1
|
Malmsheimer S, Grin I, Bohn E, Franz-Wachtel M, Macek B, Sahr T, Smollich F, Chetrit D, Meir A, Roy C, Buchrieser C, Wagner S. The T4bSS of Legionella features a two-step secretion pathway with an inner membrane intermediate for secretion of transmembrane effectors. PLoS Pathog 2024; 20:e1012118. [PMID: 39546547 PMCID: PMC11602083 DOI: 10.1371/journal.ppat.1012118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 11/27/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
To promote intracellular survival and infection, Legionella spp. translocate hundreds of effector proteins into eukaryotic host cells using a type IV b protein secretion system (T4bSS). T4bSS are well known to translocate soluble as well as transmembrane domain-containing effector proteins (TMD-effectors) but the mechanisms of secretion are still poorly understood. Herein we investigated the secretion of hydrophobic TMD-effectors, of which about 80 were previously reported to be encoded by L. pneumophila. A proteomic analysis of fractionated membranes revealed that TMD-effectors are targeted to and inserted into the bacterial inner membranes of L. pneumophila independent of the presence of a functional T4bSS. While the T4bSS chaperones IcmS and IcmW were critical for secretion of all tested TMD-effectors, they did not influence inner membrane targeting of these proteins. As for soluble effector proteins, translocation of all investigated TMD-effectors depended on a C-terminal secretion signal. A deeper analysis of the TMD-effector SidF showed that this signal needed to be presented towards the cytoplasmic side of the inner membrane and that a small periplasmic loop was required for efficient translocation. We propose that strongly hydrophobic TMD-effectors are secreted in a two-step secretion process: Initially, an inner membrane intermediate is formed, that is extracted towards the cytoplasmic side, possibly by the help of the type IV coupling protein complex and subsequently secreted into eukaryotic host cells by the T4bSS core complex. Overall, our study highlights the amazing versatility of T4bSS to secrete soluble and TMD-effectors from different subcellular locations of the bacterial cell.
Collapse
Affiliation(s)
- Silke Malmsheimer
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Section of Cellular and Molecular Microbiology, Tübingen, Germany
| | - Iwan Grin
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Section of Cellular and Molecular Microbiology, Tübingen, Germany
| | - Erwin Bohn
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Institute of Medical Microbiology and Hygiene, Tübingen, Germany
| | | | - Boris Macek
- University of Tübingen, Proteome Center Tübingen, Tübingen, Germany
| | - Tobias Sahr
- Institute Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, Paris, France
| | - Fabian Smollich
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Section of Cellular and Molecular Microbiology, Tübingen, Germany
| | - David Chetrit
- Yale University, Department of Microbial Pathogenesis, New Haven, Connecticut, United States of America
| | - Amit Meir
- Yale University, Department of Microbial Pathogenesis, New Haven, Connecticut, United States of America
- Birkbeck Institute of Structural and Molecular Biology, Birkbeck and UCL, London, United Kingdom
| | - Craig Roy
- Yale University, Department of Microbial Pathogenesis, New Haven, Connecticut, United States of America
| | - Carmen Buchrieser
- Institute Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, Paris, France
| | - Samuel Wagner
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Section of Cellular and Molecular Microbiology, Tübingen, Germany
- Excellence Cluster "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany
- German Center for Infection Research (DZIF), partner-site Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Siewert LK, Fromm K, Dehio C, Pinschewer DD. Cutting Edge: Redundant Roles for MHC Class II-, CD1d-, and MR1-restricted T Cells in Clearing Bartonella Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:553-558. [PMID: 38984869 PMCID: PMC11335324 DOI: 10.4049/jimmunol.2400045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
The importance of unconventional T cells for mucosal immunity is firmly established but for systemic bacterial infection remains less well defined. In this study, we explored the role of various T cell subsets in murine Bartonella infection, which establishes persistent bacteremia unless controlled by antibacterial Abs. We found that αβ T cells are essential for Ab production against and clearance of B. taylorii, whereas MHC class I (MHC-I)- or MHC class II (MHC-II)-deficient mice eliminated B. taylorii infection with normal kinetics. Similarly, animals lacking either CD1d or MR1 suppressed bacteremia with normal kinetics. Interestingly, mice with a combined deficiency of either MHC-II and CD1d or MHC-II and MR1 failed to clear the infection, indicating that the combination of CD1d- and MR1-restricted T cells can compensate for the lack of MHC-II in this model. Our data document a previously underappreciated contribution of unconventional T cells to the control of systemic bacterial infection, supposedly as helper cells for antibacterial Ab production.
Collapse
Affiliation(s)
- Lena K. Siewert
- Biozentrum, University of Basel, Basel, Switzerland
- Division of Experimental Virology, Department Biomedicine–Haus Petersplatz, University of Basel, Basel, Switzerland
| | - Katja Fromm
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Daniel D. Pinschewer
- Division of Experimental Virology, Department Biomedicine–Haus Petersplatz, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Fromm K, Ortelli M, Boegli A, Dehio C. Translocation of YopJ family effector proteins through the VirB/VirD4 T4SS of Bartonella. Proc Natl Acad Sci U S A 2024; 121:e2310348121. [PMID: 38709922 PMCID: PMC11098119 DOI: 10.1073/pnas.2310348121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
The evolutionary conserved YopJ family comprises numerous type-III-secretion system (T3SS) effectors of diverse mammalian and plant pathogens that acetylate host proteins to dampen immune responses. Acetylation is mediated by a central acetyltransferase domain that is flanked by conserved regulatory sequences, while a nonconserved N-terminal extension encodes the T3SS-specific translocation signal. Bartonella spp. are facultative-intracellular pathogens causing intraerythrocytic bacteremia in their mammalian reservoirs and diverse disease manifestations in incidentally infected humans. Bartonellae do not encode a T3SS, but most species possess a type-IV-secretion system (T4SS) to translocate Bartonella effector proteins (Beps) into host cells. Here we report that the YopJ homologs present in Bartonellae species represent genuine T4SS effectors. Like YopJ family T3SS effectors of mammalian pathogens, the "Bartonella YopJ-like effector A" (ByeA) of Bartonella taylorii also targets MAP kinase signaling to dampen proinflammatory responses, however, translocation depends on a functional T4SS. A split NanoLuc luciferase-based translocation assay identified sequences required for T4SS-dependent translocation in conserved regulatory regions at the C-terminus and proximal to the N-terminus of ByeA. The T3SS effectors YopP from Yersinia enterocolitica and AvrA from Salmonella Typhimurium were also translocated via the Bartonella T4SS, while ByeA was not translocated via the Yersinia T3SS. Our data suggest that YopJ family T3SS effectors may have evolved from an ancestral T4SS effector, such as ByeA of Bartonella. In this evolutionary scenario, the signal for T4SS-dependent translocation encoded by N- and C-terminal sequences remained functional in the derived T3SS effectors due to the essential role these sequences coincidentally play in regulating acetyltransferase activity.
Collapse
Affiliation(s)
- Katja Fromm
- Biozentrum, University of Basel, Basel4056, Switzerland
| | | | | | | |
Collapse
|
4
|
Malmsheimer S, Grin I, Bohn E, Franz-Wachtel M, Macek B, Sahr T, Smollich F, Chetrit D, Meir A, Roy C, Buchrieser C, Wagner S. The T4bSS of Legionella features a two-step secretion pathway with an inner membrane intermediate for secretion of transmembrane effectors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.584949. [PMID: 38559167 PMCID: PMC10980071 DOI: 10.1101/2024.03.14.584949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
To promote intracellular survival and infection, Legionella spp. translocate hundreds of effector proteins into eukaryotic host cells using a type IV b protein secretion system (T4bSS). T4bSS are well known to translocate soluble as well as transmembrane domain-containing effector proteins (TMD-effectors) but the mechanisms of secretion are still poorly understood. Herein we investigated the secretion of hydrophobic TMD-effectors, of which about 80 were previously reported to be encoded by L. pneumophila. A proteomic analysis of fractionated membranes revealed that TMD-effectors are targeted to and inserted into the bacterial inner membranes of L. pneumophila independent of the presence of a functional T4bSS. While the T4bSS chaperones IcmS and IcmW were critical for secretion of all tested TMD-effectors, they did not influence inner membrane targeting of these proteins. As for soluble effector proteins, translocation of TMD-effectors into host cells depended on a C-terminal secretion signal and this signal needed to be presented towards the cytoplasmic side of the inner membrane. A different secretion behavior of TMD- and soluble effectors and the need for small periplasmic loops within TMD-effectors provided strong evidence that TMD-effectors are secreted in a two-step secretion process: Initially, an inner membrane intermediate is formed, that is extracted towards the cytoplasmic side, possibly by the help of the type IV coupling protein complex and subsequently secreted into eukaryotic host cells by the T4bSS core complex. Overall, our study highlights the amazing versatility of T4bSS to secrete soluble and TMD-effectors from different subcellular locations of the bacterial cell.
Collapse
Affiliation(s)
- Silke Malmsheimer
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Section of Cellular and Molecular Microbiology, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
- Current address: Institut de Recherche en Infectiologie de Montpellier, Equipe Kremer, UMR 9004 - CNRS / UM, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Iwan Grin
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Section of Cellular and Molecular Microbiology, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Erwin Bohn
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Institute of Medical Microbiology and Hygiene, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Mirita Franz-Wachtel
- University of Tübingen, Proteome Center Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Boris Macek
- University of Tübingen, Proteome Center Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Tobias Sahr
- Institute Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, 75015 Paris, France
| | - Fabian Smollich
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Section of Cellular and Molecular Microbiology, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - David Chetrit
- Yale University, Department of Microbial Pathogenesis, 295 Congress Avenue, New Haven, CT 06536-0812, USA
| | - Amit Meir
- Yale University, Department of Microbial Pathogenesis, 295 Congress Avenue, New Haven, CT 06536-0812, USA
- Birkbeck Institute of Structural and Molecular Biology, Birkbeck and UCL, Malet Street, London WC1E 7HX, UK
- Current address: University of Glasgow, MRC Centre for Virus Research, School of Infection and Immunity, Glasgow, UK
| | - Craig Roy
- Yale University, Department of Microbial Pathogenesis, 295 Congress Avenue, New Haven, CT 06536-0812, USA
| | - Carmen Buchrieser
- Institute Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, 75015 Paris, France
| | - Samuel Wagner
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Section of Cellular and Molecular Microbiology, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
- Excellence Cluster "Controlling Microbes to Fight Infections" (CMFI), Elfriede-Aulhorn-Str. 6, 72076 Tébingen, Germany
- German Center for Infection Research (DZIF), partner-site Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| |
Collapse
|