1
|
Li M, Wang Z, Ma Z, Wang Y, Jia H, Zhang L, Chen P, Mao Y, Yang Z. Metagenomic analysis reveals microbial drivers of heat resistance in dairy cattle. Anim Microbiome 2025; 7:35. [PMID: 40205588 PMCID: PMC11984055 DOI: 10.1186/s42523-025-00399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/19/2025] [Indexed: 04/11/2025] Open
Abstract
Heat stress poses a significant challenge to dairy cattle, leading to adverse physiological effects, reduced milk yield, impaired reproduction performance and economic losses. This study investigates the role of the rumen microbiome in mediating heat resistance in dairy cows. Using the entropy-weighted TOPSIS method, we classified 120 dairy cows into heat-resistant (HR) and heat-sensitive (HS) groups based on physiological and biochemical markers, including rectal temperature (RT), respiratory rate (RR), salivation index (SI) and serum levels of potassium ion (K+), heat shock protein 70 (HSP70) and cortisol. Metagenomic sequencing of rumen fluid samples revealed distinct microbial compositions and functional profiles between the two groups. HR cows exhibited a more cohesive and functionally stable microbiome, dominated by taxa such as Ruminococcus flavefaciens and Succiniclasticum, which are key players in fiber degradation and short-chain fatty acid production. Functional analysis highlighted the enrichment of the pentose phosphate pathway (PPP) in HR cows, suggesting a metabolic adaptation that enhances oxidative stress management. In contrast, HS cows showed increased activity in the tricarboxylic acid (TCA) cycle, pyruvate metabolism and other energy-intensive pathways, indicating a higher metabolic burden under heat stress. These findings underscore the critical role of the rumen microbiome in modulating heat resistance and suggest potential microbiome-based strategies for improving dairy cattle resilience to climate change.
Collapse
Affiliation(s)
- Mingxun Li
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 University South Avenue, Yangzhou, 225009, Jiangsu, China.
| | - Zhiwei Wang
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 University South Avenue, Yangzhou, 225009, Jiangsu, China
| | - Zheng Ma
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 University South Avenue, Yangzhou, 225009, Jiangsu, China
| | - Yangyang Wang
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 University South Avenue, Yangzhou, 225009, Jiangsu, China
| | - Haoran Jia
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 University South Avenue, Yangzhou, 225009, Jiangsu, China
| | - Lei Zhang
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 University South Avenue, Yangzhou, 225009, Jiangsu, China
| | - Peng Chen
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 University South Avenue, Yangzhou, 225009, Jiangsu, China
| | - Yongjiang Mao
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 University South Avenue, Yangzhou, 225009, Jiangsu, China
| | - Zhangping Yang
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 University South Avenue, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
2
|
Zhu Y, Cidan Y, Ali M, Lu S, Javed U, Cisang Z, Gusang D, Danzeng Q, Li K, Basang W. Evaluating the Effect of Dietary Protein-Energy Ratios on Yak Intestinal Microbiota Using High-Throughput 16S rRNA Gene Sequencing. Vet Sci 2025; 12:208. [PMID: 40266935 PMCID: PMC11945990 DOI: 10.3390/vetsci12030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/16/2025] [Accepted: 02/23/2025] [Indexed: 04/25/2025] Open
Abstract
This study investigated the impact of varying dietary protein-energy ratios on the intestinal microbiota composition in postpartum weaned female yak. For this study, forty yaks were divided into four groups and provided with different dietary treatments (group FA: high-energy high-protein, FB: high-energy low-protein, FC: low-energy high-protein, and FD: control group, provided with 48% alfalfa hay, 48% oat grass, and 4% premix) to investigate the variations in microflora profiles and metabolic responses. Rectal fecal samples (n = 24 × 2) were collected at day 15 and 30, from all four groups, and total DNA was extracted to estimate microbial heterogeneity and community structures by 16S rRNA sequencing focusing V3-V4 regions, using the Illumina Nova Seq 6000 platform. The results revealed a total of 5,669,645 raw data sequences (3,189,115 and 2,480,530 from day 15 and day 30, respectively). Results showed that groups FA and FB had enhanced protein metabolism and microbial diversity, which was marked by a significant increase (p < 0.05) in abundance of Ruminococcus. Conversely, the FD group showed a low level of microbial diversity with a significant (p < 0.05) predominance of Clostridium and Proteobacteria, indicating microbial dysbiosis and metabolic stress. It was concluded that imbalanced diets (groups FC and FD) upregulated the stress-related pathways with no favorable microbial shifts, whereas, dietary treatments in group FA and FB significantly (p < 0.05) supported the pathways involved in amino acids and carbohydrate metabolism and beneficially shifted the gut microbiota. These findings emphasize the importance of postpartum supplementation with appropriate proportions of protein and energy feed to promote optimal microbial health and metabolic functioning, particularly for yaks inhabiting high-altitude regions, which is a challenging environment.
Collapse
Affiliation(s)
- Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.)
| | - Yangji Cidan
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.)
| | - Munwar Ali
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
| | - Sijia Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
| | - Usama Javed
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
| | - Zhuoma Cisang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.)
| | - Deji Gusang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.)
| | - Quzha Danzeng
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.)
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.)
| |
Collapse
|
3
|
Li D, Zhi J, Ye J, Yue W, Yang Y. Influence of different diet categories on gut bacterial diversity in Frankliniella occidentalis. ENVIRONMENTAL ENTOMOLOGY 2025; 54:119-129. [PMID: 39578945 DOI: 10.1093/ee/nvae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024]
Abstract
The microbial composition of insect guts is typically influenced by the type of food consumed, and conversely, these microbes influence the food habits of insects. Western flower thrips (WFT; Frankliniella occidentalis) is an invasive pest with a wide range of hosts, including vegetables and horticultural crops. To elucidate variations in gut bacteria among WFT feeding on rose (Rosa rugosa) flowers (FF), kidney bean (Phaseolus vulgaris) pods (PF), and kidney bean leaves (LF), we collected adult guts and extracted DNA for 16S ribosomal RNA gene sequencing of microbial communities. The results revealed that the FF population had the highest number of annotations. Alpha diversity analysis revealed that the Chao and Ace indexes were the greatest in the PF population, indicating a higher abundance of gut bacteria. Moreover, the Simpson index was the highest in the FF population, indicating that gut bacterial diversity was the highest in the FF population. Comparison of species composition demonstrated that Proteobacteria dominated all 3 populations at the phylum level, with Actinobacteria being the subdominant phylum. At the genus level, Stenotrophomonas was the dominant bacteria in the PF and LF populations, whereas Rosenbergiella was dominant in the FF population. KEGG pathway annotation predicted that the gut bacteria of adult WFT were mainly involved in carbohydrate and amino acid metabolism. Our results revealed that the diversity and composition of WFT gut microbiota are influenced by diet, offering evidence for future studies on the ecological adaptability of WFT and the mechanisms underlying the interaction between gut microbiota and host.
Collapse
Affiliation(s)
- Dingyin Li
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
| | - Junrui Zhi
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
| | - Jiaqin Ye
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
| | - Wenbo Yue
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
| | - Yanqi Yang
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
| |
Collapse
|
4
|
Memon FU, Zhu Y, Cui Y, Feng X, Ahmad S, Zeng P, Nabi F, Hao D, Huang Z, Tettamanti G, Tian L. Gut microbial communities and transcriptional profiles of black soldier fly (Hermitia illucens) larvae fed on fermented sericulture waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 194:158-168. [PMID: 39805166 DOI: 10.1016/j.wasman.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Sericulture waste poses significant challenges to industrial and environmental safety. Black soldier fly larvae (BSFL) offer a promising solution for organic waste management by converting it into insect protein. This study aimed to develop a microbial fermented method for utilizing sericulture waste to feed BSFL and explore the underlying mechanisms. Our results showed that all fermented sericulture waste groups had positive effects on body weight, survival rate, substrate consumption rate, and substrate conversion rate. Metagenomic analysis revealed a notable increase in the abundances of commensal genera, including Sedimentibacter, Clostridium, Enterococcus, Bacteroides, and Bacillus, in the gut of BSFL fed on sericulture waste fermented with the most effective combination of microbial strains (B. subtilis, B. licheniformis, and E. faecalis). In contrast, BSFL reared on unfermented sericulture waste exhibited higher abundances of potentially pathogenic and harmful genera, including Providencia, Klebsiella, Escherichia, Brucella, and Enterobacter. Clusters of orthologous genes (COG) analysis indicated that altered microbial communities in the fermented group mainly participated in metabolic pathways, defense mechanism, and signal transduction mechanism. Transcriptome analysis further revealed that the upregulated genes were functionally associated with key metabolic pathways and immune mechanisms in the fermented group. These findings underscore the pivotal role of selected microbial fermentation in utilizing sericulture waste as BSFL feed, providing a sustainable solution for organic waste management.
Collapse
Affiliation(s)
- Fareed Uddin Memon
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Yanqing Zhu
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Ying Cui
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Xingbao Feng
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Sheraz Ahmad
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Peng Zeng
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Farhan Nabi
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Dengjian Hao
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Zhijun Huang
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese 21100, Italy; Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, 80055 Portici, Italy
| | - Ling Tian
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China.
| |
Collapse
|
5
|
Zhao Y, Li S, Zhang R, Zhang X, Shen Q, Zhang X, Tian T, Hou X. Characteristics of gut microbiota of premature infants in the early postnatal period and their relationship with intraventricular hemorrhage. BMC Microbiol 2024; 24:513. [PMID: 39623318 PMCID: PMC11610090 DOI: 10.1186/s12866-024-03675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Studies have shown correlations between gut microbiota and neurocognitive function, but little was known about the early postnatal gut microbiota and intraventricular hemorrhage (IVH). We aimed to explore the characteristics of gut microbiota in premature infants and their relationship with IVH, further exploring potential therapeutic targets. METHODS Premature infants delivered at Peking University First Hospital from February 2023 to August 2023 were recruited as a cohort. Feces samples were collected on postnatal days 1, 3, and 5. Premature infants were divided into normal, mild IVH, and severe IVH groups based on cranial ultrasound. 16S rRNA amplicon sequencing technology was used to determine the fecal microbiota, and the results were analyzed. RESULTS Thirty-eight premature infants were enrolled. There was a significant difference in alpha and beta diversity among the three groups. The relative abundance of E. coli and A. muciniphila was different among the three groups. Further random forest analysis indicated that S. lutetiensis, L. mirabilis, and N. macacae can effectively distinguish premature infants with IVH. Finally, the phylogenetic investigation of communities by reconstruction of unobserved states2 (PICRUSt2) functional gene analysis predicted significant differences in energy metabolism, carbohydrate metabolism, metabolism of cofactors and vitamins, and membrane transport between normal and severe IVH groups. CONCLUSIONS The gut microbiota in the early postnatal period of premature infants is closely associated with the IVH status. As age increases, the differences in gut microbiota of premature infants with different degrees of IVH continue to increase, and the trend of changes with severity of IVH becomes more and more obvious. E. coli, A. muciniphila, S. lutetiensis, L. mirabilis, N. macacae, G. haemolysans, and S. oralis can effectively distinguish between IVH infants and normal premature infants. The results indicate that gut microbiota is expected to provide effective therapeutic targets for the diagnosis and treatment of IVH.
Collapse
Affiliation(s)
- Yunlong Zhao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shan Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Rui Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xin Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Qiuyue Shen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xingyun Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Tian Tian
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xinlin Hou
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| |
Collapse
|
6
|
Duan S, Shao M, Zhang C, Zhao J, Zhu F, Luo N, Lei L, Zhong T, Hu T. Periodontal conditions and salivary microbiota are potential indicators to distinguish silicosis: an exploratory study. BMC Microbiol 2024; 24:438. [PMID: 39465426 PMCID: PMC11514746 DOI: 10.1186/s12866-024-03594-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Silicosis has always been a serious global occupational health problem. Oral microbiota plays important roles in the development of lung disease. However, few studies have investigated the relationship between periodontal conditions, oral bacteria and silicosis disease. METHOD A single-center and cross-sectional study was conducted in 2019 in Sichuan Province, China, including a small sample of silicosis patient group and healthy control group. Demographic data and periodontal examinations measured by clinical attachment loss (CAL), bleeding on probing (BOP) and periodontal pocket (PD) were collected from each participant. Phenotypic changes were detected by histopathological staining. Next-generation sequencing targeting 16S ribosomal RNA was targeted to decipher the salivary microbiome of the two groups. Random forest, Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression and multivariable logistic regression analysis were conducted to find potential indicators to distinguish silicosis. RESULTS In general, 29 male healthy controls and 24 male silicosis patients were included. The proportion of CAL ≥ 3 mm in silicosis group was greater than control group, while the proportion of BOP (+) and PD ≥ 4 mm was reduced in silicosis group. The α-smooth muscle actin and fibronectin expression increased in gingiva of patients. The composition of salivary microbiota exhibited significant differences between the two groups, with silicosis patients demonstrating a lower diversity of salivary microbiota. Genus of Aggregatibacter [odds ratio (OR) = 0.000, p = 0.003] and Catonella (OR = 0.000, p = 0.049) were identified as biomarkers to distinguish silicosis. CONCLUSIONS The silicosis group exhibited worse CAL, improved BOP and PD, which may be related to the gingival fibrosis found in this study. The composition of the oral microbiota underwent significant changes, accompanied by a decrease in diversity, in patients with silicosis. Our study indicates that respirable crystalline silica exposure affects oral health, and alterations of oral microbiota might be implicated in silicosis. We primarily identified Aggregatibacter and Catonella as the potential indicators to distinguish silicosis patients from healthy controls.
Collapse
Affiliation(s)
- Shaoying Duan
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Meiying Shao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chenchen Zhang
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jialiang Zhao
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fangzhi Zhu
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Nanyu Luo
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Lei
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Ting Zhong
- Department of Endodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510632, Guangdong, China.
| | - Tao Hu
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Wang Y, Wang L, Li D, Chen Z, Luo Y, Zhou J, Luo B, Yan R, Liu H, Wang L. Advancements in the Impact of Insect Gut Microbiota on Host Feeding Behaviors. Genes (Basel) 2024; 15:1320. [PMID: 39457444 PMCID: PMC11507998 DOI: 10.3390/genes15101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/06/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
With the application and development of high-throughput sequencing technology, the structure and function of insect gut microbiota have been analysed, which lays a foundation for further exploring the intricate relationships between gut microbiota and host feeding behaviour. The microbial community in the insect gut, as an important ecological factor, affects the host's food selection and nutritional metabolic processes through various mechanisms, which play a key role in population dynamics and ecosystems. The implications of these interactions are profound, affecting agricultural practices, biodiversity, and the broader environment, such as pollination and pest control. In-depth exploration of the molecular mechanism of the interaction between gut microbiota and hosts contributes to the grasp of insect biology and evolution and offers novel avenues for manipulating insect behaviour for practical applications in agriculture and environmental management. This paper focuses on the possible mechanisms of insect gut microbiota regulating host feeding behaviour. It inspires further research on the interaction between gut microbiota and insects affecting host behaviour.
Collapse
Affiliation(s)
- Yikang Wang
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Liang Wang
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Di Li
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Zhenfu Chen
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Yang Luo
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Juan Zhou
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Bo Luo
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Rong Yan
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Hui Liu
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Lingjun Wang
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Shanghai 200025, China
| |
Collapse
|
8
|
Zhang Y, Wang H, Zhang X, Feng Z, Liu J, Wang Y, Shang S, Xu J, Liu T, Liu L. Effects of salt stress on the rhizosphere soil microbial communities of Suaeda salsa (L.) Pall. in the Yellow River Delta. Ecol Evol 2024; 14:e70315. [PMID: 39318533 PMCID: PMC11420101 DOI: 10.1002/ece3.70315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Studies have shown that the microbiome of saline-tolerant plants plays a significant role in promoting salt stress in non-saline-tolerant plants, but the microorganisms are still unclear. In the present study, the microbial diversity changes in Suaeda salsa (L.) Pall. in the Yellow River Delta region were investigated. In the bacterial community, the dominant bacteria in the rhizosphere soil of the low-saline soil (YDL), moderate-saline soil (YDM), and high-saline soil (YDH) groups were Proteobacteria, Chloroflexi, Bacteroidota, and Actinobacteriota (at the phylum level), while Ascomycota and Basidiomycota were the dominant fungi in the fungal community. At the family level, with the increase of salinity, the relative abundance of Rhodobacteraceae (bacterial community), Thermoascaceae, and Phaffomycetaceae (fungal community) gradually increased; and to the best of our knowledge, there are no reports on the relationship between Thermoascaceae and Phaffomycetaceae families with salt stress. At the genus level, Salinimicrobium (bacterial community) was the dominant bacterium in the rhizosphere soil of the YDL, YDM, and YDH groups, while with the increase of salinity, the relative abundance of Byssochlamys and Wickerhamomyces (fungal community) gradually increased, and to the best of our knowledge there are no reports on the relationship between Byssochlamys and salt stress. Salinity mainly affected the bacterial community abundance, but it had little effect on the fungi community abundance. The bacterial community of the YDH group was dominated by bacteria of unknown origin (52.76%), while bacteria of unknown origin accounted for 26.46% and 20.78% of the bacterial communities in the YDM and YDL groups, respectively. The fungi community of the YDH group was dominated by YDL group fungi (relative abundance of 44.44%), followed by YDM group fungi (29.42%) and fungi of unknown origin (26.14%). These results provide a better understanding of the rhizosphere microbial diversity of saline-alkali-tolerant plants, laying a foundation for developing a saline-alkali-tolerant plant microbiome.
Collapse
Affiliation(s)
- Yumiao Zhang
- College of Biological and Environmental EngineeringShandong University of AeronauticsBinzhouChina
| | - Huan Wang
- College of Biological and Environmental EngineeringShandong University of AeronauticsBinzhouChina
| | - Xinhan Zhang
- College of Biological and Environmental EngineeringShandong University of AeronauticsBinzhouChina
| | - Ziqi Feng
- College of Biological and Environmental EngineeringShandong University of AeronauticsBinzhouChina
| | - Junhua Liu
- College of Biological and Environmental EngineeringShandong University of AeronauticsBinzhouChina
| | - Yan Wang
- College of Biological and Environmental EngineeringShandong University of AeronauticsBinzhouChina
| | - Shuai Shang
- College of Biological and Environmental EngineeringShandong University of AeronauticsBinzhouChina
| | - Jikun Xu
- College of Biological and Environmental EngineeringShandong University of AeronauticsBinzhouChina
| | - Tao Liu
- Binzhou Public Utilities Service CenterBinzhouChina
| | - Longxiang Liu
- College of Biological and Environmental EngineeringShandong University of AeronauticsBinzhouChina
- Shandong Qianfa Agricultural Technology Co., Ltd.BinzhouChina
| |
Collapse
|
9
|
Wang Y, Quan J, Cheng X, Li C, Yuan Z. Relationship of black soldier fly larvae (BSFL) gut microbiota and bioconversion efficiency with properties of substrates. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 180:106-114. [PMID: 38564911 DOI: 10.1016/j.wasman.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Treating food waste using black soldier fly larvae (BSFL) is widely regarded as a promising nature-based measure. This study explored the influence of food waste particle sizes on substrate properties and its subsequent effects on bioconversion efficiency and gut microbiota. The results indicated that particle sizes mainly ranging from 4 mm to 10 mm (T1) significantly increased the weight loss rate of food waste by 35 % and larval biomass by 38 % compared to those in T4 (particle sizes mostly less than 2 mm) and promoted the bioconversion of carbon and nitrogen into larvae and gases. Investigation of substrates properties indicated that the final pH value of T1 was 7.79 ± 0.10, with Anaerococcus as the predominant substrate microorganism (relative abundance: 57.4 %), while T4 exhibited a final pH value of 5.71 ± 0.24, with Lactobacillus as the dominant microorganism (relative abundance: 95.2 %). Correlation analysis between substrate chemical properties and microbial community structure unveiled a strong relationship between substrate pH and the relative abundance of Anaerococcus and Lactobacillus. Furthermore, beneficial microorganisms such as Lactobacillus and Enterococcus colonized the BSFL gut of T1, while pathogenic bacterium Morganella, detrimental to BSFL gut function, was enriched in T4 (relative abundance: 60.9 %). Nevertheless, PCA analysis indicated that alterations in the gut microbial community structure may not be attributed to the substrate microorganisms. This study establishes particle size as a crucial parameter for BSFL bioconversion and advances understanding of the relationship between gut microbiota and substrate microbiota.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jiawei Quan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiang Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Lishui Institute of Ecology and Environment, Nanjing University, Nanjing 212200, China
| | - Zengwei Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Lishui Institute of Ecology and Environment, Nanjing University, Nanjing 212200, China; Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
10
|
Li D, Wang L, Wang L, Gou Y, Luo B, Yan R, Liu H. The species and abundance of gut bacteria both positively impact Phortica okadai behavior. Parasit Vectors 2024; 17:217. [PMID: 38734668 PMCID: PMC11088764 DOI: 10.1186/s13071-024-06297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Gut bacteria, which serve as essential modulators, exert a significant impact on insect physiology and behavior and have substantial application potential in pest management. The dynamics of gut bacteria and their impact on Phortica okadai behavior remain unclear. METHODS In this study, the dynamics of gut bacteria at different developmental stages in P. okadai were analyzed using 16S ribosomal RNA (rRNA) gene sequencing, and the species and abundance of gut bacteria that affect host behavior were examined via behavioral experiments. RESULTS A total of 19 phyla, 29 classes, 74 orders, 101 species, and 169 genera were identified. The results of the behavioral experiments indicated that the species Lactiplantibacillus argentoratensis, Acetobacter tropicalis, Leuconostoc citreum, and Levilactobacillus brevis effectively influenced the feeding preference of P. okadai, and the single-bacterium-seeded P. okadai exhibited feeding preferences distinct from those of the germ-free (GF) and wild-type P. okadai. CONCLUSIONS The species and relative abundance of gut bacteria together positively impact P. okadai behavior. Lactiplantibacillus argentoratensis, as the most attractive bacteria to P. okadai, presents opportunities for novel pest control strategies targeting this vector and agricultural pest.
Collapse
Affiliation(s)
- Di Li
- Department of Parasitology, Zunyi Medical University, Zunyi, 563000, China
| | - Lingjun Wang
- Department of Parasitology, Zunyi Medical University, Zunyi, 563000, China
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China
| | - Liang Wang
- Department of Parasitology, Zunyi Medical University, Zunyi, 563000, China
| | - Yanting Gou
- Department of Parasitology, Zunyi Medical University, Zunyi, 563000, China
| | - Bo Luo
- Department of Parasitology, Zunyi Medical University, Zunyi, 563000, China
| | - Rong Yan
- Department of Parasitology, Zunyi Medical University, Zunyi, 563000, China
| | - Hui Liu
- Department of Parasitology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
11
|
Shamjana U, Vasu DA, Hembrom PS, Nayak K, Grace T. The role of insect gut microbiota in host fitness, detoxification and nutrient supplementation. Antonie Van Leeuwenhoek 2024; 117:71. [PMID: 38668783 DOI: 10.1007/s10482-024-01970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Insects are incredibly diverse, ubiquitous and have successfully flourished out of the dynamic and often unpredictable nature of evolutionary processes. The resident microbiome has accompanied the physical and biological adaptations that enable their continued survival and proliferation in a wide array of environments. The host insect and microbiome's bidirectional relationship exhibits their capability to influence each other's physiology, behavior and characteristics. Insects are reported to rely directly on the microbial community to break down complex food, adapt to nutrient-deficit environments, protect themselves from natural adversaries and control the expression of social behavior. High-throughput metagenomic approaches have enhanced the potential for determining the abundance, composition, diversity and functional activities of microbial fauna associated with insect hosts, enabling in-depth investigation into insect-microbe interactions. We undertook a review of some of the major advances in the field of metagenomics, focusing on insect-microbe interaction, diversity and composition of resident microbiota, the functional capability of endosymbionts and discussions on different symbiotic relationships. The review aims to be a valuable resource on insect gut symbiotic microbiota by providing a comprehensive understanding of how insect gut symbionts systematically perform a range of functions, viz., insecticide degradation, nutritional support and immune fitness. A thorough understanding of manipulating specific gut symbionts may aid in developing advanced insect-associated research to attain health and design strategies for pest management.
Collapse
Affiliation(s)
- U Shamjana
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Deepa Azhchath Vasu
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Preety Sweta Hembrom
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Karunakar Nayak
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Tony Grace
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
12
|
Shah S, Ilyas M, Bian S, Yang FL. Discussion: Harnessing microbiome-mediated adaptations in insect pollinators to mitigate climate change impact on crop pollination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170145. [PMID: 38242478 DOI: 10.1016/j.scitotenv.2024.170145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Insect pollinators, vital for agriculture and biodiversity, face escalating threats from climate change. We argue and explore the pivotal role of the microbiomes in shaping adaptations of insect pollinator resilience amid climate-induced challenges (climate change and habitat alteration). Examining diverse taxonomic groups, we unravel the interplay between insect physiology, microbiomes, and adaptive mechanisms. Climate-driven alterations in microbiomes impact insect health, behavior, and plant interactions, posing significant effects on agricultural ecosystems. We propose harnessing microbiome-mediated adaptations as a strategic approach to mitigate climate change impacts on crop pollination. Insights into insect-pollinator microbiomes offer transformative avenues for sustainable agriculture, including probiotic interventions (use of EM PROBIOTIC) and microbiome engineering (such as engineering gut bacteria) to induce immune responses and enhanced pollination services. Integrating microbiome insights into conservation practices elucidates strategies for preserving pollinator habitats, optimizing agricultural landscapes, and developing policies to safeguard pollinator health in the face of environmental changes. Finally, we stress interdisciplinary collaboration and the urgency of understanding pollinator microbiome dynamics under climate change in future research.
Collapse
Affiliation(s)
- Sakhawat Shah
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| | - Muhammad Ilyas
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666316 Menglun, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sufen Bian
- Department of Gardening and Horticulture, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng-Lian Yang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
13
|
Zhou H, Jia S, Gao Y, Li X, Lin Y, Yang F, Ni K. Characterization of phyllosphere endophytic lactic acid bacteria reveals a potential novel route to enhance silage fermentation quality. Commun Biol 2024; 7:117. [PMID: 38253824 PMCID: PMC10803313 DOI: 10.1038/s42003-024-05816-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The naturally attached phyllosphere microbiota play a crucial role in plant-derived fermentation, but the structure and function of phyllosphere endophytes remain largely unidentified. Here, we reveal the diversity, specificity, and functionality of phyllosphere endophytes in alfalfa (Medicago sativa L.) through combining typical microbial culture, high-throughput sequencing, and genomic comparative analysis. In comparison to phyllosphere bacteria (PB), the fermentation of alfalfa solely with endophytes (EN) enhances the fermentation characteristics, primarily due to the dominance of specific lactic acid bacteria (LAB) such as Lactiplantibacillus, Weissella, and Pediococcus. The inoculant with selected endophytic LAB strains also enhances the fermentation quality compared to epiphytic LAB treatment. Especially, one key endophytic LAB named Pediococcus pentosaceus EN5 shows enrichment of genes related to the mannose phosphotransferase system (Man-PTS) and carbohydrate-metabolizing enzymes and higher utilization of carbohydrates. Representing phyllosphere, endophytic LAB shows great potential of promoting ensiling and provides a novel direction for developing microbial inoculant.
Collapse
Affiliation(s)
- Hongzhang Zhou
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yu Gao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
14
|
Le Ho H, Tran-Van L, Quyen PTQ, Kim SG, Jiang LM, Chew KW, Khoo KS, Chan SS, Tran TNT, Nguyen TDP. Bioinformatic Approach to Investigate Larvae Gut Microbiota Cellulosimicrobium protaetiae via Whole-Genome Analysis. Mol Biotechnol 2024:10.1007/s12033-023-00984-9. [PMID: 38231315 DOI: 10.1007/s12033-023-00984-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/05/2023] [Indexed: 01/18/2024]
Abstract
The insect larvae Protaetia brevitarsis seulensis have recently been researched as a nutritious food source and concentrated on their environmental impacts. Therefore, their gut microbiota has been studied to elucidate their effects and roles on the environment. Of the abundance of bacterial genus identified based on the 16S rRNA genes from isolates of the gut of insect larva Protaetia brevitarsis seulensis, six of the prominent genus were identified as Bacillus (40.2%), Cellulosimicrobium (33.5%), Microbacterium (2.8%), Streptomyces (3%), Krasilnikoviella (17.5%), and Isoptericola (3%) and their similarity of 16S rRNA blast changed from 99 to 100%. Cellulosimicrobium protaetiae BI34T showed strong denitrification and cellulose degradation activity. The newly complete genome sequence of BI34T and the genomes of five species was published in the genus Cellulosimicrobium with emphasis on the denitrification and secondary metabolite genes. In order to elucidate the relationship between the strain BI34T and the host insect larva, the whole-genome sequence was analyzed and compared with the genomes of five strains in the same genus, Cellulosimicrobium, loaded from GenBank. Our results revealed the composition of the gut microbiota of the insect larvae and analyzed the genomic data for the new strain to predict its characteristics and to understand the nitrogen metabolism pathway.
Collapse
Affiliation(s)
- Han Le Ho
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang St., Da Nang, 550 000, Vietnam
| | - Luan Tran-Van
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang St., Da Nang, 550 000, Vietnam
| | - Phan Thi Quy Quyen
- The University of Danang, University of Technology and Education, 48 Cao Thang St., Danang, 550 000, Vietnam
| | - Song-Gun Kim
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, 181 Ipsingil, Jeongeup, 56212, Jeonbuk, Korea
- University of Science and Technology (UST), 217 Gajeong-ro, Yuseong, Daejeon, 34113, Korea
| | - Ling Min Jiang
- University of Science and Technology (UST), 217 Gajeong-ro, Yuseong, Daejeon, 34113, Korea
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Sook Sin Chan
- Institut Sains Biologi, Fakulti Sains, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Thi Ngoc Thu Tran
- The University of Danang, University of Technology and Education, 48 Cao Thang St., Danang, 550 000, Vietnam
| | - Thi Dong Phuong Nguyen
- The University of Danang, University of Technology and Education, 48 Cao Thang St., Danang, 550 000, Vietnam.
| |
Collapse
|