1
|
Md-Zain BM, Wan-Mustafa WAS, Tingga RCT, Gani M, Mohd-Ridwan AR. High-Throughput DNA Metabarcoding for the Gut Microbiome Assessment of Captive White-Handed Gibbon and Siamang. J Med Primatol 2025; 54:e70009. [PMID: 40012216 DOI: 10.1111/jmp.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/18/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND The gut microbiota plays a vital role in primates' overall health and well-being, including small apes (Hylobatidae). The symbiotic relationships between bacteria and the gut aid food digestion, maintain host health, and help them adapt to their environment, including captive conditions. Despite being listed as endangered in the International Union for Conservation of Nature (IUCN) red list category, molecular studies on the small ape's gut microbiome are limited compared to other primates. This study aimed to characterize the gut microbiota of captive small apes at Zoo Taiping and Night Safari, Peninsular Malaysia, by evaluating their microbial communities. METHODS Seven fecal samples from Hylobatidae (white-handed gibbon and siamang) were collected, and the bacteria therein were successfully isolated and subjected to high-throughput sequencing of the 16S rRNA gene. RESULTS The acquired amplicon sequence variants (ASVs) were successfully classified into 17 phyla, 82 families, 164 genera, and 43 species of microbes. Each small ape exhibited a unique gut microbiota profile. The phyla Bacteroidota and Firmicutes were dominant in each individual. Environmental conditions and host genetics are among the factors that influence the small ape's gut microbiome composition. CONCLUSIONS These findings provide valuable insights into the gut microbiota composition of small apes at Zoo Taiping and Night Safari, thus contributing to the health management and welfare efforts of small apes in captivity.
Collapse
Affiliation(s)
- Badrul Munir Md-Zain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan Ainin Sofiya Wan-Mustafa
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Roberta Chaya Tawie Tingga
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Millawati Gani
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- National Wildlife Forensic Laboratory (NWFL), Department of Wildlife and National Parks (PERHILITAN) Peninsular Malaysia, Kuala Lumpur, Malaysia
| | - Abd Rahman Mohd-Ridwan
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
2
|
Tingga RCT, Mohd-Ridwan AR, Denel A, Md-Zain BM. Profiling the Gut Microbiome of Hylobatidae and Cercopithecinae: Insights Into the Health of Primates in Captivity. J Med Primatol 2025; 54:e70008. [PMID: 39994494 DOI: 10.1111/jmp.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/18/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND A healthy gut microbiome is essential for digestion in primates, for developing the gut immune system, and for defense against pathogen invasion. Next-generation sequencing allows for determining the microbiome composition and enables the continuous monitoring of primate health. METHODS To comprehensively analyze the gut microbiome diversity of three endangered primate species at Matang Wildlife Centre-Hylobates abbotti, Macaca fascicularis, and Macaca nemestrina, using high-throughput sequencing of the 16S rRNA gene. RESULTS A total of 18 phyla, 84 families, 188 genera, and 46 species were successfully classified. H. abbotti exhibited the highest microbial diversity with a distinct microbiome profile from the Macaca species. The presence of Treponema (nonpallidum), Bifidobacterium, and Faecalibacterium prausnitzii is critical for gut health, promoting digestion and maintaining the microbial balance. CONCLUSION This study highlights the importance of monitoring microbial diversity in captive primates to better understand their health and facilitate the early detection of potential pathogens. This also offers insights into microbiome-based strategies for improving overall animal welfare.
Collapse
Affiliation(s)
- Roberta Chaya Tawie Tingga
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Abd Rahman Mohd-Ridwan
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | | | - Badrul Munir Md-Zain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
3
|
Smith CM, Powell D, Wan X, Zheng J, Bevis DL, McLaughlin RW. Analysis of the microbial diversity in the fecal material of the critically endangered orangutan. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001554. [PMID: 40226508 PMCID: PMC11993904 DOI: 10.17912/micropub.biology.001554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/15/2025]
Abstract
The orangutan ( Pongo spp.) is a critically endangered species. Today, populations of these animals are rapidly declining by up to 75%. They are found in the tropical rainforests of Borneo and Sumatra. In this study, using a next generation sequencing approach, the bacterial and fungal diversity in the fecal material of orangutans living in the Racine Zoo were investigated. The most predominant bacterial phyla were the Bacillota along with Bacteroidota. The most predominant fungal phylum was Ascomycota. Finally, the various functions of the bacterial communities present in the fecal material were predicted with PICRUSt2 using the KEGG database.
Collapse
Affiliation(s)
- Carly M. Smith
- Gateway Technical College, Kenosha, Wisconsin, United States
| | | | - Xiaoling Wan
- Wuhan Polytechnic University, Wuhan, Hubei, China
| | | | | | | |
Collapse
|
4
|
Gamboa DA, Flynn PJ, Horna-Lowell ES, Pinter-Wollman N. Social organization and physical environment shape the microbiome of harvester ants. Anim Microbiome 2025; 7:29. [PMID: 40108741 PMCID: PMC11921602 DOI: 10.1186/s42523-025-00390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/25/2025] [Indexed: 03/22/2025] Open
Abstract
All animals harbor microbiomes, which are obtained from the surrounding environment and are impacted by host behavior and life stage. To determine how two non-mutually exclusive drivers - physical environment and social organization - affect an organism's microbiome, we examined the bacterial communities within and around nests of harvester ants (Veromessor andrei). We collected soil and nest content samples from five different ant nests. We used 16S rRNA gene sequencing and calculated alpha and beta diversity to compare bacterial diversity and community composition across samples. To test the hypotheses that physical environment and/or social organization impact ant colonies' community of microbes we compared our samples across (i) sample types (ants, brood, seeds and reproductives (winged alates), and soil), (ii) soil inside and outside the nest, and (iii) soil from different chamber types. Interestingly, we found that both the environment and social organization impact the bacterial communities of the microbiome of V. andrei colonies. Soil from the five nests differed from one another in a way that mapped onto their geographical distance. Furthermore, soil from inside the nests resembled the surrounding soil, supporting the physical environment hypothesis. However, the bacterial communities associated with the contents within the nest chambers, i.e., ants, brood, seeds, and reproductives, differed from one another and from the surrounding soil, supporting the social organization hypotheses. This study highlights the importance of considering environmental and social factors in understanding microbiome dynamics.
Collapse
Affiliation(s)
- Denisse Alejandra Gamboa
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Peter J Flynn
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, 02138, USA
| | - Eva Sofia Horna-Lowell
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
- San Diego Natural History Museum, Balboa Park, San Diego, 92101, CA, USA
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
5
|
Sariyati NH, Othman N, Abdullah-Fauzi NAF, Chan E, Md-Zain BM, Karuppannan KV, Abdul-Latiff MAB. Characterizing the gastrointestinal microbiome diversity in endangered Malayan Siamang (Symphalangus syndactylus): Insights into group composition, age variability and sex-related patterns. J Med Primatol 2024; 53:e12730. [PMID: 39148344 DOI: 10.1111/jmp.12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND The gut morphology of Symphalangus syndactylus exhibits an intermediate structure that aligns with its consumption of fruit and ability to supplement its diet with leaves. The Siamang relies on its gut microbiome for energy extraction, immune system development, and the synthesis of micronutrients. Gut microbiome composition may be structured based on several factors such as age, sex, and habitat. No study has yet been carried out on the gut microbiota of the Hylobatidae members in Malaysia especially S. syndactylus. METHODS This study aims to resolve the gut microbiome composition of S. syndactylus by using a fecal sample as DNA source, adapting high-throughput sequencing, and 16S rRNA as the targeted region. RESULTS A total of 1 272 903 operational taxonomic units (OTUs) reads were assigned to 22 phyla, 139 families, and 210 genera of microbes. The {Unknown Phylum} Bacteria-2 is the dominant phyla found across all samples. Meanwhile, {Unknown Phylum} Bacteria-2 and Firmicutes are genera that have the highest relative abundance found in the Siamang gut. CONCLUSIONS This study yields nonsignificance relationship between Siamang gut microbiome composition with these three factors: group, sex, and age.
Collapse
Affiliation(s)
- Nur Hartini Sariyati
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Nursyuhada Othman
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Nurfatiha Akmal Fawwazah Abdullah-Fauzi
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Eddie Chan
- Treks Event Sdn Bhd, Lot AW/G5.00, GF, Awana Hotel Genting Highlands Resort, Genting Highlands, Pahang, Malaysia
| | - Badrul Munir Md-Zain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Kayal Vizi Karuppannan
- National Wildlife Forensic Laboratory (NWFL), Department of Wildlife and National Parks (PERHILITAN), Kuala Lumpur, Malaysia
| | - Muhammad Abu Bakar Abdul-Latiff
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| |
Collapse
|
6
|
Tingga RCT, Gani M, Mohd-Ridwan AR, Aifat NR, Matsuda I, Md-Zain BM. Gut microbial assessment among Hylobatidae at the National Wildlife Rescue Centre, Peninsular Malaysia. J Vet Sci 2024; 25:e65. [PMID: 39231790 PMCID: PMC11450390 DOI: 10.4142/jvs.23312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
IMPORTANCE Recent developments in genetic analytical techniques have enabled the comprehensive analysis of gastrointestinal symbiotic bacteria as a screening tool for animal health conditions, especially the endangered gibbons at the National Wildlife Rescue Centre (NWRC). OBJECTIVE High-throughput sequencing based on 16S ribosomal RNA genes was used to determine the baseline gut bacterial composition and identify potential pathogenic bacteria among three endangered gibbons housed in the NWRC. METHODS Feces were collected from 14 individuals (Hylobates lar, n = 9; Hylobates agilis, n = 4; and Symphalangus syndactylus, n = 1) from March to November 2022. Amplicon sequencing were conducted by targeting V3-V4 region. RESULTS The fecal microbial community of the study gibbons was dominated by Bacteroidetes and Firmicutes (phylum level), Prevotellaceae and Lachnospiraceae/Muribaculaceae (family level), and Prevotella (and its subgroups) (genera level). This trend suggests that the microbial community composition of the study gibbons differed insignificantly from previously reported conspecific or closely related gibbon species. CONCLUSIONS AND RELEVANCE This study showed no serious health problems that require immediate attention. However, relatively low alpha diversity and few potential bacteria related to gastrointestinal diseases and streptococcal infections were detected. Information on microbial composition is essential as a guideline to sustain a healthy gut condition of captive gibbons in NWRC, especially before releasing this primate back into the wild or semi-wild environment. Further enhanced husbandry environments in the NWRC are expected through continuous health monitoring and increase diversity of the gut microbiota through diet diversification.
Collapse
Affiliation(s)
- Roberta Chaya Tawie Tingga
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia
| | - Millawati Gani
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- National Wildlife Forensic Laboratory (NWFL), Ex-Situ Conservation Division, Department of Wildlife and National Parks Peninsular Malaysia (PERHILITAN), Kuala Lumpur 56100, Malaysia
| | - Abd Rahman Mohd-Ridwan
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia
| | - Nor Rahman Aifat
- Faculty of Tropical Forestry, Universiti Malaysia Sabah (UMS), Kota Kinabalu 88400, Malaysia
| | - Ikki Matsuda
- Wildlife Research Center of Kyoto University, Kyoto 606-8203, Japan
- Chubu Institute for Advanced Studies, Chubu University, Kasugai 4878501, Japan
- Chubu University Academy of Emerging Sciences, Kasugai 4878501, Japan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah (UMS), Kota Kinabalu 88400, Malaysia
| | - Badrul Munir Md-Zain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia.
| |
Collapse
|
7
|
Chuandong Z, Hu J, Li J, Wu Y, Wu C, Lai G, Shen H, Wu F, Tao C, Liu S, Zhang W, Shao H. Distribution and roles of Ligilactobacillus murinus in hosts. Microbiol Res 2024; 282:127648. [PMID: 38367479 DOI: 10.1016/j.micres.2024.127648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
Ligilactobacillus murinus, a member of the Ligilactobacillus genus, holds significant potential as a probiotic. While research on Ligilactobacillus murinus has been relatively limited compared to well-studied probiotic lactic acid bacteria such as Limosilactobacillus reuteri and Lactobacillus gasseri, a mounting body of evidence highlights its extensive involvement in host intestinal metabolism and immune activities. Moreover, its abundance exhibits a close correlation with intestinal health. Notably, beyond the intestinal context, Ligilactobacillus murinus is gaining recognition for its contributions to metabolism and regulation in the oral cavity, lungs, and vagina. As such, Ligilactobacillus murinus emerges as a potential probiotic candidate with a pivotal role in supporting host well-being. This review delves into studies elucidating the multifaceted roles of Ligilactobacillus murinus. It also examines its medicinal potential and associated challenges, underscoring the imperative to delve deeper into unraveling the mechanisms of its actions and exploring its health applications.
Collapse
Affiliation(s)
- Zhou Chuandong
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Jicong Hu
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Jiawen Li
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Yuting Wu
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Chan Wu
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Guanxi Lai
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Han Shen
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Fenglin Wu
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Changli Tao
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Song Liu
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Wenfeng Zhang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China.
| | - Hongwei Shao
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|