1
|
Wysok B, Dymkowski A, Sołtysiuk M, Kobuszewska A. Assessment of Microbial and Heavy Metal Contamination of Natural Sheep Casings from Different Geographic Regions. Foods 2025; 14:1520. [PMID: 40361603 PMCID: PMC12071571 DOI: 10.3390/foods14091520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/09/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Natural casings are integral components in the production of various meat products, including sausages, and their quality and safety have to be controlled to eliminate any risks to consumers' health. A total of 35 samples of salted natural sheep casings from Turkey, Iran, China, Mongolia, Pakistan, New Zealand, the United Kingdom, and Belgium were tested for microbial contamination and the concentrations of potentially toxic heavy metals. The mean log values of microbial counts were determined at 3.45 ± 0.44 log CFU/g for aerobic mesophilic bacteria, 0.5 ± 0.43 log CFU/g for anaerobic sulfide-reducing bacteria, and 1.24 ± 0.63 log CFU/g for coagulase-positive staphylococci. Typical or suspected colonies of Salmonella spp., E. coli, and Listeria spp. were not identified on selective and differential agar. The examined casings were contaminated mainly with lead (0.077 ± 0.045 mg/kg), followed by arsenic (0.036 ± 0.029 mg/kg) and cadmium (0.009 ± 0.008 mg/kg). The concentrations of mercury in all samples were below the limit of quantification. The study demonstrated that the quality and safety of natural casings were not affected by their region of origin and that microbial contamination was not correlated with heavy metal concentrations.
Collapse
Affiliation(s)
- Beata Wysok
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10-917 Olsztyn, Poland; (A.D.); (M.S.); (A.K.)
| | | | | | | |
Collapse
|
2
|
Xu Y, Wu C, Wang P, Han X, Yang J, Zhai S. Effects of Dietary Inclusion of Enzymatically Hydrolyzed Compound Soy Protein on the Growth Performance and Intestinal Health of Juvenile American Eels ( Anguilla rostrata). Animals (Basel) 2024; 14:3096. [PMID: 39518819 PMCID: PMC11545088 DOI: 10.3390/ani14213096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The enzymatic hydrolysis of soybeans could enhance their application as an ingredient and alternative to fishmeal in aquafeeds. Here, a 10-week feeding trial was conducted to evaluate the impacts of different dietary inclusion levels of enzymatically hydrolyzed compound soy protein (EHCS) on the growth performance and intestinal health of juvenile American eels (Anguilla rostrata). Five experimental diets were formulated with graded EHCS inclusion levels at 0% (EHCS0), 8% (EHCS8), 16% (EHCS16), 24% (EHCS24), and 32% (EHCS32). Each diet was randomly assigned to four replicate tanks. The results showed that eels fed the EHCS8 diet exhibited superior growth performance, decreased serum lipid content, and increased immunity compared to those fed the EHCS0 diet. Eels fed the EHCS8 diet also displayed improved intestinal histology, enhanced antioxidant capacity and balance of intestinal microbiota as well as an enhanced proliferation of probiotics compared to those receiving the EHCS0 diet. Compared with eels fed the EHCS0 diet, those fed the EHCS16 diet exhibited comparable growth performance and values for the aforementioned markers. The quadratic regression analysis of weight gain rate and feed efficiency against the dietary EHCS inclusion levels determined the maximum levels of dietary EHCS inclusion for American eels range from 17.59% to 17.77%.
Collapse
Affiliation(s)
- Yichuang Xu
- Fisheries College, Jimei University, Xiamen 361021, China; (Y.X.); (C.W.); (P.W.); (X.H.)
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of China, Xiamen 361021, China
| | - Chengyao Wu
- Fisheries College, Jimei University, Xiamen 361021, China; (Y.X.); (C.W.); (P.W.); (X.H.)
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of China, Xiamen 361021, China
| | - Pan Wang
- Fisheries College, Jimei University, Xiamen 361021, China; (Y.X.); (C.W.); (P.W.); (X.H.)
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of China, Xiamen 361021, China
| | - Xiaozhao Han
- Fisheries College, Jimei University, Xiamen 361021, China; (Y.X.); (C.W.); (P.W.); (X.H.)
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of China, Xiamen 361021, China
| | - Jinyue Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China;
| | - Shaowei Zhai
- Fisheries College, Jimei University, Xiamen 361021, China; (Y.X.); (C.W.); (P.W.); (X.H.)
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of China, Xiamen 361021, China
| |
Collapse
|
3
|
Zhao H, Zhou Y, Xu J, Zhang Y, Wang H, Zhao C, Huang H, Yang J, Huang C, Li Y, Wang L, Nie Y. Short-chain fatty acid-producing bacterial strains attenuate experimental ulcerative colitis by promoting M2 macrophage polarization via JAK/STAT3/FOXO3 axis inactivation. J Transl Med 2024; 22:369. [PMID: 38637862 PMCID: PMC11025230 DOI: 10.1186/s12967-024-05122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD), dysbiosis, and immunosuppression who receive fecal microbiota transplantation (FMT) from healthy donors are at an increased risk of developing bacteremia. This study investigates the efficacy of a mixture of seven short-chain fatty acid (SCFA)-producing bacterial strains (7-mix), the resulting culture supernatant mixture (mix-sup), and FMT for treating experimental ulcerative colitis (UC) and evaluates underlying mechanisms. METHODS Utilizing culturomics, we isolated and cultured SCFA-producing bacteria from the stool of healthy donors. We used a mouse model of acute UC induced by dextran sulfate sodium (DSS) to assess the effects of 7-mix, mix-sup, and FMT on intestinal inflammation and barrier function, microbial abundance and diversity, and gut macrophage polarization by flow cytometry, immunohistochemistry, 16S rRNA gene sequencing, and transwell assays. RESULTS The abundance of several SCFA-producing bacterial taxa decreased in patients with UC. Seven-mix and mix-sup suppressed the inflammatory response and enhanced intestinal mucosal barrier function in the mouse model of UC to an extent similar to or superior to that of FMT. Moreover, 7-mix and mix-sup increased the abundance of SCFA-producing bacteria and SCFA concentrations in colitic mice. The effects of these interventions on the inflammatory response and gut barrier function were mediated by JAK/STAT3/FOXO3 axis inactivation in macrophages by inducing M2 macrophage polarization in vivo and in vitro. CONCLUSIONS Our approach provides new opportunities to rationally harness live gut probiotic strains and metabolites to reduce intestinal inflammation, restore gut microbial composition, and expedite the development of safe and effective treatments for IBD.
Collapse
Affiliation(s)
- Hailan Zhao
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Youlian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yong Zhang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Hong Wang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Chong Zhao
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Hongli Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jing Yang
- Department of Pathology, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yingfei Li
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Lisheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
| | - Yuqiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Candeliere F, Musmeci E, Sola L, Amaretti A, Raimondi S, Rossi M. Genomic and functional analysis of the mucinolytic species Clostridium celatum, Clostridium tertium, and Paraclostridium bifermentans. Front Microbiol 2024; 15:1359726. [PMID: 38511005 PMCID: PMC10952124 DOI: 10.3389/fmicb.2024.1359726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Mucins are large glycoproteins whose degradation requires the expression of several glycosil hydrolases to catalyze the cleavage of the oligosaccharide chains and release monosaccharides that can be assimilated. In this study, we present a characterization on the strains Clostridium celatum WC0700, Clostridium tertium WC0709, and Paraclostridium bifermentans WC0705. These three strains were previously isolated from enrichment cultures on mucin of fecal samples from healthy subjects and can use mucin as sole carbon and nitrogen source. Genome analysis and in vitro functional analysis of these strains elucidated their physiological and biochemical features. C. celatum WC0700 harbored the highest number of glycosyl hydrolases specific for mucin degradation, while P. bifermentans WC0705 had the least. These predicted differences were confirmed growing the strains on 5 mucin-decorating monosaccharides (L-fucose, N-Acetylneuraminic acid, galactose, N-acetylgalactosamine, and N-acetylglucosamine) as only source of carbon. Fermenting mucin, they all produced formic, acetic, propionic, butyric, isovaleric, and lactic acids, and ethanol; acetic acid was the main primary metabolite. Further catabolic capabilities were investigated, as well as antibiotic susceptibility, biofilm formation, tolerance to oxygen and temperature. The potential pathogenicity of the strains was evaluated through in silico research of virulence factors. The merge between comparative and functional genomics and biochemical/physiological characterization provided a comprehensive view of these mucin degraders, reassuring on the safety of these species and leaving ample scope for deeper investigations on the relationship with the host and for assessing if some relevant health-promoting effect could be ascribed to these SCFA producing species.
Collapse
Affiliation(s)
- Francesco Candeliere
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Eliana Musmeci
- Department of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Laura Sola
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Biogest Siteia, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Biogest Siteia, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Biogest Siteia, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
5
|
Cai X, Peng Y, Yang G, Feng L, Tian X, Huang P, Mao Y, Xu L. Populational genomic insights of Paraclostridium bifermentans as an emerging human pathogen. Front Microbiol 2023; 14:1293206. [PMID: 38029151 PMCID: PMC10665999 DOI: 10.3389/fmicb.2023.1293206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Paraclostridium bifermentans (P.b) is an emerging human pathogen that is phylogenomically close to Paeniclostridium sordellii (P.s), while their populational genomic features and virulence capacity remain understudied. Here, we performed comparative genomic analyses of P.b and compared their pan-genomic features and virulence coding profiles to those of P.s. Our results revealed that P.b has a more plastic pangenome, a larger genome size, and a higher GC content than P.s. Interestingly, the P.b and P.s share similar core-genomic functions, but P.b encodes more functions in nutrient metabolism and energy conversion and fewer functions in host defense in their accessory-genomes. The P.b may initiate extracellular infection processes similar to those of P.s and Clostridium perfringens by encoding three toxin homologs (i.e., microbial collagenase, thiol-activated cytolysin, phospholipase C, which are involved in extracellular matrices degradation and membrane damaging) in their core-genomes. However, P.b is less toxic than the P.s by encoding fewer secretion toxins in the core-genome and fewer lethal toxins in the accessory-genome. Notably, P.b carries more toxins genes in their accessory-genomes, particularly those of plasmid origin. Moreover, three within-species and highly conserved plasmid groups, encoding virulence, gene acquisition, and adaptation, were carried by 25-33% of P.b strains and clustered by isolation source rather than geography. This study characterized the pan-genomic virulence features of P.b for the first time, and revealed that P. bifermentans is an emerging pathogen that can threaten human health in many aspects, emphasizing the importance of phenotypic and genomic characterizations of in situ clinical isolates.
Collapse
Affiliation(s)
- Xunchao Cai
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Yao Peng
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Gongli Yang
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Lijuan Feng
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaojuan Tian
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Ping Huang
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Long Xu
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|