1
|
Chen Q, Cao J, Zhang M, Guo L, Omidvar N, Xu Z, Hui C, Liu W. The role of soil chemical properties and microbial communities on Dendrocalamus brandisii bamboo shoot quality, Yunnan Province, China. Front Microbiol 2025; 16:1551638. [PMID: 40371113 PMCID: PMC12075379 DOI: 10.3389/fmicb.2025.1551638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/02/2025] [Indexed: 05/16/2025] Open
Abstract
Objective To explore the effects of soil nutrients and microbial communities on the quality of Dendrocalamus brandisii shoots in different regions, providing a scientific basis for their development and utilization. Methods Using seven different geographic sources of D. brandisii from Yunnan Province as research subjects, this study employs chemical analysis and high-throughput sequencing to reveal the relationship between soil nutrients, microbial functional groups, and the nutritional quality of bamboo shoots. Results The results indicate that there are significant differences in soil nutrient content among the regions (p < 0.05), with bamboo shoots from Baoshan Changning (CN) exhibiting the best overall nutritional quality. The key factors influencing bacterial community changes include pH, available phosphorus (AP), and available potassium (AK). In contrast, the main factors affecting fungal community changes are pH, soil organic matter (SOM), available potassium (AK), and total nitrogen (TN). This version maintains clarity and logical flow, making it easier for readers to understand the different factors influencing bacterial and fungal community changes. The diversity indices of soil microbial communities among different sources of Dendrocalamus brandisii show significant differences (p < 0.05). The dominant groups in the seven regions include Proteobacteria, Acidobacteriota, Actinobacteriota, Chloroflexi, Ascomycota, and Basidiomycota. The soil microbial community in Baoshan Changning (CN) shows significant structural differences compared to the other six regions, with the highest relative abundances of Chloroflexi and Acidobacteriota. In contrast, the highest relative abundance of Proteobacteria is found in Honghe Shiping (SP), while Actinobacteriota has the highest relative abundance in Yuxi Xinping (XP). RDA analysis indicates that soil nutrients (SOM, pH, AP, TN) affect the water content, soluble sugar, and crude fat of bamboo shoots. Additionally, the bacterial communities including Actinobacteriota, Chloroflexi, Patescibacteria, GAL15, and Cyanobacteria influence the water content, soluble sugar, ash content, protein, and lignin of bamboo shoots. Discussion In the fungal community, Basidiomycota, Kickxellomycota, Mucoromycota, unclassified-k-Fungi, and Glomeromycota affect the water content and tannin levels in bamboo shoots. In summary, soil nutrients and soil microorganisms are interconnected and work together to influence the quality of bamboo shoots.
Collapse
Affiliation(s)
- Qian Chen
- Research Institute of Bamboo and Rattan, Cluster Bamboo Engineering Technology Research Center, College of Forestry, Southwest Forestry University, Kunming, China
| | - Jianjie Cao
- Research Institute of Bamboo and Rattan, Cluster Bamboo Engineering Technology Research Center, College of Forestry, Southwest Forestry University, Kunming, China
| | - Manyun Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Lei Guo
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD, Australia
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Negar Omidvar
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| | - Zhihong Xu
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| | - Chaomao Hui
- Research Institute of Bamboo and Rattan, Cluster Bamboo Engineering Technology Research Center, College of Forestry, Southwest Forestry University, Kunming, China
| | - Weiyi Liu
- Research Institute of Bamboo and Rattan, Cluster Bamboo Engineering Technology Research Center, College of Forestry, Southwest Forestry University, Kunming, China
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Liu L, Miao Q, Guo Y, Wang C, Sun J, Fan Z, Wang D, Hu Y, Li J, Cui Z. Bacterial and fungal communities regulated directly and indirectly by tobacco-rape rotation promote tobacco production. Front Microbiol 2024; 15:1418090. [PMID: 38946901 PMCID: PMC11211276 DOI: 10.3389/fmicb.2024.1418090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Tobacco continuous cropping is prevalent in intensive tobacco agriculture but often leads to microbial community imbalance, soil nutrient deficiency, and decreased crop productivity. While the tobacco-rape rotation has demonstrated significant benefits in increasing tobacco yield. Microorganisms play a crucial role in soil nutrient cycling and crop productivity. However, the internal mechanism of tobacco-rape rotation affecting tobacco yield through microbe-soil interaction is still unclear. In this study, two treatments, tobacco continuous cropping (TC) and tobacco-rape rotation (TR) were used to investigate how planting systems affect soil microbial diversity and community structure, and whether these changes subsequently affect crop yields. The results showed that compared with TC, TR significantly increased the Shannon index, Chao1 index, ACE index of bacteria and fungi, indicating increased microbial α-diversity. On the one hand, TR may directly affect the bacterial and fungal community structure due to the specificity of root morphology and root exudates in rape. Compared with TC, TR significantly increased the proportion of beneficial bacterial and fungal taxa while significantly reduced soil-borne pathogens. Additionally, TR enhanced the scale and complexity of microbial co-occurrence networks, promoting potential synergies between bacterial OTUs. On the other hand, TR indirectly changed microbial community composition by improving soil chemical properties and changing microbial life history strategies. Compared with TC, TR significantly increased the relative abundance of copiotrophs while reduced oligotrophs. Notably, TR significantly increased tobacco yield by 39.6% compared with TC. The relationships among yield, microbial community and soil chemical properties indicated that planting systems had the greatest total effect on tobacco yield, and the microbial community, particularly bacteria, had the greatest direct effect on tobacco yield. Our findings highlighted the potential of tobacco-rape rotation to increase yield by both directly and indirectly optimizing microbial community structure.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Qi Miao
- Key Laboratory of Nutrient Cycling and Arable Land Conservation of An Hui Province, Soil and Fertilizer Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yingxin Guo
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Chen Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | | | | | | | - Yanxia Hu
- Yunan Dali Tobacco Company, Dali, China
| | - Junying Li
- Yunnan Academy of Tobacco Agriculture Science, Kunming, China
| | - Zhenling Cui
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Gu Y, Chen X, Shen Y, Chen X, He G, He X, Wang G, He H, Lv Z. The response of nutrient cycle, microbial community abundance and metabolic function to nitrogen fertilizer in rhizosphere soil of Phellodendron chinense Schneid seedlings. Front Microbiol 2023; 14:1302775. [PMID: 38173676 PMCID: PMC10762311 DOI: 10.3389/fmicb.2023.1302775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Nitrogen (N) as an essential macronutrient affects the soil nutrient cycle, microbial community abundance, and metabolic function. However, the specific responses of microorganisms and metabolic functions in rhizosphere soil of Phellodendron chinense Schneid seedlings to N addition remain unclear. In this study, four treatments (CK, N5, N10 and N15) were conducted, and the soil physicochemical properties, enzyme activities, microbial community abundances and diversities, metabolism, and gene expressions were investigated in rhizosphere soil of P. chinense Schneid. The results showed that N addition significantly decreased rhizosphere soil pH, among which the effect of N10 treatment was better. N10 treatment significantly increased the contents of available phosphorus (AP), available potassium (AK), ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N) and sucrase (SU) activity, as well as fungal diversity and the relative expression abundances of amoA and phoD genes in rhizosphere soil, but observably decreased the total phosphorus (TP) content, urease (UR) activity and bacterial diversity, among which the pH, soil organic matter (SOM), AP, NH4+-N and NO3--N were the main environmental factors for affecting rhizosphere soil microbial community structure based on RDA and correlation analyses. Meanwhile, N10 treatment notably enhanced the absolute abundances of the uracil, guanine, indole, prostaglandin F2α and γ-glutamylalanine, while reduced the contents of D-phenylalanine and phenylacetylglycine in rhizosphere soil of P. chinense Schneid seedlings. Furthermore, the soil available nutrients represented a significant correlation with soil metabolites and dominant microorganisms, suggesting that N10 addition effectively regulated microbial community abundance and metabolic functions by enhancing nutrient cycle in the rhizosphere soil of P. chinense Schneid seedlings.
Collapse
Affiliation(s)
- Yuanzheng Gu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xianglin Chen
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yan Shen
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xiaoyong Chen
- College of Arts and Sciences, Governors State University, University Park, IL, United States
| | - Gongxiu He
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xinxing He
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Guangjun Wang
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Hanjie He
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zhencheng Lv
- School of Life Sciences, Huizhou University, Huizhou, Guangdong, China
| |
Collapse
|
4
|
Wang C, Bao R, Zhang H, Shang L, Wang H, Yang Z, Du C. Study on Potato Bud Cultivation Techniques in a Greenhouse in Spring. PLANTS (BASEL, SWITZERLAND) 2023; 12:3545. [PMID: 37896009 PMCID: PMC10610138 DOI: 10.3390/plants12203545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
The species degeneration caused by traditional potato cultivation methods is becoming increasingly evident, and it is particularly important to study new potato cultivation methods. Sprout planting technology has the advantages of large reproductive capacity, fast growth speed, and simplified maintenance of cultivated crops. In this study, four disease-free potato varieties ('Fujin', 'Youjin', 'Zhongshu 4', and 'Feiwuruita') were treated with different parts (top bud, middle bud, and tail bud) and different bud lengths (10 cm, 15 cm, and 20 cm), and then potato sprout planting was carried out. A nutrient pot experiment was performed following a randomized complete block design (RCBD) with various replicates and a natural control (CK) treatment. By comprehensively measuring the emergence, chlorophyll content, net photosynthetic rate, dry matter distribution during the bulking period of blocks, and effect of growth and quality with bud direct seeding under both treatments, it was found that potato block top bud direct seeding cultivation is significantly superior to other parts. In terms of early maturity and yield statistics, the advantage of top bud cultivation in 'zhongshu 4' is most obvious; it reaches maturity an average of 14 days earlier, and the yield can be increased by 38.05%. Therefore, top bud direct seeding is more suitable for potato sprout planting technology. On this basis, the 20 cm and 15 cm bud length treatments of top buds were used for direct cultivation, and all the above indicators performed well. Among them, in the zhongshu 4 variety, the yields of 15 cm and 20 cm bud length treatments increased by 41.78% and 38.05%, the growth rates of commercial potatoes increased by 6% and 6.9%, respectively, and the effects were the most obvious. In conclusion, the deep research and application of potato sprouting technology has high utilization value for improving potato yield and quality and has guiding significance for greenhouse potato cultivation in early spring.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chong Du
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (C.W.); (R.B.); (H.Z.); (L.S.); (H.W.); (Z.Y.)
| |
Collapse
|