1
|
Rodrigues CS, Gaifem J, Pereira MS, Alves MF, Silva M, Padrão N, Cavadas B, Moreira-Barbosa C, Alves I, Marcos-Pinto R, Torres J, Lavelle A, Colombel JF, Sokol H, Pinho SS. Alterations in mucosa branched N-glycans lead to dysbiosis and downregulation of ILC3: a key driver of intestinal inflammation. Gut Microbes 2025; 17:2461210. [PMID: 39918275 PMCID: PMC11810091 DOI: 10.1080/19490976.2025.2461210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/29/2024] [Accepted: 01/13/2025] [Indexed: 02/12/2025] Open
Abstract
The perturbation of the symbiotic relationship between microbes and intestinal immune system contributes to gut inflammation and Inflammatory Bowel Disease (IBD) development. The host mucosa glycans (glycocalyx) creates a major biological interface between gut microorganisms and host immunity that remains ill-defined. Glycans are essential players in IBD immunopathogenesis, even years before disease onset. However, how changes in mucosa glycosylation shape microbiome and how this impact gut immune response and inflammation remains to be clarified. Here, we revealed that alterations in the expression of complex branched N-glycans at gut mucosa surface, modeled in glycoengineered mice, resulted in dysbiosis, with a deficiency in Firmicutes bacteria. Concomitantly, this mucosa N-glycan switch was associated with a downregulation of type 3 innate lymphoid cells (ILC3)-mediated immune response, leading to the transition of ILC3 toward an ILC1 proinflammatory phenotype and increased TNFα production. In addition, we demonstrated that the mucosa glycosylation remodeling through prophylactic supplementation with glycans at steady state was able to restore microbial-derived short-chain fatty acids and microbial sensing (by NOD2 expression) alongside the rescue of the expression of ILC3 module, suppressing intestinal inflammation and controlling disease onset. In a complementary approach, we further showed that IBD patients, often displaying dysbiosis, exhibited a tendency of decreased MGAT5 expression at epithelial cells that was accompanied by reduced ILC3 expression in gut mucosa. Altogether, these results unlock the effects of alterations in mucosa glycome composition in the regulation of the bidirectional crosstalk between microbiota and gut immune response, revealing host branched N-glycans/microbiota/ILC3 axis as an essential pathway in gut homeostasis and in preventing health to intestinal inflammation transition.
Collapse
Affiliation(s)
- Cláudia S. Rodrigues
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Joana Gaifem
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
| | - Márcia S. Pereira
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Maria Francisca Alves
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Mariana Silva
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Nuno Padrão
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Bruno Cavadas
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
| | | | - Inês Alves
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
| | - Ricardo Marcos-Pinto
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Department of Gastroenterology, Centro Hospitalar do Porto, Porto, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde, University of Porto, Porto, Portugal
| | - Joana Torres
- Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Division of Gastroenterology, Hospital da Luz, Lisbon, Portugal
| | - Aonghus Lavelle
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Gastroenterology Department, Sorbonne Université, INSERM, Paris, France
| | - Jean-Frederic Colombel
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harry Sokol
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Gastroenterology Department, Sorbonne Université, INSERM, Paris, France
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Salomé S. Pinho
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Yu K, Choi I, Kim M, Pyung YJ, Lee JS, Choi Y, Won S, Kim Y, Park BC, Han SH, Park TS, Dalgaard TS, Yun CH. Florfenicol-induced dysbiosis impairs intestinal homeostasis and host immune system in laying hens. J Anim Sci Biotechnol 2025; 16:56. [PMID: 40223090 PMCID: PMC11995664 DOI: 10.1186/s40104-025-01186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/27/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Despite growing concerns about the adverse effects of antibiotics in farm animals, there has been little investigation of the effects of florfenicol in laying hens. This study examined the effect of florfenicol on the intestinal homeostasis, immune system, and pathogen susceptibility of laying hens. RESULTS The oral administration of florfenicol at field-relevant levels for 5 d resulted in a decrease in the gut microbiota genera Lactobacillus, Bacillus, and Bacteroides, indicating the development of intestinal dysbiosis. The dysbiosis led to decreased mRNA levels of key regulators peroxisome proliferator-activated receptor gamma (PPAR-γ) and hypoxia-inducible factor-1α (HIF-1α), compromising intestinal hypoxia. Intestinal homeostasis was also disrupted, with decreased expression of Occludin and Mucin 2 (Muc2) genes combined with increased gut epithelial permeability. The breakdown in intestinal homeostasis and immune function provided a favorable environment for opportunistic bacteria like avian pathogenic Escherichia coli (APEC), culminating in systemic infection. Immunologically, florfenicol treatment resulted in increased proportion and absolute number of MRC1L-B+ monocytes/macrophages in the spleen, indicating an exacerbated infection. Furthermore, both the proportion and absolute number of γδ T cells in the lamina propria of the cecum decreased. Treatment with florfenicol reduced butyrate levels in the cecum. However, the administration of butyrate before and during florfenicol treatment restored factors associated with intestinal homeostasis, including PPAR-γ, Occludin, and Muc2, while partially restoring HIF-1α, normalized intestinal hypoxia and gut permeability, and reversed immune cell changes, suppressing APEC systemic infection. CONCLUSION The uncontrolled and widespread use of florfenicol can negatively affect intestinal health in chickens. Specifically, florfenicol was found to impair intestinal homeostasis and immune function in laying hens, including by reducing butyrate levels, thereby increasing their susceptibility to systemic APEC infection. The development of strategies for mitigating the adverse effects of florfenicol on gut health and pathogen susceptibility in laying hens is therefore essential.
Collapse
Affiliation(s)
- Keesun Yu
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Inhwan Choi
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minseong Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Jin Pyung
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Sun Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youbin Choi
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sohyoung Won
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Chul Park
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-Gun, Gangwon-Do, 25354, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae Sub Park
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-Gun, Gangwon-Do, 25354, Republic of Korea
| | | | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Xu J, Chen Y, Zhan M, Liu S, Zhang H, Wu Q, Xiao J, Cao Y, Xiao H, Song M. Investigating the interaction between tangeretin metabolism and amelioration of gut microbiota disorders using dextran sulfate sodium-induced colitis and antibiotic-associated diarrhea models. Curr Res Food Sci 2025; 10:101049. [PMID: 40265146 PMCID: PMC12013402 DOI: 10.1016/j.crfs.2025.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/26/2025] [Accepted: 04/05/2025] [Indexed: 04/24/2025] Open
Abstract
Dysregulation of gut microbiota homeostasis can lead to various health issues. In this study, we investigated the effects of tangeretin (TAN) on gut microbiota homeostasis in a mouse model (C57BL/6J) of disease, specifically focusing on dextran sulfate sodium (DSS)-induced colitis and antibiotic-associated diarrhea through in vitro fermentation of intestinal bacteria. Our results demonstrated that TAN effectively improved the diversity and structure of the disordered microbiota, increasing the levels of beneficial bacteria such as Lachnospiraceae and Bacteroidaceae, while decreasing harmful bacteria such as Enterococcaceae and Pseudomonadaceae. Additionally, TAN enhanced the production of short-chain fatty acids (SCFAs) in disordered microbial communities. Moreover, the metabolism of TAN by intestinal microorganisms yielded two new metabolites, which exhibited an inverse-conjugate (deconjugate) role, leading to the production of more functional substances with high bioactivity. These findings provide a scientific basis for the potential use of TAN as a prebiotic to regulate intestinal microbiota.
Collapse
Affiliation(s)
- Jingyi Xu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Yilu Chen
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Minmin Zhan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Shijun Liu
- Guangzhou Institute of Energy Conversion, Guangzhou, China
| | - Huikun Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Qianhua Wu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Zhu S, Li X, Zhang S, Cai Z, Sun J, Ju Q, Liu D. Effects of whey protein-inulin conjugates with varying degrees of glycosylation on hepatic antioxidant capacity, immunomodulation and gut microbiota in mice. Food Funct 2025; 16:1792-1808. [PMID: 39927896 DOI: 10.1039/d4fo05846a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
In this study, whey protein isolate-inulin (WPI-In) conjugates with varying degrees of glycosylation (DG) were prepared, characterized, and examined for their potential immunomodulatory effects and regulation of gut microbiota in mice. The data indicated that an increase in DG significantly affects the microstructure and functionalities of WPI-In conjugates. The WPI-In conjugates with high DG promoted the growth and development of the thymus while altering gut microbiota composition by increasing the relative abundance of Bacteroidetes and reducing that of Firmicutes. Additionally, the WPI-In conjugates enhanced liver antioxidant capacity and the secretion of immunoglobulin G, and elevated levels of anti-inflammatory cytokines (IL-4 and IL-2), while decreasing pro-inflammatory cytokine (TNF-α) content in serum. Spearman correlation analysis suggested that the enhancement of liver antioxidant capacity and regulation of immune-related indicators may be associated with the gut microbiota altered by WPI-In conjugates. Therefore, WPI-In conjugates demonstrate beneficial properties, indicating potential applications in food systems.
Collapse
Affiliation(s)
- Shunyi Zhu
- Department of Nutrition and Health, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Xing Li
- Zhangye Water Saving Agricultural Experimental Station, Gansu Academy of Agricultural Sciences, Zhangye 734000, China
| | - Shixuan Zhang
- Department of Nutrition and Health, School of Public Health, Lanzhou University, Lanzhou 730000, China.
- Zhengzhou Orthopaedic Hospital, Zhengzhou 450000, China
| | - Ziwen Cai
- Zhangye Water Saving Agricultural Experimental Station, Gansu Academy of Agricultural Sciences, Zhangye 734000, China
| | - Jianhao Sun
- Institute of Soil Fertilizer and Water-saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Qi Ju
- Vegetable Research Institute of Gansu Academy of Agricultural Sciences, Lanzhou 730070, China.
| | - Diru Liu
- Department of Nutrition and Health, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
5
|
Ekwudo MN, Gubert C, Hannan AJ. The microbiota-gut-brain axis in Huntington's disease: pathogenic mechanisms and therapeutic targets. FEBS J 2025; 292:1282-1315. [PMID: 38426291 PMCID: PMC11927060 DOI: 10.1111/febs.17102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Huntington's disease (HD) is a currently incurable neurogenerative disorder and is typically characterized by progressive movement disorder (including chorea), cognitive deficits (culminating in dementia), psychiatric abnormalities (the most common of which is depression), and peripheral symptoms (including gastrointestinal dysfunction). There are currently no approved disease-modifying therapies available for HD, with death usually occurring approximately 10-25 years after onset, but some therapies hold promising potential. HD subjects are often burdened by chronic diarrhea, constipation, esophageal and gastric inflammation, and a susceptibility to diabetes. Our understanding of the microbiota-gut-brain axis in HD is in its infancy and growing evidence from preclinical and clinical studies suggests a role of gut microbial population imbalance (gut dysbiosis) in HD pathophysiology. The gut and the brain can communicate through the enteric nervous system, immune system, vagus nerve, and microbiota-derived-metabolites including short-chain fatty acids, bile acids, and branched-chain amino acids. This review summarizes supporting evidence demonstrating the alterations in bacterial and fungal composition that may be associated with HD. We focus on mechanisms through which gut dysbiosis may compromise brain and gut health, thus triggering neuroinflammatory responses, and further highlight outcomes of attempts to modulate the gut microbiota as promising therapeutic strategies for HD. Ultimately, we discuss the dearth of data and the need for more longitudinal and translational studies in this nascent field. We suggest future directions to improve our understanding of the association between gut microbes and the pathogenesis of HD, and other 'brain and body disorders'.
Collapse
Affiliation(s)
- Millicent N. Ekwudo
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Anthony J. Hannan
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
- Department of Anatomy and PhysiologyUniversity of MelbourneParkvilleAustralia
| |
Collapse
|
6
|
Liang Y, Adamson C, Feng S, Qiao Y. Exploring the Impact of Amidation Status in Meso-Diaminopimelic-Acid-Containing Disaccharide Peptidoglycan Fragments on Host Innate Immune Activation. ACS Chem Biol 2025; 20:69-76. [PMID: 39749870 DOI: 10.1021/acschembio.4c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Bacterial peptidoglycan, the essential cell surface polymer that protects bacterial integrity, also serves as the molecular pattern recognized by the host's innate immune system. Although the minimal motifs of bacterial peptidoglycan fragments (PGNs) that activate mammalian NOD1 and NOD2 sensors are well-known and often represented by small canonical ligands, the immunostimulatory effects of natural PGNs, which are structurally more complex and potentially can simultaneously activate both the NOD1 and NOD2 signaling pathways in hosts, have not been comprehensively investigated. In particular, many bacteria incorporate additional structural modifications in peptidoglycans to evade host immune surveillance, resulting in diverse structural variations among natural PGNs that may influence their biological effects in hosts. The focus of this study is on the amidation status of γ-d-glutamic acid and meso-diaminopimelic acid (mDAP) at the second and third positions of stem peptides in peptidoglycan, which represent key structural features that vary across different bacterial species. With four synthetic mDAP-containing disaccharide PGNs of different amidation states, we systematically investigated their structure-activity relationship in stimulating host innate immune responses in vitro. Our findings revealed that the amidation of disaccharide PGNs has distinct effects on NOD1 and NOD2 induction, along with their differential immunostimulatory activities in macrophage cells. Additionally, we found that, like the canonical NOD2 ligand, natural PGNs confer immune tolerance to LPS, and amidation states do not affect this outcome. Overall, our work highlights the potential immunological implications of these differentially amidated mDAP-type disaccharide PGNs in host-microbe crosstalk.
Collapse
Affiliation(s)
- Yaquan Liang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Christopher Adamson
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Shiliu Feng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
7
|
Wang J, Su C, Qian M, Wang X, Chen C, Liu Y, Liu W, Xiang Z, Xu B. Subchronic toxic effects of bisphenol A on the gut-liver-hormone axis in rats via intestinal flora and metabolism. Front Endocrinol (Lausanne) 2024; 15:1415216. [PMID: 39268238 PMCID: PMC11390593 DOI: 10.3389/fendo.2024.1415216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/30/2024] [Indexed: 09/15/2024] Open
Abstract
Background Bisphenol A (BPA), a characteristic endocrine disruptor, is a substance that seriously interferes with the human endocrine system and causes reproductive disorders and developmental abnormalities. However, its toxic effects on the gut-liver-hormone axis are still unclear. Method Male and female rats were exposed to BPA (300 mg/kg) by oral gavage for 60 consecutive days. H&E staining was used for histopathological evaluation, and the serum biochemical indexes were determined using an automatic analyzer. The 16S rRNA gene sequencing was used to detect the intestinal microbial diversity, and the GC-MS was used to analyze the contents of short-chain fatty acids (SCFAs) in colon contents. UPLC-QTOF MS was used to analyze the related metabolites. The ELISA method was used to assess the levels of serum inflammatory factors. Results Histopathological analysis indicated that the liver, heart, and testis were affected by BPA. There was a significant effect on alanine aminotransferase (ALT), triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL) in the male-BPA group (P < 0.05), and globulin (GLB), indirect bilirubin (IBIL), alkaline phosphatase (ALP), ALT, TG, TC, high-density lipoprotein (HDL), and creatinine (Cr) in the female-BPA group (P < 0.05). Metagenomics (16S rRNA gene sequencing) analysis indicated that BPA reduced the diversity and changed the composition of gut microbiota in rats significantly. Compared with the control and blank groups, the contents of caproic acid, isobutyric acid, isovaleric acid, and propanoic acid in the colon contents decreased in the male-BPA group (P < 0.05), and caproic acid, isobutyric acid, isovaleric acid, and valeric acid in the colon contents decreased in the female-BPA group (P < 0.05). Metabolomic analysis of the serum indicated that BPA could regulate bile acid levels, especially ursodeoxycholic acid (UDCA) and its conjugated forms. The contents of amino acids, hormones, and lipids were also significantly affected after exposure to BPA. The increase in interleukin-6 (IL-6), interleukin-23 (IL-23), and transforming growth factor-β (TGF-β) in the serum of the male-BPA group suggests that BPA exposure affects the immune system. Conclusion BPA exposure will cause toxicity to rats via disrupting the gut-liver-hormone axis.
Collapse
Affiliation(s)
- Jiaqi Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
- Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Shenyang, China
| | - Ce Su
- Pharmacy Department, Shenyang Tenth People's Hospital, Shenyang, China
| | - Mingqin Qian
- Department of Ultrasound, People's Hospital of Liaoning Province, Shenyang, China
| | - Xin Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
- Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Shenyang, China
| | - Changlan Chen
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Yangcheng Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
- Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Shenyang, China
| | - Wei Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Zheng Xiang
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
- Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Shenyang, China
| | - Baoli Xu
- Department of Pharmacy, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
8
|
Nurgaziyev M, Issilbayeva A, Bersimbaev R, Ilderbayev O, Vinogradova E, Jarmukhanov Z, Nurgozhina A, Sergazy S, Kozhabergen N, Akhmetova Z, Meiramova A, Chulenbayeva L, Ibrayeva A, Mukhanbetzhanov N, Mukhanbetzhanova Z, Kozhakhmetov S, Ainabekova B, Kushugulova A. Gut microbiome-immune interactions and their role in rheumatoid arthritis development. PeerJ 2024; 12:e17477. [PMID: 39006008 PMCID: PMC11246623 DOI: 10.7717/peerj.17477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/06/2024] [Indexed: 07/16/2024] Open
Abstract
Objective The primary objective is to study the impact of gut microbiota and their interactions with diverse immunological markers on the development of rheumatoid arthritis. Methods This study was performed in Astana, Kazakhstan, and included 77 Kazakh female patients older than 18 years, who met the American College of Rheumatology 2010 classification criteria for rheumatoid arthritis (RA), and 113 healthy controls. The DNA was extracted from fecal samples obtained from all study participants for subsequent sequencing at the 16S rRNA gene V1-V3 locus, facilitating the analysis of the gut microbiome. The Multiplex immunoassay was employed to measure the concentrations of inflammatory cytokines, chemokines, and immunoglobulins in both fecal and plasma samples. Results Our taxonomic analysis revealed significant differences in the composition of the gut microbiota between the healthy control cohort and the cohort with rheumatoid arthritis RA. Alpha diversity was significantly lower in the RA group. Lachnospiraceae were the most abundant taxon and found to be crucial, showing correlations with immunological markers such as IL5. Additionally, Lachnospiraceae and Oscillospiraceae exhibited the most predictable power and distinguished the composition of both study groups. Conclusion Our study identifies key differences in the gut microbiome of RA patients, revealing distinct microbial patterns and specific taxa abundance. We highlight potential biomarkers in immunological and bacterial pathways, offering insights into RA development and indicating possibilities for personalized treatment.
Collapse
Affiliation(s)
- Madiyar Nurgaziyev
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Argul Issilbayeva
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- NJSC Astana Medical University, Astana, Kazakhstan
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Oralbek Ilderbayev
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Elizaveta Vinogradova
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Zharkyn Jarmukhanov
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ayaulym Nurgozhina
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Shynggys Sergazy
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Nuray Kozhabergen
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | - Assel Meiramova
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- NJSC Astana Medical University, Astana, Kazakhstan
| | - Laura Chulenbayeva
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Aigerim Ibrayeva
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Nurislam Mukhanbetzhanov
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Zhanel Mukhanbetzhanova
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Samat Kozhakhmetov
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Bayan Ainabekova
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- NJSC Astana Medical University, Astana, Kazakhstan
| | - Almagul Kushugulova
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
9
|
Lee B, Lee SM, Song JW, Choi JW. Gut Microbiota Metabolite Messengers in Brain Function and Pathology at a View of Cell Type-Based Receptor and Enzyme Reaction. Biomol Ther (Seoul) 2024; 32:403-423. [PMID: 38898687 PMCID: PMC11214962 DOI: 10.4062/biomolther.2024.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/02/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
The human gastrointestinal (GI) tract houses a diverse microbial community, known as the gut microbiome comprising bacteria, viruses, fungi, and protozoa. The gut microbiome plays a crucial role in maintaining the body's equilibrium and has recently been discovered to influence the functioning of the central nervous system (CNS). The communication between the nervous system and the GI tract occurs through a two-way network called the gut-brain axis. The nervous system and the GI tract can modulate each other through activated neuronal cells, the immune system, and metabolites produced by the gut microbiome. Extensive research both in preclinical and clinical realms, has highlighted the complex relationship between the gut and diseases associated with the CNS, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. This review aims to delineate receptor and target enzymes linked with gut microbiota metabolites and explore their specific roles within the brain, particularly their impact on CNS-related diseases.
Collapse
Affiliation(s)
- Bada Lee
- Department of Biomedicinal and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Soo Min Lee
- Department of Biomedicinal and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae Won Song
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin Woo Choi
- Department of Biomedicinal and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
Li H, Dai J, Zhao C, Hu T, Zhao G, Wang Q, Zhang L. Gut Subdoligranulum variabile ameliorates rheumatoid arthritis by promoting TSG-6 synthesis from joint cells. Front Immunol 2024; 15:1418717. [PMID: 38979426 PMCID: PMC11229780 DOI: 10.3389/fimmu.2024.1418717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
Background A burgeoning body of evidence has substantiated the association between alterations in the composition of the gut microbiota and rheumatoid arthritis (RA). Nevertheless, our understanding of the intricate mechanisms underpinning this association is limited. Methods To investigate whether the gut microbiota influences the pathogenesis of RA through metabolism or immunity, we performed rigorous synthesis analyses using aggregated statistics from published genome-wide association studies (GWAS) using two-sample Mendelian randomization (MR) and mediated MR techniques, including two-step MR and multivariate MR analyses. Subsequently, we conducted in vitro cellular validation of the analyzed Microbial-Cytokine-RA pathway. We determined the optimal culture conditions through co-culture experiments involving concentration and time. Cell Counting Kit-8 (CCK-8) assays were employed to assess cellular viability, and enzyme-linked immunosorbent assays (ELISA) were performed to assess tumor necrosis factor-inducible gene 6 protein (TSG-6) and tumor necrosis factor-α (TNF-α) levels. Results Our univariable MR results confirmed 15 microbial traits, 7 metabolites and 2 cytokines that may be causally associated with RA (P FDR < 0.05). Mediation analysis revealed that microbial traits influence the risk of RA through metabolite or cytokine (proportion mediated: 7.75% - 58.22%). In vitro experiments demonstrated that TSG-6 was highly expressed in the Subdoligranulum variabile treatment group and was correlated with decreased RA severity (reduced TNF-α expression). Silencing the TSG-6 gene significantly increased TNF-α expression, regardless of treatment with S. variabile. Additionally, S. variabile-secreted exosomes exhibited the same effect. Conclusion The results of this study suggest that S. variabile has the potential to promote TSG-6 secretion, thereby reducing RA inflammation.
Collapse
Affiliation(s)
- Hongfeng Li
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Health Inspection and Quarantine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Junhui Dai
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changying Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tianqi Hu
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guoping Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qinghua Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Lei Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
11
|
Lu ZF, Hsu CY, Younis NK, Mustafa MA, Matveeva EA, Al-Juboory YHO, Adil M, Athab ZH, Abdulraheem MN. Exploring the significance of microbiota metabolites in rheumatoid arthritis: uncovering their contribution from disease development to biomarker potential. APMIS 2024; 132:382-415. [PMID: 38469726 DOI: 10.1111/apm.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Rheumatoid arthritis (RA) is a multifaceted autoimmune disorder characterized by chronic inflammation and joint destruction. Recent research has elucidated the intricate interplay between gut microbiota and RA pathogenesis, underscoring the role of microbiota-derived metabolites as pivotal contributors to disease development and progression. The human gut microbiota, comprising a vast array of microorganisms and their metabolic byproducts, plays a crucial role in maintaining immune homeostasis. Dysbiosis of this microbial community has been linked to numerous autoimmune disorders, including RA. Microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), tryptophan derivatives, Trimethylamine-N-oxide (TMAO), bile acids, peptidoglycan, and lipopolysaccharide (LPS), exhibit immunomodulatory properties that can either exacerbate or ameliorate inflammation in RA. Mechanistically, these metabolites influence immune cell differentiation, cytokine production, and gut barrier integrity, collectively shaping the autoimmune milieu. This review highlights recent advances in understanding the intricate crosstalk between microbiota metabolites and RA pathogenesis and also discusses the potential of specific metabolites to trigger or suppress autoimmunity, shedding light on their molecular interactions with immune cells and signaling pathways. Additionally, this review explores the translational aspects of microbiota metabolites as diagnostic and prognostic tools in RA. Furthermore, the challenges and prospects of translating these findings into clinical practice are critically examined.
Collapse
Affiliation(s)
- Zi-Feng Lu
- Heilongjiang Beidahuang Group General Hospital, Heilongjiang, China
| | - Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Kirkuk, Iraq
| | - Elena A Matveeva
- Department of Orthopaedic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | | | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
12
|
Kumar SS, Fathima A, Srihari P, Jamma T. Host-gut microbiota derived secondary metabolite mediated regulation of Wnt/β-catenin pathway: a potential therapeutic axis in IBD and CRC. Front Oncol 2024; 14:1392565. [PMID: 38706602 PMCID: PMC11066261 DOI: 10.3389/fonc.2024.1392565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
The intestinal tract encompasses one of the largest mucosal surfaces with a well-structured layer of intestinal epithelial cells supported by a network of underlying lamina propria immune cells maintaining barrier integrity. The commensal microflora in this environment is a major contributor to such functional outcomes due to its prominent role in the production of secondary metabolites. Of the several known metabolites of gut microbial origin, such as Short Chain Fatty Acids (SCFAs), amino acid derivatives, etc., secondary bile acids (BAs) are also shown to exhibit pleiotropic effects maintaining gut homeostasis in addition to their canonical role in dietary lipid digestion. However, dysbiosis in the intestine causes an imbalance in microbial diversity, resulting in alterations in the functionally effective concentration of these secondary metabolites, including BAs. This often leads to aberrant activation of the underlying lamina propria immune cells and associated signaling pathways, causing intestinal inflammation. Sustained activation of these signaling pathways drives unregulated cell proliferation and, when coupled with genotoxic stress, promotes tumorigenesis. Here, we aimed to discuss the role of secondary metabolites along with BAs in maintaining immune-gut homeostasis and regulation of inflammation-driven tumorigenesis with emphasis on the classical Wnt/β-Catenin signaling pathway in colon cancer.
Collapse
Affiliation(s)
| | | | | | - Trinath Jamma
- Cell Signaling Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science-Pilani Hyderabad Campus, Hyderabad, Telangana State, India
| |
Collapse
|
13
|
Alves JLDB, Costa PCTD, Sales LCSD, Silva Luis CC, Bezerra TPT, Souza MLA, Costa BA, de Souza EL. Shedding light on the impacts of Spirulina platensis on gut microbiota and related health benefits. Crit Rev Food Sci Nutr 2024; 65:2062-2075. [PMID: 38420934 DOI: 10.1080/10408398.2024.2323112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Spirulina (S.) platensis is a blue-green algae with reported nutritional and health-promoting properties, such as immunomodulating, antioxidant, cholesterol-lowering properties, and beneficial effects on inflammatory diseases. Spirulina platensis can improve the function and composition of the gut microbiota and exert systemic beneficial effects. Gut dysbiosis is characterized by an imbalance in the composition and function of gut microbiota and is associated with several diseases. Some dietary bioactive compounds can restore the composition, diversity, and function of the gut microbiota and improve health-related parameters. This review proposes to gather relevant information on the effects of S. platensis supplementation on the modulation of the function and composition of gut microbiota and local and systemic measures related to gut health, such as inflammation, oxidative stress, and glucose and lipid metabolism. The body of evidence conducted with animals and clinical studies shows that S. platensis supplementation increased gut microbiota diversity and improved gut microbiota composition, as reported by a decrease in the Firmicutes/Bacteroides ratio, increase in the relative abundance of Prevotella and Lactobacillaceae, increase in short-chain fatty acid production and decrease of gut permeability. Improvements in gut microbiota have been associated with host health benefits such as anti-obesity, anti-diabetic, anti-hypertensive, anti-lipemic, anti-inflammatory, and antioxidant effects.
Collapse
Affiliation(s)
- José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraiba, 58051-900, Brazil
| | - Paulo César Trindade da Costa
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraiba, 58051-900, Brazil
| | | | - Cristiane Cosmo Silva Luis
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraiba, 58051-900, Brazil
| | | | - Maria Luiza Alves Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraiba, 58051-900, Brazil
| | - Bagnólia Araújo Costa
- Pharmaceutical Sciences Department, Health Sciences Center, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraiba, 58051-900, Brazil
| |
Collapse
|
14
|
Wu R, Wang D, Cheng L, Su R, Li B, Fan C, Gao C, Wang C. Impaired immune tolerance mediated by reduced Tfr cells in rheumatoid arthritis linked to gut microbiota dysbiosis and altered metabolites. Arthritis Res Ther 2024; 26:21. [PMID: 38218985 PMCID: PMC10787489 DOI: 10.1186/s13075-023-03260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Patients with rheumatoid arthritis (RA) showed impaired immune tolerance characterized by reduced follicular regulatory T (Tfr) cells, and they also exhibited altered gut microbiotas and their metabolites in RA. However, the association of gut microbiotas and their metabolites with the immune tolerance mediated by Tfr cells in RA remains unclear. METHODS Peripheral blood and stool samples were collected from 32 new-onset RA patients and 17 healthy controls (HCs) in the Second Hospital of Shanxi Medical University between January 2022 and June 2022. The peripheral blood was used to detect the circulating regulatory T (Treg), helper T(Th)17, Tfr, and follicular helper T (Tfh) cells by modified flow cytometry. The stool samples were used to analyze the gut microbiotas and their metabolites via 16S rDNA sequencing and metabolomic profiling. We aimed to characterize the gut microbiotas and their metabolites in RA and identified their association with Tfr cell-mediated immune tolerance. RESULTS The new-onset RA demonstrated reduced Treg and Tfr cells, associated with the disease activity and autoantibodies. There were significant differences in gut microbiotas between the two groups as the results of β diversity analysis (P = 0.039) including 21 differential gut microbiotas from the phylum to genus levels. In which, Ruminococcus 2 was associated with the disease activity and autoantibodies of RA, and it was identified as the potential biomarker of RA [area under curve (AUC) = 0.782, 95% confidence interval (CI) = 0.636-0.929, P = 0.001]. Eleven differential metabolites were identified and participated in four main pathways related to RA. Arachidonic acid might be the potential biomarker of RA (AUC = 0.724, 95% CI = 0.595-0.909, P = 0.038), and it was the core metabolite as the positive association with six gut microbiotas enriched in RA. The reduced Tfr cells were associated with the altered gut microbiotas and their metabolites including the Ruminococcus 2, the arachidonic acid involved in the biosynthesis of unsaturated fatty acid pathway and the 3-methyldioxyindole involved in the tryptophan metabolism pathway. CONCLUSION The breakdown of immune tolerance mediated by reduced Tfr cells was associated with the altered gut microbiotas and their metabolites implying the possible mechanism of RA pathogenesis from the perspective of microecology-metabolism-immune.
Collapse
Affiliation(s)
- Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Dongming Wang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Liyun Cheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Baochen Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Chunxue Fan
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China.
| |
Collapse
|
15
|
Zou Y, Zhang Y, Wu D, Lu Z, Xiao J, Huang H, Fu Q, Guo Z. Multi-omics analysis revealed the differences in lipid metabolism of the gut between adult and juvenile yellowfin tuna ( Thunnus albacares). Front Microbiol 2024; 14:1326247. [PMID: 38274759 PMCID: PMC10808786 DOI: 10.3389/fmicb.2023.1326247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Tuna has a cost-effective energy supply to support the regional endothermic and high-speed swimming performance. The gut symbiotic microbiotas and their metabolites play essential roles in tuna's diet digestion, absorption, and energy acquirement, which are often highly related to the ontogenetic development of tuna. Methods We compared gut microbial compositions and metabolites, as well as mRNA expression of the intestine between juvenile and adult yellowfin tuna using 16S rRNA sequencing, metabolomic and transcriptomic, respectively. Results and discussion The results revealed that adults had a significantly higher microbial diversity and abundance of Acinetobacter than juveniles. Regarding the gut microbiota-derived metabolites, fatty acids, especially glycerophospholipid and sphingolipid, were significantly enriched in adults than in juveniles. Moreover, the short-chain fatty acid (butyrate and isobutyrate) contents were significantly higher in adults than in juveniles. To find the relationship between gut microbiotas and host physiology, intestinal transcriptome analysis demonstrated that the enriched pathways of differential expression genes (DEGs) in adult tuna were the lipid metabolism pathway, including "fat digestion and absorption," "cholesterol metabolism," "steroid hormone biosynthesis," "glycerolipid metabolism," and "glycerophospholipid metabolism." However, protein digestion and absorption and pancreatic secretion pathways were significantly enriched in the juveniles. The conjoint analysis indicated that the enriched pathways of both differential metabolites (DMs) and DEGs were remarkably related to the regulation of glycerophospholipids metabolism in adult tunas. This study highlights the role of gut microbiotas in fish nutrition metabolism. These findings provide new insights into the view of ontogenetic shifts of gut microbiotas and their metabolites on host health and gut function in endothermic and high-speed swimming marine fish species.
Collapse
Affiliation(s)
- Ying Zou
- School of Life and Health Sciences, School of Marine Science and Engineering, School of Food Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Yanjie Zhang
- School of Life and Health Sciences, School of Marine Science and Engineering, School of Food Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Di Wu
- School of Life and Health Sciences, School of Marine Science and Engineering, School of Food Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Zhiyuan Lu
- School of Life and Health Sciences, School of Marine Science and Engineering, School of Food Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Juan Xiao
- School of Life and Health Sciences, School of Marine Science and Engineering, School of Food Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Hai Huang
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, China
| | - Qiongyao Fu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Zhiqiang Guo
- School of Life and Health Sciences, School of Marine Science and Engineering, School of Food Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| |
Collapse
|
16
|
Wang J, Zhang X, Tang Y, Wang Z. Toxic effect of Cd burden on the gut microflora and immune responses of wolf spider Pardosa pseudoannulata. Comp Biochem Physiol C Toxicol Pharmacol 2023; 274:109747. [PMID: 37739022 DOI: 10.1016/j.cbpc.2023.109747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
Spiders are dominant predators in the paddy ecosystem, but the immunotoxicity induced by environmental contaminants like heavy metals is still largely unknown. The gut microbiota-host interaction was the basic immune mechanism discovered in the arthropods. Here, we investigated the gut microflora and immune responses of wolf spider Pardosa pseudoannulata under Cd burden. Cd exposure was identified to shape the gut microbial community structure of spiders, with increased levels of Firmicutes and pathogens, and decreased levels of Proteobacteria and Bacteroidota. The alteration of microbiota-derived immune messengers like peptidoglycan (PGN) was also observed. ELISA and hemolymph metabolomic analysis showed that the activities of immune effectors phenoloxidase (PO) and lysozyme (LZM) and the abundance of tyrosine derivates were decreased, which indicated the suppression of Cd on the melanization immune response of spiders. Correlation analysis revealed a close relationship between the impaired immune system and the disordered microbiota. This study provides insight into the underlying mechanisms of the gut microflora-immune system interaction of P. pseudoannulata in response to Cd burden.
Collapse
Affiliation(s)
- Juan Wang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xinru Zhang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yun'e Tang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhi Wang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China.
| |
Collapse
|
17
|
Husso A, Pessa-Morikawa T, Koistinen VM, Kärkkäinen O, Kwon HN, Lahti L, Iivanainen A, Hanhineva K, Niku M. Impacts of maternal microbiota and microbial metabolites on fetal intestine, brain, and placenta. BMC Biol 2023; 21:207. [PMID: 37794486 PMCID: PMC10552303 DOI: 10.1186/s12915-023-01709-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The maternal microbiota modulates fetal development, but the mechanisms of these earliest host-microbe interactions are unclear. To investigate the developmental impacts of maternal microbial metabolites, we compared full-term fetuses from germ-free and specific pathogen-free mouse dams by gene expression profiling and non-targeted metabolomics. RESULTS In the fetal intestine, critical genes mediating host-microbe interactions, innate immunity, and epithelial barrier were differentially expressed. Interferon and inflammatory signaling genes were downregulated in the intestines and brains of the fetuses from germ-free dams. The expression of genes related to neural system development and function, translation and RNA metabolism, and regulation of energy metabolism were significantly affected. The gene coding for the insulin-degrading enzyme (Ide) was most significantly downregulated in all tissues. In the placenta, genes coding for prolactin and other essential regulators of pregnancy were downregulated in germ-free dams. These impacts on gene expression were strongly associated with microbially modulated metabolite concentrations in the fetal tissues. Aryl sulfates and other aryl hydrocarbon receptor ligands, the trimethylated compounds TMAO and 5-AVAB, Glu-Trp and other dipeptides, fatty acid derivatives, and the tRNA nucleobase queuine were among the compounds strongly associated with gene expression differences. A sex difference was observed in the fetal responses to maternal microbial status: more genes were differentially regulated in male fetuses than in females. CONCLUSIONS The maternal microbiota has a major impact on the developing fetus, with male fetuses potentially more susceptible to microbial modulation. The expression of genes important for the immune system, neurophysiology, translation, and energy metabolism are strongly affected by the maternal microbial status already before birth. These impacts are associated with microbially modulated metabolites. We identified several microbial metabolites which have not been previously observed in this context. Many of the potentially important metabolites remain to be identified.
Collapse
Affiliation(s)
- Aleksi Husso
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Pessa-Morikawa
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ville Mikael Koistinen
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Afekta Technologies Ltd., Kuopio, Finland
| | - Olli Kärkkäinen
- Afekta Technologies Ltd., Kuopio, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Hyuk Nam Kwon
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- School of Biological Sciences and Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, 44610, South Korea
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Antti Iivanainen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Kati Hanhineva
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Afekta Technologies Ltd., Kuopio, Finland
| | - Mikael Niku
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
18
|
Pandey S, Avuthu N, Guda C. StrainIQ: A Novel n-Gram-Based Method for Taxonomic Profiling of Human Microbiota at the Strain Level. Genes (Basel) 2023; 14:1647. [PMID: 37628698 PMCID: PMC10454763 DOI: 10.3390/genes14081647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The emergence of next-generation sequencing (NGS) technology has greatly influenced microbiome research and led to the development of novel bioinformatics tools to deeply analyze metagenomics datasets. Identifying strain-level variations in microbial communities is important to understanding the onset and progression of diseases, host-pathogen interrelationships, and drug resistance, in addition to designing new therapeutic regimens. In this study, we developed a novel tool called StrainIQ (strain identification and quantification) based on a new n-gram-based (series of n number of adjacent nucleotides in the DNA sequence) algorithm for predicting and quantifying strain-level taxa from whole-genome metagenomic sequencing data. We thoroughly evaluated our method using simulated and mock metagenomic datasets and compared its performance with existing methods. On average, it showed 85.8% sensitivity and 78.2% specificity on simulated datasets. It also showed higher specificity and sensitivity using n-gram models built from reduced reference genomes and on models with lower coverage sequencing data. It outperforms alternative approaches in genus- and strain-level prediction and strain abundance estimation. Overall, the results show that StrainIQ achieves high accuracy by implementing customized model-building and is an efficient tool for site-specific microbial community profiling.
Collapse
Affiliation(s)
- Sanjit Pandey
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nagavardhini Avuthu
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
19
|
Thoda C, Touraki M. Immunomodulatory Properties of Probiotics and Their Derived Bioactive Compounds. APPLIED SCIENCES 2023; 13:4726. [DOI: 10.3390/app13084726] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Immune system modulation is an intriguing part of scientific research. It is well established that the immune system plays a crucial role in orchestrating cellular and molecular key mediators, thus establishing a powerful defense barrier against infectious pathogens. Gut microbiota represent a complex community of approximately a hundred trillion microorganisms that live in the mammalian gastrointestinal (GI) tract, contributing to the maintenance of gut homeostasis via regulation of the innate and adaptive immune responses. However, impairment in the crosstalk between intestinal immunity and gut microbiota may reflect on detrimental health issues. In this context, many studies have indicated that probiotics and their bioactive compounds, such as bacteriocins and short chain fatty acids (SCFAs), display distinct immunomodulatory properties through which they suppress inflammation and enhance the restoration of microbial diversity in pathological states. This review highlights the fundamental features of probiotics, bacteriocins, and SCFAs, which make them ideal therapeutic agents for the amelioration of inflammatory and autoimmune diseases. It also describes their underlying mechanisms on gut microbiota modulation and emphasizes how they influence the function of immune cells involved in regulating gut homeostasis. Finally, it discusses the future perspectives and challenges of their administration to individuals.
Collapse
Affiliation(s)
- Christina Thoda
- Laboratory of General Biology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| | - Maria Touraki
- Laboratory of General Biology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| |
Collapse
|
20
|
Luo Y, Li M, Wang T, Zhou NN, Qiao F, Du ZY, Zhang ML. Bacillus cereus Alters Bile Acid Composition and Alleviates High-Carbohydrate Diet-Induced Hepatic Lipid Accumulation in Nile Tilapia ( Oreochromis niloticus). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4825-4836. [PMID: 36926869 DOI: 10.1021/acs.jafc.2c07945] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A high-carbohydrate diet (HCD) can induce excessive fat accumulation in fish, and intestinal microbiota are thought to play important roles in host metabolism. Whether and how intestinal bacteria alleviate the HCD-induced metabolic disorders in fish have attracted more attention. Bacillus cereus was isolated from the intestine content of Nile tilapia. The control diet, high-carbohydrate diet (HC), and HC supplemented with B. cereus Su1 (HCS) were used to feed juvenile Nile tilapia for 8 weeks. The results of the present study showed that B. cereus Su1 supplementation decreased the serum glucose, triglycerides (TG), and reduced hepatic lipid accumulation compared with the HC group. The intestinal bacterial composition analysis suggested that HCS elevated bacterial diversity and the enriched bacteria were closely related to bile acid (BA) metabolism. Higher bile salt hydrolase (BSH) activity was found in the HCS group and B-targeted metabolomic analysis revealed that HCS increased BA content in the intestine and liver compared with HC, including unconjugated BAs (CA and CDCA) and conjugated BAs (TCA, GCA, TCDCA, GCDCA, TDCA, and TUDCA). Furthermore, a high-carbohydrate diet supplemented with B. cereus Su1 significantly enhanced the protein expression of the BA receptor farnesoid X receptor in the liver and decreased significantly the expression level of lipid synthesis-related genes and proteins, while it had no significant effect on lipolysis-related genes and proteins. This study found that B. cereus Su1 altered the intestinal microbiota and bile acid content and composition to regulate the lipid metabolism, revealing the function of the crosstalk among probiotics, intestinal microbiota, and BAs in ameliorating lipid accumulation induced by a high-carbohydrate diet in fish.
Collapse
Affiliation(s)
- Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Miao Li
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Tong Wang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Nan-Nan Zhou
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
21
|
Modulation of Endothelial Function by TMAO, a Gut Microbiota-Derived Metabolite. Int J Mol Sci 2023; 24:ijms24065806. [PMID: 36982880 PMCID: PMC10054148 DOI: 10.3390/ijms24065806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Endothelial function is essential in the maintenance of systemic homeostasis, whose modulation strictly depends on the proper activity of tissue-specific angiocrine factors on the physiopathological mechanisms acting at both single and multi-organ levels. Several angiocrine factors take part in the vascular function itself by modulating vascular tone, inflammatory response, and thrombotic state. Recent evidence has outlined a strong relationship between endothelial factors and gut microbiota-derived molecules. In particular, the direct involvement of trimethylamine N-oxide (TMAO) in the development of endothelial dysfunction and its derived pathological outcomes, such as atherosclerosis, has come to light. Indeed, the role of TMAO in the modulation of factors strictly related to the development of endothelial dysfunction, such as nitric oxide, adhesion molecules (ICAM-1, VCAM-1, and selectins), and IL-6, has been widely accepted. The aim of this review is to present the latest studies that describe a direct role of TMAO in the modulation of angiocrine factors primarily involved in the development of vascular pathologies.
Collapse
|
22
|
Qi B, Zhang Y, Ren D, Qin X, Wang N, Yang X. Fu Brick Tea Alleviates Constipation via Regulating the Aquaporins-Mediated Water Transport System in Association with Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3862-3875. [PMID: 36802556 DOI: 10.1021/acs.jafc.2c07709] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This study aimed to investigate the amendatory effects of Fu brick tea aqueous extract (FTE) on constipation and its underlying molecular mechanism. The administration of FTE by oral gavage (100 and 400 mg/kg·bw) for 5 weeks significantly increased fecal water content, improved difficult defecation, and enhanced intestinal propulsion in loperamide (LOP)-induced constipated mice. FTE also reduced colonic inflammatory factors, maintained the intestinal tight junction structure, and inhibited colonic Aquaporins (AQPs) expression, thus normalizing the intestinal barrier and colonic water transport system of constipated mice. 16S rRNA gene sequence analysis results indicated that two doses of FTE increased the Firmicutes/Bacteroidota (F/B) ratio at the phylum level and increased the relative abundance of Lactobacillus from 5.6 ± 1.3 to 21.5 ± 3.4% and 28.5 ± 4.3% at the genus level, subsequently resulting in a significant elevation of colonic contents short-chain fatty acids levels. The metabolomic analysis demonstrated that FTE improved levels of 25 metabolites associated with constipation. These findings suggest that Fu brick tea has the potential to alleviate constipation by regulating gut microbiota and its metabolites, thereby improving the intestinal barrier and AQPs-mediated water transport system in mice.
Collapse
Affiliation(s)
- Bangran Qi
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yuanyuan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xinshu Qin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Nan Wang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
23
|
Salminen A. Activation of aryl hydrocarbon receptor (AhR) in Alzheimer's disease: role of tryptophan metabolites generated by gut host-microbiota. J Mol Med (Berl) 2023; 101:201-222. [PMID: 36757399 PMCID: PMC10036442 DOI: 10.1007/s00109-023-02289-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/19/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
Gut microbiota in interaction with intestinal host tissues influences many brain functions and microbial dysbiosis has been linked with brain disorders, such as neuropsychiatric conditions and Alzheimer's disease (AD). L-tryptophan metabolites and short-chained fatty acids (SCFA) are major messengers in the microbiota-brain axis. Aryl hydrocarbon receptors (AhR) are main targets of tryptophan metabolites in brain microvessels which possess an enriched expression of AhR protein. The Ah receptor is an evolutionarily conserved, ligand-activated transcription factor which is not only a sensor of xenobiotic toxins but also a pleiotropic regulator of both developmental processes and age-related tissue degeneration. Major microbiota-produced tryptophan metabolites involve indole derivatives, e.g., indole 3-pyruvic acid, indole 3-acetaldehyde, and indoxyl sulfate, whereas indoleamine and tryptophan 2,3-dioxygenases (IDO/TDO) of intestine host cells activate the kynurenine (KYN) pathway generating KYN metabolites, many of which are activators of AhR signaling. Chronic kidney disease (CKD) increases the serum level of indoxyl sulfate which promotes AD pathogenesis, e.g., it disrupts integrity of blood-brain barrier (BBB) and impairs cognitive functions. Activation of AhR signaling disturbs vascular homeostasis in brain; (i) it controls blood flow via the renin-angiotensin system, (ii) it inactivates endothelial nitric oxide synthase (eNOS), thus impairing NO production and vasodilatation, and (iii) it induces oxidative stress, stimulates inflammation, promotes cellular senescence, and enhances calcification of vascular walls. All these alterations are evident in cerebral amyloid angiopathy (CAA) in AD pathology. Moreover, AhR signaling can disturb circadian regulation and probably affect glymphatic flow. It seems plausible that dysbiosis of gut microbiota impairs the integrity of BBB via the activation of AhR signaling and thus aggravates AD pathology. KEY MESSAGES: Dysbiosis of gut microbiota is associated with dementia and Alzheimer's disease. Tryptophan metabolites are major messengers from the gut host-microbiota to brain. Tryptophan metabolites activate aryl hydrocarbon receptor (AhR) signaling in brain. The expression of AhR protein is enriched in brain microvessels and blood-brain barrier. Tryptophan metabolites disturb brain vascular integrity via AhR signaling. Dysbiosis of gut microbiota promotes inflammation and AD pathology via AhR signaling.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio, 70211, Finland.
| |
Collapse
|
24
|
Kwan JMC, Qiao Y. Mechanistic Insights into the Activities of Major Families of Enzymes in Bacterial Peptidoglycan Assembly and Breakdown. Chembiochem 2023; 24:e202200693. [PMID: 36715567 DOI: 10.1002/cbic.202200693] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
Serving as an exoskeletal scaffold, peptidoglycan is a polymeric macromolecule that is essential and conserved across all bacteria, yet is absent in mammalian cells; this has made bacterial peptidoglycan a well-established excellent antibiotic target. In addition, soluble peptidoglycan fragments derived from bacteria are increasingly recognised as key signalling molecules in mediating diverse intra- and inter-species communication in nature, including in gut microbiota-host crosstalk. Each bacterial species encodes multiple redundant enzymes for key enzymatic activities involved in peptidoglycan assembly and breakdown. In this review, we discuss recent findings on the biochemical activities of major peptidoglycan enzymes, including peptidoglycan glycosyltransferases (PGT) and transpeptidases (TPs) in the final stage of peptidoglycan assembly, as well as peptidoglycan glycosidases, lytic transglycosylase (LTs), amidases, endopeptidases (EPs) and carboxypeptidases (CPs) in peptidoglycan turnover and metabolism. Biochemical characterisation of these enzymes provides valuable insights into their substrate specificity, regulation mechanisms and potential modes of inhibition.
Collapse
Affiliation(s)
- Jeric Mun Chung Kwan
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), 21 Nanyang Link, Singapore, 637371, Singapore.,LKC School of Medicine, Nanyang Technological University (NTU) Singapore, 11 Mandalay Road, Singapore, Singapore, 208232, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), Singapore, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
25
|
Zheng X, Liu B, Wang N, Yang J, Zhou Q, Sun C, Zhao Y. Low fish meal diet supplemented with probiotics ameliorates intestinal barrier and immunological function of Macrobrachium rosenbergii via the targeted modulation of gut microbes and derived secondary metabolites. Front Immunol 2022; 13:1074399. [PMID: 36466900 PMCID: PMC9713824 DOI: 10.3389/fimmu.2022.1074399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 09/03/2023] Open
Abstract
The unsuitable substitution ratio of fish meal by plant protein will reshape the intestinal microbial composition and intestine immunity. However, previous studies were mostly limited to investigating how different feed or probiotics characterized the microbial composition but ignored the biological interactions between bacteria and host physiology through secondary metabolites. Therefore, this study integrates the apparent indicators monitoring, 16S rDNA sequencing, and metabonomics to systematically investigate the effects of cottonseed protein concentrate (CPC) substitution of fish meal and Bacillus coagulans intervention on gut microbes, secondary metabolites, and intestinal immunity of Macrobrachium rosenbergii. Prawns were fed with three diets for 70 days: HF diets contained 25% fish meal, CPC in LF diets were replaced with 10% fish meal, and LF diets supplemented with 2 × 108 CFU/g diet B. coagulans were designated as BC diets. Results showed that CPC substitution induced a significant decrease in digestive enzyme activities (trypsin and lipase) and gut barrier protein PT-1 expression and a significant increase in γ-GT enzyme activity and inflammatory-related factors (Relish and Toll) expression. B. coagulans treatment mitigated the negative changes of the above indicators. Meanwhile, it significantly improved the expression levels of the barrier factor PT-1, the reparative cytokine IL-22, and Cu/Zn-SOD. CPC substitution resulted in a remarkable downregulated abundance of Firmicutes phyla, Flavobacterium spp., and Bacillus spp. B. coagulans treatment induced the callback of Firmicutes abundance and improved the relative abundance of Sphingomonas, Bacillus, and Ralstonia. Functional prediction indicated that CPC substitution resulted in elevated potential pathogenicity of microbial flora, and B. coagulans reduces the pathogenesis risk. Pearson's correlation analysis established a significant positive correlation between differential genera (Sphingomonas, Bacillus, and Ralstonia) and secondary metabolites (including sphingosine, dehydrophytosphingosine, amino acid metabolites, etc.). Meanwhile, the latter were significantly associated with intestinal immunoregulation-related genes (Cu/Zn-SOD, IL-22, PT-1, Toll, and Relish). This study indicated that B. coagulans could mediate specific gut microbes and the combined action of multiple functional secondary metabolites to affect intestinal barrier function, digestion, and inflammation. Our study revealed the decisive role of gut microbes and derived secondary metabolites in the model of dietary composition-induced intestinal injury and probiotic treatment from a new perspective.
Collapse
Affiliation(s)
- Xiaochuan Zheng
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Bo Liu
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Ning Wang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jie Yang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Qunlan Zhou
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Cunxin Sun
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Yongfeng Zhao
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| |
Collapse
|
26
|
Chen Z, Xu Q, Liu Y, Wei Y, He S, Lin W, Wang Y, Li L, Xu Y. Vancomycin-induced gut microbiota dysbiosis aggravates allergic rhinitis in mice by altered short-chain fatty acids. Front Microbiol 2022; 13:1002084. [PMID: 36439824 PMCID: PMC9687373 DOI: 10.3389/fmicb.2022.1002084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/06/2022] [Indexed: 06/11/2024] Open
Abstract
OBJECTIVE This study aims to explore how gut microbiota dysbiosis affects allergic rhinitis (AR) and whether short-chain fatty acids (SCFAs) play a role in this process. METHODS A mouse gut microbiota dysbiosis model was established by adding vancomycin to drinking water for 2 weeks before ovalbumin (OVA) sensitization. Then an OVA-alum AR mouse model was established by intraperitoneal OVA injection followed by nasal excitation. Hematoxylin and eosin (H&E) staining was performed to observe pathological changes in nasal and colon tissues of AR mice. Serum levels of total-IgE, OVA-sIgE, IL-4, IL-5, IL-10, and TGF-β1 were measured. The composition and diversity of the mouse gut microbiota were observed by 16S rDNA sequencing. Levels of SCFAs in feces were determined using SCFA-targeted metabolomics. Sodium butyrate (NaB) was added daily to mice on a low-fiber basal diet 2 weeks before the first sensitization, until the end of the study. RESULTS After gut microbiota dysbiosis, serum levels of the total IgE, OVA-sIgE, IL-4, and IL-5 in AR mice were significantly increased, compared with the control group. The composition and diversity of gut microbiota were significantly altered after gut microbiota dysbiosis, with the fecal SCFAs significantly reduced as well. The reduced bacterial genera after gut microbiota dysbiosis, such as Ruminococcus and Lactobacillus, were significantly and positively correlated with SCFAs. In contrast, the increased genera in the Van group, such as Escherichia-Shigella and Klebsiella, were significantly negatively correlated with SCFAs in feces. NaB treatment significantly reduced total-IgE, OVA-sIgE, IL-4, and IL-5 levels in serum, and inflammatory infiltration of the nasal and colon mucosa. In addition, serum levels of IL-10 and TGF-β1 increased significantly after NaB treatment. Foxp3 protein in the colon was upregulated considerably after NaB intervention. CONCLUSION Vancomycin-induced gut microbiota dysbiosis increased susceptibility and severity of AR, which is significantly related to reduced SCFA-producing bacteria, fecal SCFAs, and specific bacterial taxa. In addition, it was found that NaB alleviated low dietary fiber base-fed symptoms and immune status in AR mice.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Allergy Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qingqing Xu
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Allergy Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Liu
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Allergy Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yihan Wei
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Allergy Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shancai He
- Department of Otorhinolaryngology, Fuqing City Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Allergy Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yingge Wang
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Allergy Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Li Li
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yuanteng Xu
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Allergy Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
27
|
Wang W, Xie R, Cao Q, Ye H, Zhang C, Dong Z, Feng D, Zuo J. Effects of glucose oxidase on growth performance, clinical symptoms, serum parameters, and intestinal health in piglets challenged by enterotoxigenic Escherichia coli. Front Microbiol 2022; 13:994151. [PMID: 36267185 PMCID: PMC9578003 DOI: 10.3389/fmicb.2022.994151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
Glucose oxidase (GOD) could benefit intestinal health and growth performance in animals. However, it is unknown whether GOD can protect piglets against bacterial challenge. This study aimed to evaluate the protective effects of GOD on growth performance, clinical symptoms, serum parameters, and intestinal health in piglets challenged by enterotoxigenic Escherichia coli (ETEC). A total of 44 male weaned piglets around 38 days old were divided into four groups (11 replicates/group): negative control (NC), positive control (PC), CS group (PC piglets +40 g/t colistin sulfate), and GOD group (PC piglets +200 g/t GOD). All piglets except those in NC were challenged with ETEC (E. coli K88) on the 11th day of the experiment. Parameter analysis was performed on the 21st day of the experiment. The results showed that the ETEC challenge elevated (p < 0.05) the rectal temperature and fecal score of piglets at certain time-points post-challenge, reduced (p < 0.05) serum glucose and IgG levels but increased (p < 0.05) serum alanine aminotransferase activity, as well as caused (p < 0.05) intestinal morphology impairment and inflammation. Supplemental GOD could replace CS to reverse (p < 0.05) the above changes and tended to increase (p = 0.099) average daily gain during the ETEC challenge. Besides, GOD addition reversed ETEC-induced losses (p < 0.05) in several beneficial bacteria (e.g., Lactobacillus salivarius) along with increases (p < 0.05) in certain harmful bacteria (e.g., Enterobacteriaceae and Escherichia/Shigella). Functional prediction of gut microbiota revealed that ETEC-induced upregulations (p < 0.05) of certain pathogenicity-related pathways (e.g., bacterial invasion of epithelial cells and shigellosis) were blocked by GOD addition, which also normalized the observed downregulations (p < 0.05) of bacterial pathways related to the metabolism of sugars, functional amino acids, nucleobases, and bile acids in challenged piglets. Collectively, GOD could be used as a potential antibiotic alternative to improve growth and serum parameters, as well as attenuate clinical symptoms and intestinal disruption in ETEC-challenged piglets, which could be associated with its ability to mitigate gut microbiota dysbiosis. Our findings provided evidence for the usage of GOD as an approach to restrict ETEC infection in pigs.
Collapse
|
28
|
Guryanova SV. Regulation of Immune Homeostasis via Muramyl Peptides-Low Molecular Weight Bioregulators of Bacterial Origin. Microorganisms 2022; 10:1526. [PMID: 36013944 PMCID: PMC9413341 DOI: 10.3390/microorganisms10081526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
Metabolites and fragments of bacterial cells play an important role in the formation of immune homeostasis. Formed in the course of evolution, symbiotic relationships between microorganisms and a macroorganism are manifested, in particular, in the regulation of numerous physiological functions of the human body by the innate immunity receptors. Low molecular weight bioregulators of bacterial origin have recently attracted more and more attention as drugs in the prevention and composition of complex therapy for a wide range of diseases of bacterial and viral etiology. Signaling networks show cascades of causal relationships of deterministic phenomena that support the homeostasis of multicellular organisms at different levels. To create networks, data from numerous biomedical and clinical research databases were used to prepare expert systems for use in pharmacological and biomedical research with an emphasis on muramyl dipeptides. Muramyl peptides are the fragments of the cell wall of Gram-positive and Gram-negative bacteria. Binding of muramyl peptides with intracellular NOD2 receptors is crucial for an immune response on pathogens. Depending on the microenvironment and duration of action, muramyl peptides possess positive or negative regulation of inflammation. Other factors, such as genetic, pollutions, method of application and stress also contribute and should be taken into account. A system biology approach should be used in order to systemize all experimental data for rigorous analysis, with the aim of understanding intrinsic pathways of homeostasis, in order to define precise medicine therapy and drug design.
Collapse
Affiliation(s)
- Svetlana V Guryanova
- Medical Institute, Peoples' Friendship University of Russia (RUDN University) of the Ministry of Science and Higher Education of the Russian Federation, 117198 Moscow, Russia
| |
Collapse
|