1
|
van den Berg SPH, Zoumaro‐Djayoon A, Yang F, Bokinsky G. Exogenous fatty acids inhibit fatty acid synthesis by competing with endogenously generated substrates for phospholipid synthesis in Escherichia coli. FEBS Lett 2025; 599:667-681. [PMID: 39739509 PMCID: PMC11891403 DOI: 10.1002/1873-3468.15092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/29/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025]
Abstract
Exogenous fatty acids are directly incorporated into bacterial membranes, heavily influencing cell envelope properties, antibiotic susceptibility, and bacterial ecology. Here, we quantify fatty acid biosynthesis metabolites and enzymes of the fatty acid synthesis pathway to determine how exogenous fatty acids inhibit fatty acid synthesis in Escherichia coli. We find that acyl-CoA synthesized from exogenous fatty acids rapidly increases concentrations of long-chain acyl-acyl carrier protein (acyl-ACP), which inhibits fatty acid synthesis initiation. Accumulation of long-chain acyl-ACP is caused by competition with acyl-CoA for phospholipid synthesis enzymes. Furthermore, we find that transcriptional regulation rebalances saturated and unsaturated acyl-ACP while maintaining overall expression levels of fatty acid synthesis enzymes. Rapid feedback inhibition of fatty acid synthesis by exogenous fatty acids thus allows E. coli to benefit from exogenous fatty acids while maintaining fatty acid synthesis capacity. We hypothesize that this indirect feedback mechanism is ubiquitous across bacterial species.
Collapse
Affiliation(s)
- Stefan Pieter Hendrik van den Berg
- Department of Bionanoscience, Kavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
- Present address:
Department of ImmunopathologySanquin Research AmsterdamAmsterdamThe Netherlands
| | - Adja Zoumaro‐Djayoon
- Department of Bionanoscience, Kavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
| | - Flora Yang
- Department of Bionanoscience, Kavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
| |
Collapse
|
2
|
Duan Y, Chen L, Ma L, Amin FR, Zhai Y, Chen G, Li D. From lignocellulosic biomass to single cell oil for sustainable biomanufacturing: Current advances and prospects. Biotechnol Adv 2024; 77:108460. [PMID: 39383979 DOI: 10.1016/j.biotechadv.2024.108460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
As global temperatures rise and arid climates intensify, the reserves of Earth's resources and the future development of humankind are under unprecedented pressure. Traditional methods of food production are increasingly inadequate in meeting the demands of human life while remaining environmentally sustainable and resource-efficient. Consequently, the sustainable supply of lipids is expected to become a pivotal area for future food development. Lignocellulose biomass (LB), as the most abundant and cost-effective renewable resource, has garnered significant attention from researchers worldwide. Thus, bioprocessing based on LB is appearing as a sustainable model for mitigating the depletion of energy reserves and reducing carbon footprints. Currently, the transformation of LB primarily focuses on producing biofuels, such as bioethanol, biobutanol, and biodiesel, to address the energy crisis. However, there are limited reports on the production of single cell oil (SCO) from LB. This review, therefore, provides a comprehensive summary of the research progress in lignocellulosic pretreatment. Subsequently, it describes how the capability for lignocellulosic use can be conferred to cells through genetic engineering. Additionally, the current status of saccharification and fermentation of LB is outlined. The article also highlights the advances in synthetic biology aimed at driving the development of oil-producing microorganism (OPM), including genetic transformation, chassis modification, and metabolic pathway optimization. Finally, the limitations currently faced in SCO production from straw are discussed, and future directions for achieving high SCO yields from various perspectives are proposed. This review aims to provide a valuable reference for the industrial application of green SCO production.
Collapse
Affiliation(s)
- Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Limei Chen
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Longxue Ma
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Farrukh Raza Amin
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yida Zhai
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
3
|
Zou Q, Dong H, Cronan JE. The Enteric Bacterium Enterococcus faecalis Elongates and Incorporates Exogenous Short and Medium Chain Fatty Acids Into Membrane Lipids. Mol Microbiol 2024; 122:757-771. [PMID: 39380216 PMCID: PMC11586512 DOI: 10.1111/mmi.15322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Enterococcus faecalis incorporates and elongates exogeneous short- and medium-chain fatty acids to chains sufficiently long to enter membrane phospholipid synthesis. The acids are activated by the E. faecalis fatty acid kinase (FakAB) system and converted to acyl-ACP species that can enter the fatty acid synthesis cycle to become elongated. Following elongation the acyl chains are incorporated into phospholipid by the PlsY and PlsC acyltranferases. This process has little effect on de novo fatty acid synthesis in the case of short-chain acids, but a greater effect with medium-chain acids. Incorporation of exogenous short-chain fatty acids in E. faecalis was greatly increased by overexpression of either AcpA, the acyl carrier protein of fatty acid synthesis, or the phosphate acyl transferase PlsX. The PlsX of Lactococcus lactis was markedly superior to the E. faecalis PlsX in incorporation of short-chain but not long-chain acids. These manipulations also allowed unsaturated fatty acids of lengths too short for direct transfer to the phospholipid synthesis pathway to be elongated and support growth of E. faecalis unsaturated fatty acid auxotrophic strains. Short- and medium-chain fatty acids can be abundant in the human gastrointestinal tract and their elongation by E. faecalis would conserve energy and carbon by relieving the requirement for total de novo synthesis of phospholipid acyl chains.
Collapse
Affiliation(s)
- Qi Zou
- Department of MicrobiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Huijuan Dong
- Department of MicrobiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - John E. Cronan
- Department of MicrobiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Department of BiochemistryUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
4
|
Lambert C, Gaillard M, Wongdontree P, Bachmann C, Hautcoeur A, Gloux K, Guilbert T, Méhats C, Prost B, Solgadi A, Abreu S, Andrieu M, Poyart C, Gruss A, Fouet A. The double-edged role of FASII regulator FabT in Streptococcus pyogenes infection. Nat Commun 2024; 15:8593. [PMID: 39366941 PMCID: PMC11452403 DOI: 10.1038/s41467-024-52637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/16/2024] [Indexed: 10/06/2024] Open
Abstract
In Streptococcus pyogenes, the type II fatty acid (FA) synthesis pathway FASII is feedback-controlled by the FabT repressor bound to an acyl-Acyl carrier protein. Although FabT defects confer reduced virulence in animal models, spontaneous fabT mutants arise in vivo. We resolved this paradox by characterizing the conditions and mechanisms requiring FabT activity, and those promoting fabT mutant emergence. The fabT defect leads to energy dissipation, limiting mutant growth on human tissue products, which explains the FabT requirement during infection. Conversely, emerging fabT mutants show superior growth in biotopes rich in saturated FAs, where continued FASII activity limits their incorporation. We propose that membrane alterations and continued FASII synthesis are the primary causes for increased fabT mutant mortality in nutrient-limited biotopes, by failing to stop metabolic consumption. Our findings elucidate the rationale for emerging fabT mutants that improve bacterial survival in lipid-rich biotopes, but lead to a genetic impasse for infection.
Collapse
Affiliation(s)
- Clara Lambert
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
- Molecular Microbiology and Structural Biochemistry, CNRS, UMR5086, Université de Lyon, Lyon, France
| | - Marine Gaillard
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Paprapach Wongdontree
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Caroline Bachmann
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Antoine Hautcoeur
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Karine Gloux
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Thomas Guilbert
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Celine Méhats
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Bastien Prost
- UMS-IPSIT - Plateforme SAMM, Université Paris-Saclay, Orsay, France
| | - Audrey Solgadi
- UMS-IPSIT - Plateforme SAMM, Université Paris-Saclay, Orsay, France
| | - Sonia Abreu
- Lipides: Systèmes Analytiques et Biologiques, Université Paris-Saclay, Orsay, France
| | - Muriel Andrieu
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Claire Poyart
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
- AP-HP Centre-Université Paris Cité, Paris, France
| | - Alexandra Gruss
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France.
| | - Agnes Fouet
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.
| |
Collapse
|
5
|
Rutherford J, Avad K, Dureja C, Norseeda K, GC B, Wu C, Sun D, Hevener KE, Hurdle JG. Evaluation of Fusobacterium nucleatum Enoyl-ACP Reductase (FabK) as a Narrow-Spectrum Drug Target. ACS Infect Dis 2024; 10:1612-1623. [PMID: 38597503 PMCID: PMC11091888 DOI: 10.1021/acsinfecdis.3c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Fusobacterium nucleatum, a pathobiont inhabiting the oral cavity, contributes to opportunistic diseases, such as periodontal diseases and gastrointestinal cancers, which involve microbiota imbalance. Broad-spectrum antimicrobial agents, while effective against F. nucleatum infections, can exacerbate dysbiosis. This necessitates the discovery of more targeted narrow-spectrum antimicrobial agents. We therefore investigated the potential for the fusobacterial enoyl-ACP reductase II (ENR II) isoenzyme FnFabK (C4N14_ 04250) as a narrow-spectrum drug target. ENRs catalyze the rate-limiting step in the bacterial fatty acid synthesis pathway. Bioinformatics revealed that of the four distinct bacterial ENR isoforms, F. nucleatum specifically encodes FnFabK. Genetic studies revealed that fabK was indispensable for F. nucleatum growth, as the gene could not be deleted, and silencing of its mRNA inhibited growth under the test conditions. Remarkably, exogenous fatty acids failed to rescue growth inhibition caused by the silencing of fabK. Screening of synthetic phenylimidazole analogues of a known FabK inhibitor identified an inhibitor (i.e., 681) of FnFabK enzymatic activity and F. nucleatum growth, with an IC50 of 2.1 μM (1.0 μg/mL) and a MIC of 0.4 μg/mL, respectively. Exogenous fatty acids did not attenuate the activity of 681 against F. nucleatum. Furthermore, FnFabK was confirmed as the intracellular target of 681 based on the overexpression of FnFabK shifting MICs and 681-resistant mutants having amino acid substitutions in FnFabK or mutations in other genetic loci affecting fatty acid biosynthesis. 681 had minimal activity against a range of commensal flora, and it was less active against streptococci in physiologic fatty acids. Taken together, FnFabK is an essential enzyme that is amenable to drug targeting for the discovery and development of narrow-spectrum antimicrobial agents.
Collapse
Affiliation(s)
- Jacob
T. Rutherford
- Center
for Infectious and Inflammatory Diseases, Institute of Biosciences
and Technology, Department of Translational Medical Sciences, Texas A&M Health Science Center, Houston, Texas 77030, United States
| | - Kristiana Avad
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Chetna Dureja
- Center
for Infectious and Inflammatory Diseases, Institute of Biosciences
and Technology, Department of Translational Medical Sciences, Texas A&M Health Science Center, Houston, Texas 77030, United States
| | - Krissada Norseeda
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii 96720, United States
| | - Bibek GC
- Department
of Microbiology & Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Chenggang Wu
- Department
of Microbiology & Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Dianqing Sun
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii 96720, United States
| | - Kirk E. Hevener
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Julian G. Hurdle
- Center
for Infectious and Inflammatory Diseases, Institute of Biosciences
and Technology, Department of Translational Medical Sciences, Texas A&M Health Science Center, Houston, Texas 77030, United States
| |
Collapse
|
6
|
Lambert C, d'Orfani A, Gaillard M, Zhang Q, Gloux K, Poyart C, Fouet A. Acyl-AcpB, a FabT corepressor in Streptococcus pyogenes. J Bacteriol 2023; 205:e0027423. [PMID: 37811985 PMCID: PMC10601718 DOI: 10.1128/jb.00274-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Membranes are a universal barrier to all cells. Phospholipids, essential bacterial membrane components, are composed of a polar head and apolar fatty acid (FA) chains. Most bacterial FAs are synthesized by the Type II FA synthesis pathway (FASII). In Streptococcaceae, Enterococci, and Lactococcus lactis, a unique feedback mechanism controls the FASII gene expression. FabT, encoded in the FASII main locus, is the repressor, and it is activated by long-chain acyl-acyl carrier protein (acyl-ACP). Many Streptococci, Enterococcus faecalis, but not L. lactis, possess two ACPs. The AcpA-encoding gene is within the FASII locus and is coregulated with the FASII genes. Acyl-AcpA is the end product of FASII. The AcpB-encoding gene is in operon with plsX encoding an acyl-ACP:phosphate acyltransferase. The role of acyl-AcpB as FabT corepressor is controversial. Streptococcus pyogenes, which causes a wide variety of diseases ranging from mild non-invasive to severe invasive infections, possesses AcpB. In this study, by comparing the expression of FabT-controlled genes in an acpB-deleted mutant with those in a wild-type and in a fabT mutant strain, grown in the presence or absence of exogenous FAs, we show that AcpB is the S. pyogenes FabT main corepressor. Its deletion impacts membrane FA composition and bacterial adhesion to eucaryotic cells, highlighting the importance of FASII control. Importance Membrane composition is crucial for bacterial growth or interaction with the environment. Bacteria synthesize fatty acids (FAs), membrane major constituents, via the Type II FAS (FASII) pathway. Streptococci control the expression of the FASII genes via a transcriptional repressor, FabT, with acyl-acyl carrier proteins (ACPs) as corepressor. Streptococcus pyogenes that causes a wide variety of diseases ranging from mild non-invasive to severe invasive infections possesses two ACPs. acpA, but not acpB, is a FASII gene. In this study, we show that acyl-AcpBs are FabT main corepressors. Also, AcpB deletion has consequences on the membrane FA composition and bacterial adhesion to host cells. In addition to highlighting the importance of FASII control in the presence of exogeneous FAs for the adaptation of bacteria to their environment, our data indicate that FASII gene repression is mediated by a corepressor whose gene expression is not repressed in the presence of exogenous FAs.
Collapse
Affiliation(s)
- Clara Lambert
- Université Paris Cité, Institut Cochin, Paris, France
| | | | | | - Qiufen Zhang
- Université Paris Cité, Institut Cochin, Paris, France
| | - Karine Gloux
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Claire Poyart
- Université Paris Cité, Institut Cochin, Paris, France
- AP-HP Centre-Université Paris Cité, Paris, France
| | - Agnes Fouet
- Université Paris Cité, Institut Cochin, Paris, France
| |
Collapse
|
7
|
Zou Q, Dong H, Cronan JE. Growth of Enterococcus faecalis ∆ plsX strains is restored by increased saturated fatty acid synthesis. mSphere 2023; 8:e0012023. [PMID: 37289195 PMCID: PMC10449490 DOI: 10.1128/msphere.00120-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/07/2023] [Indexed: 06/09/2023] Open
Abstract
The Enterococcus faecalis acyl-acyl carrier protein (ACP) phosphate acyltransferase PlsX plays an important role in phospholipid synthesis and exogenous fatty acid incorporation. Loss of plsX almost completely blocks growth by decreasing de novo phospholipid synthesis, which leads to abnormally long-chain acyl chains in the cell membrane phospholipids. The ∆plsX strain failed to grow without supplementation with an appropriate exogenous fatty acid. Introduction of a ∆fabT mutation into the ∆plsX strain to increase fatty acid synthesis allowed very weak growth. The ∆plsX strain accumulated suppressor mutants. One of these encoded a truncated β-ketoacyl-ACP synthase II (FabO) which restored normal growth and restored de novo phospholipid acyl chain synthesis by increasing saturated acyl-ACP synthesis. Saturated acyl-ACPs are cleaved by a thioesterase to provide free fatty acids for conversion to acyl-phosphates by the FakAB system. The acyl-phosphates are incorporated into position sn1 of the phospholipids by PlsY. We report the tesE gene encodes a thioesterase that can provide free fatty acids. However, we were unable to delete the chromosomal tesE gene to confirm that it is the responsible enzyme. TesE readily cleaves unsaturated acyl-ACPs, whereas saturated acyl-ACPs are cleaved much more slowly. Overexpression of an E. faecalis enoyl-ACP reductase either FabK or FabI which results in high levels of saturated fatty acid synthesis also restored the growth of the ∆plsX strain. The ∆plsX strain grew faster in the presence of palmitic acid than in the presence of oleic acid with improvement in phospholipid acyl chain synthesis. Positional analysis of the acyl chain distribution in the phospholipids showed that saturated acyl chains dominate the sn1-position indicating a preference for saturated fatty acids at this position. High-level production of saturated acyl-ACPs is required to offset the marked preference of the TesE thioesterase for unsaturated acyl-ACPs and allow the initiation of phospholipid synthesis.
Collapse
Affiliation(s)
- Qi Zou
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Huijuan Dong
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John E. Cronan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
8
|
Woodall B, Fozo EM, Campagna SR. Dual stable isotopes enhance lipidomic studies in bacterial model organism Enterococcus faecalis. Anal Bioanal Chem 2023; 415:3593-3605. [PMID: 37204445 DOI: 10.1007/s00216-023-04750-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
Dual stable isotope probes of deuterium oxide and 13C fatty acid were demonstrated to probe the lipid biosynthesis cycle of a Gram-positive bacterium Enterococcus faecalis. As external nutrients and carbon sources often interact with metabolic processes, the use of dual-labeled isotope pools allowed for the simultaneous investigation of both exogenous nutrient incorporation or modification and de novo biosynthesis. Deuterium was utilized to trace de novo fatty acid biosynthesis through solvent-mediated proton transfer during elongation of the carbon chain while 13C-fatty acids were utilized to trace exogenous nutrient metabolism and modification through lipid synthesis. Ultra-high-performance liquid chromatography high-resolution mass spectrometry identified 30 lipid species which incorporated deuterium and/or 13C fatty acid into the membrane. Additionally, MS2 fragments of isolated lipids identified acyl tail position confirming enzymatic activity of PlsY in the incorporation of the 13C fatty acid into membrane lipids.
Collapse
Affiliation(s)
- Brittni Woodall
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Elizabeth M Fozo
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA.
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
9
|
Fozo EM. Too Much or Not Enough: The Role of mprF in Regulating Overall Phospholipid Content. mBio 2023; 14:e0352722. [PMID: 37022184 PMCID: PMC10127575 DOI: 10.1128/mbio.03527-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Despite their fundamental role in defining cells, lipids and the contributions of specific lipid classes in bacterial physiology and pathogenesis have not been highlighted well. Enterococcus faecalis, a commensal bacterial and major hospital-acquired bacterium, synthesizes only a few known phospholipids. One of these variants, lysyl-phosphatidylglycerol, is critical for surviving cationic antimicrobial peptides, but its consequence on overall membrane composition and cellular properties has not been thoroughly examined. A recent study by Rashid et al. examines how loss of this lipid class results in an overall shift in total lipid composition and the consequential impacts on the global transcriptome, cellular growth, and secretion. They demonstrate the plasticity of the enterococcal lipidome to reprogram itself to allow for optimal function. With the significant improvements in multiple technological areas, this study, and others like it, provide a template for deciphering the critical function of lipids in all aspects of bacterial physiology.
Collapse
Affiliation(s)
- Elizabeth M. Fozo
- Department of Microbiology, University of Tennessee, Knoxville, Tennesse, USA
| |
Collapse
|
10
|
Depleting Cationic Lipids Involved in Antimicrobial Resistance Drives Adaptive Lipid Remodeling in Enterococcus faecalis. mBio 2023; 14:e0307322. [PMID: 36629455 PMCID: PMC9973042 DOI: 10.1128/mbio.03073-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The bacterial cell membrane is an interface for cell envelope synthesis, protein secretion, virulence factor assembly, and a target for host cationic antimicrobial peptides (CAMPs). To resist CAMP killing, several Gram-positive pathogens encode the multiple peptide resistance factor (MprF) enzyme that covalently attaches cationic amino acids to anionic phospholipids in the cell membrane. While E. faecalis encodes two mprF paralogs, MprF2 plays a dominant role in conferring resistance to killing by the CAMP human β-defensin 2 (hBD-2) in E. faecalis strain OG1RF. The goal of the current study is to understand the broader lipidomic and functional roles of E. faecalis mprF. We analyzed the lipid profiles of parental wild-type and mprF mutant strains and show that while ΔmprF2 and ΔmprF1 ΔmprF2 mutants completely lacked cationic lysyl-phosphatidylglycerol (L-PG), the ΔmprF1 mutant synthesized ~70% of L-PG compared to the parent. Unexpectedly, we also observed a significant reduction of PG in ΔmprF2 and ΔmprF1 ΔmprF2. In the mprF mutants, particularly ΔmprF1 ΔmprF2, the decrease in L-PG and phosphatidylglycerol (PG) is compensated by an increase in a phosphorus-containing lipid, glycerophospho-diglucosyl-diacylglycerol (GPDGDAG), and D-ala-GPDGDAG. These changes were accompanied by a downregulation of de novo fatty acid biosynthesis and an accumulation of long-chain acyl-acyl carrier proteins (long-chain acyl-ACPs), suggesting that the suppression of fatty acid biosynthesis was mediated by the transcriptional repressor FabT. Growth in chemically defined media lacking fatty acids revealed severe growth defects in the ΔmprF1 ΔmprF2 mutant strain, but not the single mutants, which was partially rescued through supplementation with palmitic and stearic acids. Changes in lipid homeostasis correlated with lower membrane fluidity, impaired protein secretion, and increased biofilm formation in both ΔmprF2 and ΔmprF1 ΔmprF2, compared to the wild type and ΔmprF1. Collectively, our findings reveal a previously unappreciated role for mprF in global lipid regulation and cellular physiology, which could facilitate the development of novel therapeutics targeting MprF. IMPORTANCE The cell membrane plays a pivotal role in protecting bacteria against external threats, such as antibiotics. Cationic phospholipids such as lysyl-phosphatidyglycerol (L-PG) resist the action of cationic antimicrobial peptides through electrostatic repulsion. Here we demonstrate that L-PG depletion has several unexpected consequences in Enterococcus faecalis, including a reduction of phosphatidylglycerol (PG), enrichment of a phosphorus-containing lipid, reduced fatty acid synthesis accompanied by an accumulation of long-chain acyl-acyl carrier proteins (long chain acyl-ACPs), lower membrane fluidity, and impaired secretion. These changes are not deleterious to the organism as long as exogenous fatty acids are available for uptake from the culture medium. Our findings suggest an adaptive mechanism involving compensatory changes across the entire lipidome upon removal of a single phospholipid modification. Such adaptations must be considered when devising antimicrobial strategies that target membrane lipids.
Collapse
|
11
|
Yeon J, Oh S, Hwang E, Kim E, Kim Y. Structural study of acyl carrier protein of Enterococcus faecalis and its interaction with enzymes in de novo fatty acid synthesis. Biochem Biophys Res Commun 2022; 637:232-239. [DOI: 10.1016/j.bbrc.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
|
12
|
Dong H, Cronan JE. Unsaturated fatty acid synthesis in Enterococcus faecalis requires a specific enoyl-ACP reductase. Mol Microbiol 2022; 118:541-551. [PMID: 36100979 PMCID: PMC9671860 DOI: 10.1111/mmi.14981] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023]
Abstract
The Enterococcus faecalis genome contains two enoyl-ACP reductases genes, fabK and fabI, which encode proteins having very different structures. Enoyl-ACP reductase catalyzes the last step of the elongation cycle of type II fatty acid synthesis pathway. The fabK gene is located within the large fatty acid synthesis operon whereas fabI is located together with two genes fabN and fabO required for unsaturated fatty acid synthesis. Prior work showed that FabK is weakly expressed due to poor translational initiation and hence virtually all the cellular enoyl ACP reductase activity is that encoded by fabI. Since FabK is a fully functional enzyme, the question is why FabI is an essential enzyme. Why not increase FabK activity? We report that overproduction of FabK is lethal whereas FabI overproduction only slows the growth and is not lethal. In both cases, normal growth is restored by the addition of oleic acid, an unsaturated fatty acid, to the medium indicating that enoyl ACP reductase overproduction disrupts unsaturated fatty acid synthesis. We report that this is due to competition with FabO, a putative 3-ketoacyl-ACP synthase I via FabN, a dehydratase/isomerase providing evidence that the enoyl-ACP reductase must be matched to the unsaturated fatty acid synthetic genes. FabO has been ascribed the same activity as E. coli FabB and we report in vitro evidence that this is the case, whereas FabN is a dehydratase/isomerase, having the activity of E. coli FabA. However, FabN is much larger than FabA, it is a hexamer rather than a dimer like FabA.
Collapse
Affiliation(s)
- Huijuan Dong
- Department of MicrobiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - John E. Cronan
- Department of MicrobiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Department of BiochemistryUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
13
|
Dong H, Cronan JE. The Two Acyl Carrier Proteins of Enterococcus faecalis Have Nonredundant Functions. J Bacteriol 2022; 204:e0020222. [PMID: 35920666 PMCID: PMC9487516 DOI: 10.1128/jb.00202-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Enterococcus faecalis encodes two proteins, AcpA and AcpB, having the characteristics of acyl carrier proteins (ACPs). We report that the acpA gene located in the fatty acid synthesis operon is essential for fatty acid synthesis and the ΔacpA strain requires unsaturated fatty acids for growth. The ΔacpA strain could be complemented by a plasmid carrying a wild-type acpA gene, but not by a plasmid carrying a wild-type acpB gene. Substitution of four AcpA residues for those of AcpB resulted in a protein that modestly complemented the ΔacpA strain and restored fatty acid synthesis, although the acyl chains synthesized were unusually short. IMPORTANCE Enterococcus faecalis, as well as related species, has two genes-acpA and acpB-encoding putative acyl carrier proteins (ACPs). It has been assumed that AcpA is essential for fatty acid synthesis whereas AcpB is involved utilization of environmental fatty acids. We report here the first experimental test of the essentiality of acpA and show that it is indeed an essential gene that cannot be replaced by acpB.
Collapse
Affiliation(s)
- Huijuan Dong
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John E. Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
14
|
Shi Y, Zang N, Lou N, Xu Y, Sun J, Huang M, Zhang H, Lu H, Zhou C, Feng Y. Structure and mechanism for streptococcal fatty acid kinase (Fak) system dedicated to host fatty acid scavenging. SCIENCE ADVANCES 2022; 8:eabq3944. [PMID: 36054360 PMCID: PMC10848957 DOI: 10.1126/sciadv.abq3944] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Staphylococcus and Streptococcus, two groups of major human pathogens, are equipped with a fatty acid kinase (Fak) machinery to scavenge host fatty acids. The Fak complex is contains an ATP-binding subunit FakA, which interacts with varied FakB isoforms, and synthesizes acyl-phosphate from extracellular fatty acids. However, how FakA recognizes its FakB partners and then activates different fatty acids is poorly understood. Here, we systematically describe the Fak system from the zoonotic pathogen, Streptococcus suis. The crystal structure of SsFakA complexed with SsFakB2 was determined at 2.6 Å resolution. An in vitro system of Fak-PlsX (phosphate: acyl-ACP transacylase) was developed to track acyl-phosphate intermediate and its final product acyl-ACP. Structure-guided mutagenesis enabled us to characterize a mechanism for streptococcal FakA working with FakB partners engaged in host fatty acid scavenging. These findings offer a comprehensive description of the Fak kinase machinery, thus advancing the discovery of attractive targets against deadly infections with Streptococcus.
Collapse
Affiliation(s)
- Yu Shi
- Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ning Zang
- Department of Toxicology, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ningjie Lou
- Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yongchang Xu
- Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jingdu Sun
- Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Man Huang
- Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Huimin Zhang
- Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chun Zhou
- Department of Toxicology, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Youjun Feng
- Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
15
|
FabT, a Bacterial Transcriptional Repressor That Limits Futile Fatty Acid Biosynthesis. Microbiol Mol Biol Rev 2022; 86:e0002922. [PMID: 35726719 DOI: 10.1128/mmbr.00029-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipids are vital membrane constituents that determine cell functions and interactions with the environment. For bacterial pathogens, rapid adjustment of phospholipid composition to changing conditions during infection can be crucial for growth and survival. Fatty acid synthesis (FASII) regulators are central to this process. This review puts the spotlight on FabT, a MarR-family regulator of FASII characterized in streptococci, enterococci, and lactococci. Roles of FabT in virulence, as reported in mouse and nonhuman primate infection models, will be discussed. We present FabT structure, the FabT regulon, and changes in FabT regulation according to growth conditions. A unique feature of FabT concerns its modulation by an unconventional corepressor, acyl-acyl-carrier protein (ACP). Some bacteria express two ACP proteins, which are distinguished by their interactions with endogenous or exogenous fatty acid sources, one of which causes strong FabT repression. This system seems to allow preferred use of environmental fatty acids, thereby saving energy by limiting futile FASII activity. Control of fabT expression and FabT activity link various metabolic pathways to FASII. The various physiological consequences of FabT loss summarized here suggest that FabT has potential as a narrow range therapeutic target.
Collapse
|