1
|
Harding KJ, Nagarkar M, Wang M, Ramsing K, Anidjar N, Giddings S, Brahamsha B, Palenik B. Temporal and Spatial Dynamics of Synechococcus Clade II and Other Microbes in the Eutrophic Subtropical San Diego Bay. Environ Microbiol 2025; 27:e70043. [PMID: 39900485 PMCID: PMC11790421 DOI: 10.1111/1462-2920.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 10/25/2024] [Indexed: 02/05/2025]
Abstract
The diversity of the marine cyanobacterium Synechococcus can be broadly separated into clades, with clade II typically present in warm oligotrophic water, and clades I and IV found in cooler coastal water. We found amplicon sequence variants (ASVs) belonging to clade II in the nutrient-replete waters of San Diego Bay (SDB). Using the 16S rRNA gene, 18S rRNA gene and internal transcribed spacer region sequencing, we analysed multiple locations in SDB monthly for over a year, with additional samples dating back to 2015. Synechococcus community composition differed from the nearby coast into SDB in terms of dominant clade and ASVs. Specific clade II ASVs became relatively more abundant towards the back of the bay and showed seasonality, with higher relative abundance in the warm months. Select ASVs group phylogenetically and show similar seasonal and spatial distribution patterns, indicating these ASVs have adapted to SDB. Isolates matching clade II ASVs from SDB show pigment composition that is better adapted to the green light available in SDB, further supporting our findings. Other microbial taxa also show SDB enrichment, providing evidence that SDB is a chemostat-like environment where circulation, temperature, light and other environmental conditions create a zone for microbial evolution and diversification.
Collapse
Affiliation(s)
- Katie J. Harding
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Maitreyi Nagarkar
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Maggie Wang
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Kailey Ramsing
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Niv Anidjar
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Sarah Giddings
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Bianca Brahamsha
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Brian Palenik
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| |
Collapse
|
2
|
Dufour L, Garczarek L, Gouriou B, Clairet J, Ratin M, Partensky F. Differential acclimation kinetics of the two forms of type IV chromatic acclimaters occurring in marine Synechococcus cyanobacteria. Front Microbiol 2024; 15:1349322. [PMID: 38435691 PMCID: PMC10904595 DOI: 10.3389/fmicb.2024.1349322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Synechococcus, the second most abundant marine phytoplanktonic organism, displays the widest variety of pigment content of all marine oxyphototrophs, explaining its ability to colonize all spectral niches occurring in the upper lit layer of oceans. Seven Synechococcus pigment types (PTs) have been described so far based on the phycobiliprotein composition and chromophorylation of their light-harvesting complexes, called phycobilisomes. The most elaborate and abundant PT (3d) in the open ocean consists of cells capable of type IV chromatic acclimation (CA4), i.e., to reversibly modify the ratio of the blue light-absorbing phycourobilin (PUB) to the green light-absorbing phycoerythrobilin (PEB) in phycobilisome rods to match the ambient light color. Two genetically distinct types of chromatic acclimaters, so-called PTs 3dA and 3dB, occur at similar global abundance in the ocean, but the precise physiological differences between these two types and the reasons for their complementary niche partitioning in the field remain obscure. Here, photoacclimation experiments in different mixes of blue and green light of representatives of these two PTs demonstrated that they differ by the ratio of blue-to-green light required to trigger the CA4 process. Furthermore, shift experiments between 100% blue and 100% green light, and vice-versa, revealed significant discrepancies between the acclimation pace of the two types of chromatic acclimaters. This study provides novel insights into the finely tuned adaptation mechanisms used by Synechococcus cells to colonize the whole underwater light field.
Collapse
Affiliation(s)
| | | | | | | | | | - Frédéric Partensky
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| |
Collapse
|
3
|
Aguilera A, Alegria Zufia J, Bas Conn L, Gurlit L, Śliwińska-Wilczewska S, Budzałek G, Lundin D, Pinhassi J, Legrand C, Farnelid H. Ecophysiological analysis reveals distinct environmental preferences in closely related Baltic Sea picocyanobacteria. Environ Microbiol 2023; 25:1674-1695. [PMID: 37655642 DOI: 10.1111/1462-2920.16384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/31/2023] [Indexed: 09/02/2023]
Abstract
Cluster 5 picocyanobacteria significantly contribute to primary productivity in aquatic ecosystems. Estuarine populations are highly diverse and consist of many co-occurring strains, but their physiology remains largely understudied. In this study, we characterized 17 novel estuarine picocyanobacterial strains. Phylogenetic analysis of the 16S rRNA and pigment genes (cpcB and cpeBA) uncovered multiple estuarine and freshwater-related clusters and pigment types. Assays with five representative strains (three phycocyanin rich and two phycoerythrin rich) under temperature (10-30°C), light (10-190 μmol photons m-2 s-1 ), and salinity (2-14 PSU) gradients revealed distinct growth optima and tolerance, indicating that genetic variability was accompanied by physiological diversity. Adaptability to environmental conditions was associated with differential pigment content and photosynthetic performance. Amplicon sequence variants at a coastal and an offshore station linked population dynamics with phylogenetic clusters, supporting that strains isolated in this study represent key ecotypes within the Baltic Sea picocyanobacterial community. The functional diversity found within strains with the same pigment type suggests that understanding estuarine picocyanobacterial ecology requires analysis beyond the phycocyanin and phycoerythrin divide. This new knowledge of the environmental preferences in estuarine picocyanobacteria is important for understanding and evaluating productivity in current and future ecosystems.
Collapse
Affiliation(s)
- Anabella Aguilera
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Javier Alegria Zufia
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Laura Bas Conn
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Leandra Gurlit
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Sylwia Śliwińska-Wilczewska
- Mount Allison University, Sackville, New Brunswick, Canada
- Laboratory of Marine Plant Ecophysiology, Institute of Oceanography, University of Gdansk, Gdynia, Poland
| | - Gracjana Budzałek
- Laboratory of Marine Plant Ecophysiology, Institute of Oceanography, University of Gdansk, Gdynia, Poland
| | - Daniel Lundin
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Jarone Pinhassi
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Catherine Legrand
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| | - Hanna Farnelid
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
4
|
Alonso-Sáez L, Palacio AS, Cabello AM, Robaina-Estévez S, González JM, Garczarek L, López-Urrutia Á. Transcriptional Mechanisms of Thermal Acclimation in Prochlorococcus. mBio 2023:e0342522. [PMID: 37052490 DOI: 10.1128/mbio.03425-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Low temperature limits the growth and the distribution of the key oceanic primary producer Prochlorococcus, which does not proliferate above a latitude of ca. 40°. Yet, the molecular basis of thermal acclimation in this cyanobacterium remains unexplored. We analyzed the transcriptional response of the Prochlorococcus marinus strain MIT9301 in long-term acclimations and in natural Prochlorococcus populations along a temperature range enabling its growth (17 to 30°C). MIT9301 upregulated mechanisms of the global stress response at the temperature minimum (17°C) but maintained the expression levels of genes involved in essential metabolic pathways (e.g., ATP synthesis and carbon fixation) along the whole thermal niche. Notably, the declining growth of MIT9301 from the optimum to the minimum temperature was coincident with a transcriptional suppression of the photosynthetic apparatus and a dampening of its circadian expression patterns, indicating a loss in their regulatory capacity under cold conditions. Under warm conditions, the cellular transcript inventory of MIT9301 was strongly streamlined, which may also induce regulatory imbalances due to stochasticity in gene expression. The daytime transcriptional suppression of photosynthetic genes at low temperature was also observed in metatranscriptomic reads mapping to MIT9301 across the global ocean, implying that this molecular mechanism may be associated with the restricted distribution of Prochlorococcus to temperate zones. IMPORTANCE Prochlorococcus is a major marine primary producer with a global impact on atmospheric CO2 fixation. This cyanobacterium is widely distributed across the temperate ocean, but virtually absent at latitudes above 40° for yet unknown reasons. Temperature has been suggested as a major limiting factor, but the exact mechanisms behind Prochlorococcus thermal growth restriction remain unexplored. This study brings us closer to understanding how Prochlorococcus functions under challenging temperature conditions, by focusing on its transcriptional response after long-term acclimation from its optimum to its thermal thresholds. Our results show that the drop in Prochlorococcus growth rate under cold conditions was paralleled by a transcriptional suppression of the photosynthetic machinery during daytime and a loss in the organism's regulatory capacity to maintain circadian expression patterns. Notably, warm temperature induced a marked shrinkage of the organism's cellular transcript inventory, which may also induce regulatory imbalances in the future functioning of this cyanobacterium.
Collapse
Affiliation(s)
- Laura Alonso-Sáez
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Antonio S Palacio
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Ana M Cabello
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | | | - José M González
- Department of Microbiology, University of La Laguna, La Laguna, Spain
| | - Laurence Garczarek
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Ángel López-Urrutia
- Centro Oceanográfico de Gijón, Instituto Español de Oceanografía, IEO-CSIC, Gijón, Asturias, Spain
| |
Collapse
|
5
|
Genomic and Transcriptomic Insights into Salinity Tolerance-Based Niche Differentiation of Synechococcus Clades in Estuarine and Coastal Waters. mSystems 2023; 8:e0110622. [PMID: 36622156 PMCID: PMC9948718 DOI: 10.1128/msystems.01106-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cluster 5 Synechococcus is one of the most important primary producers on earth. However, ecotypes of this genus exhibit complex geographical distributions, and the genetic basis of niche partitioning is still not fully understood. Here, we report distinct distributions of subcluster 5.1 (SC5.1) and subcluster 5.2 (SC5.2) Synechococcus in estuarine waters, and we reveal that salinity is the main factor determining their distribution. Clade III (belonging to SC5.1) and CB4 (belonging to SC5.2) are dominant clades in the study region, with different ecological distributions. We further conducted physiological, genomic, and transcriptomic studies of Synechococcus strains YX04-3 and HK05, which are affiliated with clade III and CB4, respectively. Laboratory tests showed that HK05 could grow at low salinity (13 ppt), whereas the growth of YX04-3 was suppressed when salinity decreased to 13 ppt. Genomic and transcriptomic analysis suggested that euryhaline clade CB4 is capable of dealing with a sudden drop of salinity by releasing compatible solutes through mechanosensitive channels that are coded by the mscL gene, decreasing biosynthesis of organic osmolytes, and increasing expression of heat shock proteins and high light-inducible proteins to protect photosystem. Furthermore, CB4 strain HK05 exhibited a higher growth rate when growing at low salinity than at high salinity. This is likely achieved by reducing its biosynthesis of organic osmolyte activity and increasing its photosynthetic activity at low salinity, which allowed it to enhance the assimilation of inorganic carbon and nitrogen. Together, these results provide new insights regarding the ecological distribution of SC5.2 and SC5.1 ecotypes and their underlying molecular mechanisms. IMPORTANCE Synechococcus is a group of unicellular Cyanobacteria that are widely distributed in global aquatic ecosystems. Salinity is a factor that affects the distribution of microorganisms in estuarine and coastal environments. In this study, we studied the distribution pattern of Synechococcus community along the salinity gradient in a subtropical estuary. By using omic methods, we unveiled genetic traits that determine the niche partitioning of euryhaline and strictly marine Synechococcus. We also explored the strategies employed by euryhaline Synechococcus to cope with a sudden drop of salinity, and revealed possible mechanisms for the higher growth rate of euryhaline Synechococcus in low salinity conditions. This study provides new insight into the genetic basis of niche partitioning of Synechococcus clades.
Collapse
|
6
|
Abstract
Marine Synechococcus comprise a numerically and ecologically prominent phytoplankton group, playing a major role in both carbon cycling and trophic networks in all oceanic regions except in the polar oceans. Despite their high abundance in coastal areas, our knowledge of Synechococcus communities in these environments is based on only a few local studies. Here, we use the global metagenome data set of the Ocean Sampling Day (June 21st, 2014) to get a snapshot of the taxonomic composition of coastal Synechococcus communities worldwide, by recruitment on a reference database of 141 picocyanobacterial genomes, representative of the whole Prochlorococcus, Synechococcus, and Cyanobium diversity. This allowed us to unravel drastic community shifts over small to medium scale gradients of environmental factors, in particular along European coasts. The combined analysis of the phylogeography of natural populations and the thermophysiological characterization of eight strains, representative of the four major Synechococcus lineages (clades I to IV), also brought novel insights about the differential niche partitioning of clades I and IV, which most often co-dominate the Synechococcus community in cold and temperate coastal areas. Altogether, this study reveals several important characteristics and specificities of the coastal communities of Synechococcus worldwide. IMPORTANCE Synechococcus is the second most abundant phytoplanktonic organism on Earth, and its wide genetic diversity allowed it to colonize all the oceans except for polar waters, with different clades colonizing distinct oceanic niches. In recent years, the use of global metagenomics data sets has greatly improved our knowledge of "who is where" by describing the distribution of Synechococcus clades or ecotypes in the open ocean. However, little is known about the global distribution of Synechococcus ecotypes in coastal areas, where Synechococcus is often the dominant phytoplanktonic organism. Here, we leverage the global Ocean Sampling Day metagenomics data set to describe Synechococcus community composition in coastal areas worldwide, revealing striking community shifts, in particular along the coasts of Europe. As temperature appears as an important driver of the community composition, we also characterize the thermal preferenda of 8 Synechococcus strains, bringing new insights into the adaptation to temperature of the dominant Synechococcus clades.
Collapse
|