qu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Xiangwu Yao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Zishu Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Yi Hong
- Ocean College, Zhejiang University, Zhoushan, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Lizhong Wang
- Ocean College, Zhejiang University, Zhoushan, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
| |
Collapse
|
4
|
Zhu X, Deng Y, Liu Y. Methylocystis dominates methane oxidation in glacier foreland soil at elevated temperature. FEMS Microbiol Lett 2024; 371:fnae011. [PMID: 38366911 DOI: 10.1093/femsle/fnae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/01/2023] [Accepted: 02/15/2024] [Indexed: 02/19/2024] Open
Abstract
Methane-oxidizing bacteria (methanotrophs) play an important role in mitigating methane emissions in various ecological environments, including cold regions. However, the response of methanotrophs in these cold environments to extreme temperatures above the in-situ temperature has not been thoroughly explored. Therefore, this study collected soil samples from Longxiazailongba (LXZ) and Qiangyong (QY) glacier forelands and incubated them with 13CH4 at 35°C under different soil water conditions. The active methanotroph populations were identified using DNA stable isotope probing (DNA-SIP) and high throughput sequencing techniques. The results showed that the methane oxidation potential in LXZ and QY glacier foreland soils was significantly enhanced at an unusually high temperature of 35°C during microcosm incubations, where abundant substrate (methane and oxygen) was provided. Moreover, the influence of soil water conditions on this potential was observed. Interestingly, Methylocystis, a type II and mesophilic methanotroph, was detected in the unincubated in-situ soil samples and became the active and dominant methanotroph in methane oxidation at 35°C. This suggests that Methylocystis can survive at low temperatures for a prolonged period and thrive under suitable growth conditions. Furthermore, the presence of mesophilic methanotrophs in cold habitats could have potential implications for reducing greenhouse gas emissions in warming glacial environments.
Collapse
Affiliation(s)
- Xinshu Zhu
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongcui Deng
- School of Geography, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Yongqin Liu
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Wang S, Chen X, Li W, Gong W, Wang Z, Cao W. Grazing exclusion alters soil methane flux and methanotrophic and methanogenic communities in alpine meadows on the Qinghai-Tibet Plateau. Front Microbiol 2023; 14:1293720. [PMID: 38164400 PMCID: PMC10757936 DOI: 10.3389/fmicb.2023.1293720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Grazing exclusion (GE) is an effective measure for restoring degraded grassland ecosystems. However, the effect of GE on methane (CH4) uptake and production remains unclear in dominant bacterial taxa, main metabolic pathways, and drivers of these pathways. This study aimed to determine CH4 flux in alpine meadow soil using the chamber method. The in situ composition of soil aerobic CH4-oxidizing bacteria (MOB) and CH4-producing archaea (MPA) as well as the relative abundance of their functional genes were analyzed in grazed and nongrazed (6 years) alpine meadows using metagenomic methods. The results revealed that CH4 fluxes in grazed and nongrazed plots were -34.10 and -22.82 μg‧m-2‧h-1, respectively. Overall, 23 and 10 species of Types I and II MOB were identified, respectively. Type II MOB comprised the dominant bacteria involved in CH4 uptake, with Methylocystis constituting the dominant taxa. With regard to MPA, 12 species were identified in grazed meadows and 3 in nongrazed meadows, with Methanobrevibacter constituting the dominant taxa. GE decreased the diversity of MPA but increased the relative abundance of dominated species Methanobrevibacter millerae from 1.47 to 4.69%. The proportions of type I MOB, type II MOB, and MPA that were considerably affected by vegetation and soil factors were 68.42, 21.05, and 10.53%, respectively. Furthermore, the structural equation models revealed that soil factors (available phosphorus, bulk density, and moisture) significantly affected CH4 flux more than vegetation factors (grass species number, grass aboveground biomass, grass root biomass, and litter biomass). CH4 flux was mainly regulated by serine and acetate pathways. The serine pathway was driven by soil factors (0.84, p < 0.001), whereas the acetate pathway was mainly driven by vegetation (-0.39, p < 0.05) and soil factors (0.25, p < 0.05). In conclusion, our findings revealed that alpine meadow soil is a CH4 sink. However, GE reduces the CH4 sink potential by altering vegetation structure and soil properties, especially soil physical properties.
Collapse
Affiliation(s)
- Shilin Wang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - Xindong Chen
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - Wen Li
- Key Laboratory of Development of Forage Germplasm in the Qinghai-Tibetan Plateau of Qinghai Province, Qinghai Academy of Animal Science and Veterinary Medicine of Qinghai University, Xining, China
| | - Wenlong Gong
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Zhengwen Wang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - Wenxia Cao
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Liu Y, Ji M, Wang W, Xing T, Yan Q, Ferrari B, Liu Y. Plant colonization mediates the microbial community dynamics in glacier forelands of the Tibetan Plateau. IMETA 2023; 2:e91. [PMID: 38868348 PMCID: PMC10989783 DOI: 10.1002/imt2.91] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 06/14/2024]
Abstract
It has long been recognized that pH mediates community structure changes in glacier foreland soils. Here, we showed that pH changes resulted from plant colonization. Plant colonization reduced pH and increased soil organic carbon, which increased bacterial diversity, changed the community structure of both bacteria and fungi, enhanced environmental filtering, and improved microbial network disturbance resistance.
Collapse
Affiliation(s)
- Yang Liu
- Center for Pan‐third Pole EnvironmentLanzhou UniversityLanzhouChina
| | - Mukan Ji
- Center for Pan‐third Pole EnvironmentLanzhou UniversityLanzhouChina
| | - Wenqiang Wang
- Center for Pan‐third Pole EnvironmentLanzhou UniversityLanzhouChina
| | - Tingting Xing
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qi Yan
- Center for Pan‐third Pole EnvironmentLanzhou UniversityLanzhouChina
| | - Belinda Ferrari
- School of Biotechnology and Biomolecular SciencesAustralian Centre for AstrobiologyUNSW SydneyRandwickNew South WalesAustralia
| | - Yongqin Liu
- Center for Pan‐third Pole EnvironmentLanzhou UniversityLanzhouChina
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
7
|
Cui H, Wang Y, Su X, Wei S, Pang S, Zhu Y, Zhang S, Ma C, Hou W, Jiang H. Response of methanogenic community and their activity to temperature rise in alpine swamp meadow at different water level of the permafrost wetland on Qinghai-Tibet Plateau. Front Microbiol 2023; 14:1181658. [PMID: 37213493 PMCID: PMC10198574 DOI: 10.3389/fmicb.2023.1181658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Abstract
Wetlands are an important source of atmospheric methane (CH4) and are sensitive to global climate change. Alpine swamp meadows, accounting for ~50% of the natural wetlands on the Qinghai-Tibet Plateau, were considered one of the most important ecosystems. Methanogens are important functional microbes that perform the methane producing process. However, the response of methanogenic community and the main pathways of CH4 production to temperature rise remains unknown in alpine swamp meadow at different water level in permafrost wetlands. In this study, we investigated the response of soil CH4 production and the shift of methanogenic community to temperature rise in the alpine swamp meadow soil samples with different water levels collected from the Qinghai-Tibet Plateau through anaerobic incubation at 5°C, 15°C and 25°C. The results showed that the CH4 contents increased with increasing incubation temperature, and were 5-10 times higher at the high water level sites (GHM1 and GHM2) than that at the low water level site (GHM3). For the high water level sites (GHM1 and GHM2), the change of incubation temperatures had little effect on the methanogenic community structure. Methanotrichaceae (32.44-65.46%), Methanobacteriaceae (19.30-58.86%) and Methanosarcinaceae (3.22-21.24%) were the dominant methanogen groups, with the abundance of Methanotrichaceae and Methanosarcinaceae having a significant positive correlation with CH4 production (p < 0.01). For the low water level site (GHM3), the methanogenic community structure changed greatly at 25°C. The Methanobacteriaceae (59.65-77.33%) was the dominant methanogen group at 5°C and 15°C; In contrast, the Methanosarcinaceae (69.29%) dominated at 25°C, and its abundance showed a significant positive correlation with CH4 production (p < 0.05). Collectively, these findings enhance the understanding of methanogenic community structures and CH4 production in permafrost wetlands with different water levels during the warming process.
Collapse
Affiliation(s)
- Hongpeng Cui
- Key Laboratory of Marine Mineral Resources and Polar Geology, Ministry of Education, China University of Geosciences, Beijing, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- School of Ocean Sciences, China University of Geosciences, Beijing, China
| | - Yanfa Wang
- Key Laboratory of Marine Mineral Resources and Polar Geology, Ministry of Education, China University of Geosciences, Beijing, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- School of Ocean Sciences, China University of Geosciences, Beijing, China
| | - Xin Su
- Key Laboratory of Marine Mineral Resources and Polar Geology, Ministry of Education, China University of Geosciences, Beijing, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- School of Ocean Sciences, China University of Geosciences, Beijing, China
- Xin Su,
| | - Shiping Wei
- Key Laboratory of Marine Mineral Resources and Polar Geology, Ministry of Education, China University of Geosciences, Beijing, China
- School of Ocean Sciences, China University of Geosciences, Beijing, China
| | - Shouji Pang
- Oil and Gas Survey, China Geological Survey, Beijing, China
| | - Youhai Zhu
- Oil and Gas Survey, China Geological Survey, Beijing, China
| | - Shuai Zhang
- Oil and Gas Survey, China Geological Survey, Beijing, China
| | - Chenjie Ma
- Key Laboratory of Marine Mineral Resources and Polar Geology, Ministry of Education, China University of Geosciences, Beijing, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- School of Ocean Sciences, China University of Geosciences, Beijing, China
| | - Weiguo Hou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Hongchen Jiang
- Key Laboratory of Marine Mineral Resources and Polar Geology, Ministry of Education, China University of Geosciences, Beijing, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- School of Ocean Sciences, China University of Geosciences, Beijing, China
- *Correspondence: Hongchen Jiang,
| |
Collapse
|
8
|
Chen D, Hou H, Zhou S, Zhang S, Liu D, Pang Z, Hu J, Xue K, Du J, Cui X, Wang Y, Che R. Soil diazotrophic abundance, diversity, and community assembly mechanisms significantly differ between glacier riparian wetlands and their adjacent alpine meadows. Front Microbiol 2022; 13:1063027. [PMID: 36569049 PMCID: PMC9772447 DOI: 10.3389/fmicb.2022.1063027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Global warming can trigger dramatic glacier area shrinkage and change the flux of glacial runoff, leading to the expansion and subsequent retreat of riparian wetlands. This elicits the interconversion of riparian wetlands and their adjacent ecosystems (e.g., alpine meadows), probably significantly impacting ecosystem nitrogen input by changing soil diazotrophic communities. However, the soil diazotrophic community differences between glacial riparian wetlands and their adjacent ecosystems remain largely unexplored. Here, soils were collected from riparian wetlands and their adjacent alpine meadows at six locations from glacier foreland to lake mouth along a typical Tibetan glacial river in the Namtso watershed. The abundance and diversity of soil diazotrophs were determined by real-time PCR and amplicon sequencing based on nifH gene. The soil diazotrophic community assembly mechanisms were analyzed via iCAMP, a recently developed null model-based method. The results showed that compared with the riparian wetlands, the abundance and diversity of the diazotrophs in the alpine meadow soils significantly decreased. The soil diazotrophic community profiles also significantly differed between the riparian wetlands and alpine meadows. For example, compared with the alpine meadows, the relative abundance of chemoheterotrophic and sulfate-respiration diazotrophs was significantly higher in the riparian wetland soils. In contrast, the diazotrophs related to ureolysis, photoautotrophy, and denitrification were significantly enriched in the alpine meadow soils. The iCAMP analysis showed that the assembly of soil diazotrophic community was mainly controlled by drift and dispersal limitation. Compared with the riparian wetlands, the assembly of the alpine meadow soil diazotrophic community was more affected by dispersal limitation and homogeneous selection. These findings suggest that the conversion of riparian wetlands and alpine meadows can significantly alter soil diazotrophic community and probably the ecosystem nitrogen input mechanisms, highlighting the enormous effects of climate change on alpine ecosystems.
Collapse
Affiliation(s)
- Danhong Chen
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
| | - Haiyan Hou
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Shutong Zhou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Song Zhang
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Dong Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Life Sciences, Yunnan University, Kunming, China
| | - Zhe Pang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinming Hu
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
| | - Kai Xue
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianqing Du
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanfen Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rongxiao Che
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
| |
Collapse
|
9
|
Xu Q, Du Z, Wang L, Xue K, Wei Z, Zhang G, Liu K, Lin J, Lin P, Chen T, Xiao C. The Role of Thermokarst Lake Expansion in Altering the Microbial Community and Methane Cycling in Beiluhe Basin on Tibetan Plateau. Microorganisms 2022; 10:1620. [PMID: 36014037 PMCID: PMC9412574 DOI: 10.3390/microorganisms10081620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most significant environmental changes across the Tibetan Plateau (TP) is the rapid lake expansion. The expansion of thermokarst lakes affects the global biogeochemical cycles and local climate regulation by rising levels, expanding area, and increasing water volumes. Meanwhile, microbial activity contributes greatly to the biogeochemical cycle of carbon in the thermokarst lakes, including organic matter decomposition, soil formation, and mineralization. However, the impact of lake expansion on distribution patterns of microbial communities and methane cycling, especially those of water and sediment under ice, remain unknown. This hinders our ability to assess the true impact of lake expansion on ecosystem services and our ability to accurately investigate greenhouse gas emissions and consumption in thermokarst lakes. Here, we explored the patterns of microorganisms and methane cycling by investigating sediment and water samples at an oriented direction of expansion occurred from four points under ice of a mature-developed thermokarst lake on TP. In addition, the methane concentration of each water layer was examined. Microbial diversity and network complexity were different in our shallow points (MS, SH) and deep points (CE, SH). There are differences of microbial community composition among four points, resulting in the decreased relative abundances of dominant phyla, such as Firmicutes in sediment, Proteobacteria in water, Thermoplasmatota in sediment and water, and increased relative abundance of Actinobacteriota with MS and SH points. Microbial community composition involved in methane cycling also shifted, such as increases in USCγ, Methylomonas, and Methylobacter, with higher relative abundance consistent with low dissolved methane concentration in MS and SH points. There was a strong correlation between changes in microbiota characteristics and changes in water and sediment environmental factors. Together, these results show that lake expansion has an important impact on microbial diversity and methane cycling.
Collapse
Affiliation(s)
- Qian Xu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiheng Du
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lei Wang
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Kai Xue
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Wei
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiahui Lin
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| | - Penglin Lin
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Cunde Xiao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|