1
|
Bao M, Wu R, Li J, Tang R, Song C. Research summary, possible mechanisms and perspectives of gut microbiota changes causing precocious puberty. Front Nutr 2025; 12:1596654. [PMID: 40352262 PMCID: PMC12061974 DOI: 10.3389/fnut.2025.1596654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
The increasing global incidence of precocious puberty, linked to environmental, metabolic, and genetic factors, necessitates innovative therapies beyond gonadotropin-releasing hormone (GnRH) analogs. Accumulating evidence implicates gut microbiota dysbiosis as a pivotal regulator of pubertal timing via interactions with hormone metabolism (e.g., estrogen reactivation via β-glucuronidase), neuroendocrine pathways (nitric oxide signaling), and immune-inflammatory responses. This review delineates taxonomic alterations in central precocious puberty (CPP) and obesity-related subtypes, including Streptococcus enrichment and Alistipes depletion, alongside functional shifts in microbial metabolite production. Mechanistic insights highlight microbiota-driven modulation of the hypothalamic-pituitary-gonadal (HPG) axis, leptin/insulin dynamics, and epigenetic regulation. Emerging interventions-probiotics, fecal microbiota transplantation (FMT), and dietary modifications-demonstrate efficacy in preclinical models and early clinical studies for delaying puberty onset and restoring hormonal balance. Translational efforts to validate these strategies are critical for addressing the clinical and psychosocial challenges posed by precocious puberty, positioning gut microbiota modulation as a novel therapeutic frontier in pediatric endocrinology.
Collapse
Affiliation(s)
- Maorong Bao
- Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Wu
- Ba’nan Hospital Affiliated to Chongqing Medical University, Chongqing, China
| | - Jingwei Li
- Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Runan Tang
- Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Cui Song
- Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Wu N, Jiang X, Liu Y, Zhang M, Yue M, Chen F, Wu W, Li N, Wang Q, Zhang L. Glycodeoxycholic acid alleviates central precocious puberty by modulating gut microbiota and metabolites in high-fat diet-fed female rats. Cell Mol Life Sci 2025; 82:163. [PMID: 40244411 PMCID: PMC12006580 DOI: 10.1007/s00018-025-05680-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/26/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVE Central precocious puberty (CPP) is a common pediatric endocrine disorder and a significant global public health concern. Emerging evidence suggests an association between bile acids (BAs) and CPP, although their regulatory roles and underlying mechanisms remain poorly understood. METHODS We conducted untargeted metabolomics and targeted BA analysis on serum samples from female rats with high-fat diet-induced CPP to identify metabolites potentially involved in regulating puberty through modulation of Sirt1 and Kiss1 expression in the hypothalamus. Identified BAs were then administered via gavage to female rats with CPP to assess their effects. To explore the mechanisms by which these BAs affect the development of CPP, gut microbiota and their metabolites were analyzed using 16S rRNA sequencing and untargeted metabolomics. RESULTS Our findings revealed significant reductions in glycodeoxycholic acid (GDCA) and glycoursodeoxycholic acid (GUDCA) levels in female rats with CPP. GDCA treatment delayed the onset of puberty, accompanied by alterations in the gut microbiota functions and metabolic pathways related to oxidative stress (OS) and fatty acid metabolism. Mediation analysis suggested that OS-related metabolites, including gamma-glutamylcysteine and malonic acid, which increased with the abundance of Lachnospiraceae UCG-001, facilitated the reduction of Sirt1 expression. Additionally, pregnenolone appeared to suppress the beneficial effect of Parasutterella in enhancing Sirt1 expression. CONCLUSION This study demonstrates that GDCA exhibits a potential therapeutic effect on CPP through a unique mechanism that involves gut microbiota modulation, alterations in serum metabolites, and changes in the expression of key regulatory factors Sirt1.
Collapse
Affiliation(s)
- Nan Wu
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Jiang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanan Liu
- Jinan Institute of Child Health Care, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
| | - Meilu Zhang
- Department of Psychology, University of California, Santa Cruz, USA
| | - Min Yue
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Chen
- Jinan Institute of Child Health Care, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
| | - Wei Wu
- Jinan Institute of Child Health Care, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
| | - Ning Li
- Jinan Institute of Child Health Care, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China.
| | - Qinghua Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| | - Lei Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
3
|
Guo D, Ning X, Bai T, Tan L, Zhou Y, Guo Z, Li X. Interaction between Vitamin D homeostasis, gut microbiota, and central precocious puberty. Front Endocrinol (Lausanne) 2024; 15:1449033. [PMID: 39717097 PMCID: PMC11663660 DOI: 10.3389/fendo.2024.1449033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Central precocious puberty (CPP) is an endocrine disease in children, characterized by rapid genital development and secondary sexual characteristics before the age of eight in girls and nine in boys. The premature activation of the hypothalamic-pituitary-gonadal axis (HPGA) limits the height of patients in adulthood and is associated with a higher risk of breast cancer. How to prevent and improve the prognosis of CPP is an important problem. Vitamin D receptor (VDR) is widely expressed in the reproductive system, participates in the synthesis and function of regulatory sex hormones, and affects the development and function of gonads. In addition, gut microbiota plays an important role in human health by mainly regulating metabolites, energy homeostasis, and hormone regulation. This review aims to clarify the effect of vitamin D deficiency on the occurrence and development of CPP and explore the role of gut microbiota in it. Although evidence on the interaction between vitamin D deficiency, gut microbiota, and sexual development remains limited, vitamin D supplementation and gut microbiota interventions offer a promising, non-invasive strategy for managing CPP.
Collapse
Affiliation(s)
- Doudou Guo
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Ning
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingfang Tan
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanfen Zhou
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhichen Guo
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Wei Y, Shi J, Wang J, Hu Z, Wang M, Wang W, Cui X. Integrated analysis of metabolome and microbiome in a rat model of perimenopausal syndrome. mSystems 2024; 9:e0062324. [PMID: 39431842 PMCID: PMC11575230 DOI: 10.1128/msystems.00623-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/13/2024] [Indexed: 10/22/2024] Open
Abstract
The objectives of this study are to examine the disparities in serum and intestinal tissue metabolites between a perimenopausal rat model and control rats and to analyze the diversity and functionality of intestinal microorganisms to determine the potential correlation between intestinal flora and metabolites. We established a rat model of perimenopausal syndrome (PMS) and performed an integrated analysis of metabolome and microbiome. Orthogonal partial least-squares discriminant analysis scores and replacement tests indicated distinct separations of anion and cation levels between serum and intestinal samples of the model and control groups. Furthermore, lipids and lipid-like molecules constituted the largest percentage of HMDB compounds in both serum and intestinal tissues, followed by organic acids and derivatives, and organoheterocyclic compounds, with other compounds showing significant variability. Moreover, analysis of diversity and functional enrichment of the intestinal microflora and correlation analysis with metabolites revealed significant variability in the composition of the intestinal flora between the normal control and perimenopausal groups, with these differentially expressed intestinal flora strongly correlated with their metabolites. The findings of this study are expected to contribute to understanding the indications and contraindications for estrogen application in perimenopausal women and to aid in the development of appropriate therapeutic agents. IMPORTANCE In this work, we employed 16S ribosomal RNA gene sequencing to analyze the gut microbes in stool samples. In addition, we conducted an ultra-high-performance liquid chromatography-tandem mass spectrometry-based metabolomics approach on gut tissue and serum obtained from rats with perimenopausal syndrome (PMS) and healthy controls. By characterizing the composition and metabolomic properties of gut microbes in PMS rats, we aim to enhance our understanding of their role in women's health, emphasizing the significance of regulating gut microbes in the context of menopausal women's well-being. We aim to provide a theoretical basis for the prevention and treatment of PMS in terms of gut microflora as well as metabolism.
Collapse
Affiliation(s)
- Yanqiu Wei
- Department of Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| | - Juanjuan Shi
- Department of Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| | - Jianhua Wang
- Translational Pharmaceutical Laboratory, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Zongyan Hu
- Pelvic Floor Rehabilitation Center, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| | - Min Wang
- Department of Traditional Chinese Medicine, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| | - Wen Wang
- Department of Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| | - Xiujuan Cui
- Department of Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| |
Collapse
|
5
|
Xie X, Song J, Wu Y, Li M, Guo W, Li S, Li Y. Study on gut microbiota and metabolomics in postmenopausal women. BMC Womens Health 2024; 24:608. [PMID: 39548431 PMCID: PMC11566192 DOI: 10.1186/s12905-024-03448-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024] Open
Abstract
Menopausal syndrome, occurring during the menopausal stage in women, manifests as symptoms stemming from decreased estrogen levels, such as hot flashes, insomnia, mental disorders (anxiety, depression), and osteoporosis. The bulk of studies have indicated alterations in the gut microbiota of those experiencing menopause syndrome compared to healthy women. However, This article focuses on the alterations in gut microbiota in perimenopausal women. Our study utilized 16 s rRNA sequencing to determine the differences in the gut microbiota and metabolites among 44 menopausal syndrome women. The distribution of gut microbiota in postmenopausal women varies based on the level of follicle stimulating hormone, with changes in gut microbiota abundance taking precedence over symptom onset. Fecal metabolites reveal changes in several metabolites, including Amino acid metabolism (Tyrosine, Tryptophan), Lipid metabolism (Alpha linolenic acid metabolism), and other metabolites. Disturbances in lipid metabolism, triggered by hormonal level fluctuations, can contribute to the development of osteoporosis.
Collapse
Affiliation(s)
- Xinyuan Xie
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinbin Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou, 510405, China
| | - Yue Wu
- Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Mei Li
- Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Wenfeng Guo
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shuang Li
- Guangzhou University, Guangzhou, Guangdong, 510006, China.
| | - Yanwu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou, 510405, China.
| |
Collapse
|
6
|
Gu Q, Du Q, Xia L, Lu X, Wan X, Shao Y, He J, Wu P. Mechanistic insights into EGCG's preventive effects on obesity-induced precocious puberty through multi-omics analyses. Food Funct 2024; 15:11169-11185. [PMID: 39445911 DOI: 10.1039/d4fo03844d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Epigallocatechin gallate (EGCG) has demonstrated potential effects on obesity-induced precocious puberty, but the underlying mechanisms remain unclear. Female mice were randomly assigned into control (CON), EGCG-treated (EGCG), high-fat diet (HFD), and HFD with EGCG treatment (HFDEGCG) groups. Key measurements included body weight, vaginal opening time, and serum sex hormone levels. The gut microbiota was analyzed through 16S rRNA sequencing, fecal metabolites were assessed via metabolomics, and the hypothalamic transcriptome was examined using RNA sequencing. EGCG mitigated weight gain and delayed vaginal opening in mice with obesity-induced precocious puberty. Additionally, it reduced serum estradiol levels and decreased the number of mature ovarian follicles in the HFDEGCG group compared to the HFD group. EGCG treatment partially reversed HFD-induced dysbiosis by increasing the abundance of beneficial bacteria such as Akkermansia. Metabolomic analysis revealed significant alterations in tryptophan metabolism, while transcriptome analysis identified genes involved in metabolic pathways. Correlation analyses underscored the importance of the gut-brain axis in mediating EGCG's effects. Overall, EGCG prevents obesity-induced precocious puberty by modulating the gut microbiota, altering metabolic pathways, and regulating hypothalamic gene expression.
Collapse
Affiliation(s)
- Qiuyun Gu
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiujv Du
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lina Xia
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoting Lu
- Department of Clinical Nutrition, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Xiaoqing Wan
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Shao
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieyi He
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Wu
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Liang Y, Yuan Y, Yang J. Acupoint catgut embedding: a potential intervention strategy for obesity-related precocious puberty. Front Endocrinol (Lausanne) 2024; 15:1448111. [PMID: 39469573 PMCID: PMC11513323 DOI: 10.3389/fendo.2024.1448111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Obesity-related precocious puberty is induced by obesity, and acupoint catgut embedding (ACE) therapy is known to treat obesity. This study aims to validate the hypothesis that ACE can delay the onset of obesity-related precocious puberty. Methods Female Sprague-Dawley rats, 21 days old, were randomly divided into three groups: the high-fat diet combined with ACE treatment group (ACE), the high-fat diet group (HFD), and the normal control diet group (NCD), with 8 rats in each group. The vaginal opening (VO) time was monitored, and serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and total estradiol (E2) were measured, followed by statistical analysis. Results Kaplan-Meier survival curves, with VO as the endpoint, showed that vaginal opening was delayed in the ACE group compared to the HFD group, with a statistically significant difference (p < 0.05). The changes in levels of FSH, LH, and E2 indicated that sexual development was delayed in the ACE group compared to the HFD group and was more similar to the NCD group. Discussion Combining the vaginal opening time and changes in hormone levels, this study confirms the potential role of ACE in delaying the onset of obesity-related precocious puberty.
Collapse
Affiliation(s)
- Yun Liang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuan Yuan
- Department of Pediatric Surgery, Affiliated Hospital, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jie Yang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Wang L, Yi Q, Xu H, Liu H, Tan B, Deng H, Chen Y, Wang R, Tang F, Cheng X, Zhu J. Alterations in the gut microbiota community are associated with childhood obesity and precocious puberty. BMC Microbiol 2024; 24:311. [PMID: 39182062 PMCID: PMC11344344 DOI: 10.1186/s12866-024-03461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE To explore the distribution and differences in the intestinal microbiota in girls with obesity-related precocious puberty and the relationship between intestinal microbiota and obesity-related precocious puberty. METHODS 16 S rRNA gene amplicons from fecal samples from girls with precocious puberty and obesity-complicated precocious puberty and healthy children were sequenced to define microbial taxa. RESULTS The α- and β-diversity indices of the microbiome significantly differed among the three groups. At the phylum level, the proportions of Firmicutes, Actinobacteriota, Bacteroidota, Bacteria, Campylobacterota, and Acidobacteriota were different. At the genus level, there were differences in Bifidobacterium, Bacteroides, Anaerostipes, Fusicatenibacter, Klebsiella, Lachnospiraceae, ErysipelotrichaceaeUCG-003, Prevotella9, Ruminococcus gnavus group, and Lachnoclostridium. Additionally, Bifidobacterium, Anaerostipes, Bacteroides, Candidatus Microthrix, Eubacterium hallii group, Klebsiella, and Erysipelotrichaceae UCG-003 were identified as bacterial biomarkers by LEfSe. Furthermore, Sellimonas, Intestinibacter, Anaerostipes, Ruminococcus gnavus group, and Oscillibacter were identified as the differential biomarkers by random forest. A receiver operating characteristic (ROC) curve was used to evaluate the biomarkers with high predictive value for obesity-related precocious puberty. Spearman correlation analysis confirmed that Anaerostipes levels were negatively correlated with body weight, body mass index (BMI), bone age, luteinizing hormone, follicle-stimulating hormone, and estradiol. CONCLUSIONS There was a significant correlation between obesity-associated precocious puberty and gut microbiota, especially the functional characteristics of the microbiome and its interactions, which can provide a theoretical basis for the clinical intervention of obesity and precocious puberty through the microbiome.
Collapse
Affiliation(s)
- Li Wang
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Disease, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yi
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Disease, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Xu
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Disease, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Huiwen Liu
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Disease, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Tan
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Disease, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hongrong Deng
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Disease, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yunxia Chen
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Disease, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Wang
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Disease, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Tang
- Department of Endocrine Genetics and Metabolism, School of Medicine, Chengdu Women's and Children's Center Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xinran Cheng
- Department of Endocrine Genetics and Metabolism, School of Medicine, Chengdu Women's and Children's Center Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Jing Zhu
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Disease, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Romeo M, D’Urso F, Ciccarese G, Di Gaudio F, Broccolo F. Exploring Oral and Vaginal Probiotic Solutions for Women's Health from Puberty to Menopause: A Narrative Review. Microorganisms 2024; 12:1614. [PMID: 39203456 PMCID: PMC11356851 DOI: 10.3390/microorganisms12081614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
The vaginal microbiota (VMB) plays a crucial role in women's health from puberty to menopause. Traditional studies have focused on the microorganisms present within the vaginal environment and their roles in disease onset. However, the dynamic relationship between the VMB and its host remains underexplored. Common narratives emphasize the presence of Lactobacilli spp. as an indicator of vaginal health, yet this does not fully explain the occurrence of asymptomatic yet significant dysbiosis. Moreover, a wide array of bacterial types can inhabit the vaginal environment, suggesting that probiotic Lactobacilli could offer a natural, safe solution for balancing vaginal microbiota. This review examines the current literature on VMB, key factors affecting its composition, and the changes it undergoes during different life stages. Given the health-promoting potential of probiotics, we also examine their role in maintaining a healthy VMB and overall women's health throughout life.
Collapse
Affiliation(s)
- Marcello Romeo
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
| | - Fabiana D’Urso
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy;
| | - Giulia Ciccarese
- Section of Dermatology, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Francesca Di Gaudio
- PROMISE, University of Palermo, Piazza delle Cliniche, 2, 90127 Palermo, Italy;
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia Cervello, Chromatography and Mass Spectrometry Section, Quality Control and Chemical Risk (CQRC), Via del Vespro, 133, 90127 Palermo, Italy
| | - Francesco Broccolo
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy;
| |
Collapse
|
10
|
Nguyen NN, Lin CY, Tsai WL, Huang HY, Chen CM, Tung YT, Chen YC. Natural sweetener glycyrrhizin protects against precocious puberty by modulating the gut microbiome. Life Sci 2024; 350:122789. [PMID: 38848942 DOI: 10.1016/j.lfs.2024.122789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/07/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
AIMS Precocious puberty (PP) may lead to many adverse outcomes. Recent evidence suggests that PP is a gut-brain disease. On the other hand, the use of glycyrrhizin, a natural sweetener, has become popular in the past decade. Glycyrrhizin possesses various health benefits, but its impact on PP has yet to be investigated. We aimed to explore the protective effects of glycyrrhizin against PP in both humans (observational) and animals (interventional). MATERIALS AND METHODS In the human cohort, we investigated the association between glycyrrhizin consumption and risk of PP. In the animal experiment, we observed puberty onset after feeding danazol-induced PP rats with glycyrrizin. Blood, fecal, and hypothalamic samples were harvested to evaluate potential mechanistic pathways. We also performed a fecal microbiota transplantation to confirm to causal relationship between glycyrrhizin and PP risk. KEY FINDINGS Glycyrrhizin exhibited a protective effect against PP in children (OR 0.60, 95%CI: 0.39-0.89, p = 0.013), primarily driven by its significance in girls, while no significant effect was observed in boys. This effect was consistent with findings in rodents. These benefits were achieved through the modulation of the gut microbiome, which functionally suppressed the hypothalamic-pituitary-gonadal axis and prevented PP progression. A fecal microbiota transplantation indicated that the causal correlation between glycyrrhizin intake and PP is mediated by the gut microbiome alterations. SIGNIFICANCE Our findings suggest that glycyrrhizin can protect against PP by altering the gut microbiome. Long term use of glycyrrhizin is safe and tolerable. Therefore, glycyrrhizin can serve as a safe and affordable complementary therapy for PP.
Collapse
Affiliation(s)
- Nam Nhat Nguyen
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Chia-Yuan Lin
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wan-Ling Tsai
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Health Promotion and Gerontological Care, College of LOHAS, Taipei University of Marine Technology, New Taipei City 251, Taiwan
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
| | - Chung-Ming Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Pediatrics, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Yang-Ching Chen
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan; Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan.
| |
Collapse
|
11
|
Qi J, Xia C, Zhang Y, Ding R, Zhang Y, Cao W, Duan C, Yao Z, Qin H, Ye Y, Qu P, Li Y, Liu E. Impact of high-fat diet on ovarian epigenetics: Insights from altered intestinal butyric acid levels. Heliyon 2024; 10:e33170. [PMID: 39021996 PMCID: PMC11252756 DOI: 10.1016/j.heliyon.2024.e33170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Objective To investigate the effects of a high-fat diet (HFD) on the gut bacterium Roseburia intestinalis and butyric acid levels, and to assess their impact on ovarian function and epigenetic markers in mice. Methods A total of 20 female ICR mice aged 4 weeks were randomly assigned to two groups and fed either a control diet (CD) or an HFD for 36 weeks. Post-intervention, ileal contents were analyzed for the quantification of butyric acid using ELISA, while feces were obtained for Roseburia intestinalis expression assessment via qPCR. Histological evaluations of intestinal and ovarian tissues included H&E and Alcian Blue-Periodic Acid Schiff (AB-PAS) staining, alongside immunohistochemical analysis for F4/80, and immunofluorescent detection of Occludin, ZO-1, 5 mC, and H3K36me3. Ovarian health was assessed through follicle counts and morphological evaluations. Statistical analyses were performed using GraphPad Prism 8.0, with P < 0.05 considered significant. Results After 36 weeks, the HFD group showed significantly higher body weight compared to the CD group (P < 0.01). The HFD led to a decrease in Roseburia intestinalis and butyric acid levels, a reduction in intestinal goblet cells, and an increase in intestinal inflammation. Histological analyses revealed impaired ovarian follicular development and enhanced inflammation in the HFD mice, with immunofluorescent staining showing downregulation of the ovarian epigenetic markers 5 mC and H3K36me3. Conclusion Our study demonstrates that long-term HFD negatively impacts ovarian function and epigenetic regulation. We found decreased levels of the gut bacterium Roseburia intestinalis and its metabolite, butyric acid, which contribute to these adverse effects. Additionally, the associated intestinal inflammation and compromised mucosal barrier may contribute to these adverse outcomes on female reproductive health.
Collapse
Affiliation(s)
- Jia Qi
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Congcong Xia
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Yulin Zhang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Ruike Ding
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Yanru Zhang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Wenbin Cao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Chenjing Duan
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Zijing Yao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Hongyu Qin
- Central Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yun Ye
- Central Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Pengxiang Qu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Yandong Li
- Xi'an International Medical Center Hospital, Xi'an, China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| |
Collapse
|
12
|
Wang Y, Jin C, Li H, Liang X, Zhao C, Wu N, Yue M, Zhao L, Yu H, Wang Q, Ge Y, Huo M, Lv X, Zhang L, Zhao G, Gai Z. Gut microbiota-metabolite interactions meditate the effect of dietary patterns on precocious puberty. iScience 2024; 27:109887. [PMID: 38784002 PMCID: PMC11112371 DOI: 10.1016/j.isci.2024.109887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Precocious puberty, a pediatric endocrine disorder classified as central precocious puberty (CPP) or peripheral precocious puberty (PPP), is influenced by diet, gut microbiota, and metabolites, but the specific mechanisms remain unclear. Our study found that increased alpha-diversity and abundance of short-chain fatty acid-producing bacteria led to elevated levels of luteinizing hormone and follicle-stimulating hormone, contributing to precocious puberty. The integration of specific microbiota and metabolites has potential diagnostic value for precocious puberty. The Prevotella genus-controlled interaction factor, influenced by complex carbohydrate consumption, mediated a reduction in estradiol levels. Interactions between obesity-related bacteria and metabolites mediated the beneficial effect of seafood in reducing luteinizing hormone levels, reducing the risk of obesity-induced precocious puberty, and preventing progression from PPP to CPP. This study provides valuable insights into the complex interplay between diet, gut microbiota and metabolites in the onset, development and clinical classification of precocious puberty and warrants further investigation.
Collapse
Affiliation(s)
- Ying Wang
- Children’s Hospital Affiliated to Shandong University, Shandong University, Jinan 250022, China
- Jinan Children’s Hospital, Jinan 250022, China
| | - Chuandi Jin
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Microbiome-X, National Institute of Health Data Science of China, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hongying Li
- Children’s Hospital Affiliated to Shandong University, Shandong University, Jinan 250022, China
- Jinan Children’s Hospital, Jinan 250022, China
| | - Xiangrong Liang
- Children’s Hospital Affiliated to Shandong University, Shandong University, Jinan 250022, China
- Jinan Children’s Hospital, Jinan 250022, China
| | - Changying Zhao
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Microbiome-X, National Institute of Health Data Science of China, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Nan Wu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Microbiome-X, National Institute of Health Data Science of China, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Min Yue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Microbiome-X, National Institute of Health Data Science of China, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lu Zhao
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Central Laboratory, Weifang People’s Hospital/The First Affiliated Hospital of Shandong Second Medical university, Weifang 261000, China
- Shandong Laibo Biotechnology Co., Ltd., Jinan 250101, China
| | - Han Yu
- Children’s Hospital Affiliated to Shandong University, Shandong University, Jinan 250022, China
- Jinan Children’s Hospital, Jinan 250022, China
| | - Qian Wang
- Children’s Hospital Affiliated to Shandong University, Shandong University, Jinan 250022, China
- Jinan Children’s Hospital, Jinan 250022, China
| | - Yongsheng Ge
- Children’s Hospital Affiliated to Shandong University, Shandong University, Jinan 250022, China
- Jinan Children’s Hospital, Jinan 250022, China
| | - Meiling Huo
- Children’s Hospital Affiliated to Shandong University, Shandong University, Jinan 250022, China
- Jinan Children’s Hospital, Jinan 250022, China
| | - Xin Lv
- Children’s Hospital Affiliated to Shandong University, Shandong University, Jinan 250022, China
- Jinan Children’s Hospital, Jinan 250022, China
| | - Lehai Zhang
- Children’s Hospital Affiliated to Shandong University, Shandong University, Jinan 250022, China
- Jinan Children’s Hospital, Jinan 250022, China
| | - Guoping Zhao
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Microbiome-X, National Institute of Health Data Science of China, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Zhongtao Gai
- Children’s Hospital Affiliated to Shandong University, Shandong University, Jinan 250022, China
- Jinan Children’s Hospital, Jinan 250022, China
| |
Collapse
|
13
|
Lyu W, Li DF, Li SY, Hu H, Zhou JY, Wang L. Gut microbiota modulation: a narrative review on a novel strategy for prevention and alleviation of ovarian aging. Crit Rev Food Sci Nutr 2024:1-13. [PMID: 38835159 DOI: 10.1080/10408398.2024.2361306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The global rise in life expectancy corresponds with a delay in childbearing age among women. Ovaries, seen as the chronometers of female physiological aging, demonstrate features of sped up aging, evidenced by the steady decline in both the quality and quantity of ovarian follicles from birth. The multifaceted pathogenesis of ovarian aging has kindled intensive research interest from the biomedical and pharmaceutical sectors. Novel studies underscore the integral roles of gut microbiota in follicular development, lipid metabolism, and hormonal regulation, forging a nexus with ovarian aging. In this review, we outline the role of gut microbiota in ovarian function (follicular development, oocyte maturation, and ovulation), compile and present gut microbiota alterations associated with age-related ovarian aging. We also discuss potential strategies for alleviating ovarian aging from the perspective of gut microbiota, such as fecal microbiota transplantation and probiotics.
Collapse
Affiliation(s)
- Wei Lyu
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, USA
| | - De-Feng Li
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Shu-Ying Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Hua Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Jian-Yun Zhou
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Ling Wang
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
14
|
Freitas RGBON, Vasques ACJ, da Rocha Fernandes G, Ribeiro FB, Solar I, Shivappa N, Hébert JR, de Almeida-Pititto B, Geloneze B, Ferreira SRG. Gut bacterial markers involved in association of dietary inflammatory index with visceral adiposity. Nutrition 2024; 122:112371. [PMID: 38430843 DOI: 10.1016/j.nut.2024.112371] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE To deepen the understanding of the influence of diet on weight gain and metabolic disturbances, we examined associations between diet-related inflammation and body composition and fecal bacteria abundances in participants of the Nutritionists' Health Study. METHODS Early-life, dietary and clinical data were obtained from 114 women aged ≤45 years. A validated food frequency questionnaire was used to calculate the energy-adjusted dietary inflammatory index (E-DII). Participants' data were compared by E-DII quartiles using ANOVA or Kruskal-Wallis. Associations of DXA-determined body composition with the E-DII were tested by multiple linear regression using DAG-oriented adjustments. Fecal microbiota was analyzed targeting the V4 region of the 16S rRNA gene. Spearman correlation coefficients were used to test linear associations; differential abundance of genera across the E-DII quartiles was assessed by pair-wise comparisons. RESULTS E-DII score was associated with total fat (b=1.80, p<0.001), FMI (b=0.08, p<0.001) and visceral fat (b=1.19, p=0.02), independently of maternal BMI, birth type and breastfeeding. E-DII score was directly correlated to HOMA-IR (r=0.30; p=0.004), C-reactive protein (r=0.29; p=0.003) and to the abundance of Actinomyces, and inversely correlated to the abundance of Eubacterium.xylanophilum.group. Actinomyces were significantly more abundant in the highest (most proinflammatory) E-DII quartile. CONCLUSIONS Association of E-DII with markers of insulin resistance, inflammation, body adiposity and certain gut bacteria are consistent with beneficial effects of anti-inflammatory diet on body composition and metabolic profile. Bacterial markers, such as Actinomyces, could be involved in the association between the dietary inflammation with visceral adiposity. Studies designed to explore how a pro-inflammatory diet affects both central fat deposition and gut microbiota are needed.
Collapse
Affiliation(s)
- Renata G B O N Freitas
- Department of Epidemiology, School of Public Health, University of São Paulo, Brazil; Laboratory of Investigation in Metabolism and Diabetes, School of Medical Sciences, University of Campinas, Brazil
| | - Ana Carolina J Vasques
- Laboratory of Investigation in Metabolism and Diabetes, School of Medical Sciences, University of Campinas, Brazil; School of Applied Sciences, University of Campinas, São Paulo, Brazil
| | | | - Francieli B Ribeiro
- Laboratory of Investigation in Metabolism and Diabetes, School of Medical Sciences, University of Campinas, Brazil; School of Applied Sciences, University of Campinas, São Paulo, Brazil
| | - Isabela Solar
- Laboratory of Investigation in Metabolism and Diabetes, School of Medical Sciences, University of Campinas, Brazil; School of Applied Sciences, University of Campinas, São Paulo, Brazil
| | - Nitin Shivappa
- Cancer Prevention and Control Program, Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC; Department of Nutrition, Connecting Health Innovations, Columbia, SC
| | - James R Hébert
- Cancer Prevention and Control Program, Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC; Department of Nutrition, Connecting Health Innovations, Columbia, SC
| | | | - Bruno Geloneze
- Laboratory of Investigation in Metabolism and Diabetes, School of Medical Sciences, University of Campinas, Brazil; Obesity and Comorbidities Research Center, University of Campinas, São Paulo, Brazil
| | | |
Collapse
|
15
|
Tzounakou AM, Stathori G, Paltoglou G, Valsamakis G, Mastorakos G, Vlahos NF, Charmandari E. Childhood Obesity, Hypothalamic Inflammation, and the Onset of Puberty: A Narrative Review. Nutrients 2024; 16:1720. [PMID: 38892653 PMCID: PMC11175006 DOI: 10.3390/nu16111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The onset of puberty, which is under the control of the hypothalamic-pituitary-gonadal (HPG) axis, is influenced by various factors, including obesity, which has been associated with the earlier onset of puberty. Obesity-induced hypothalamic inflammation may cause premature activation of gonadotropin-releasing hormone (GnRH) neurons, resulting in the development of precocious or early puberty. Mechanisms involving phoenixin action and hypothalamic microglial cells are implicated. Furthermore, obesity induces structural and cellular brain alterations, disrupting metabolic regulation. Imaging studies reveal neuroinflammatory changes in obese individuals, impacting pubertal timing. Magnetic resonance spectroscopy enables the assessment of the brain's neurochemical composition by measuring key metabolites, highlighting potential pathways involved in neurological changes associated with obesity. In this article, we present evidence indicating a potential association among obesity, hypothalamic inflammation, and precocious puberty.
Collapse
Affiliation(s)
- Anastasia-Maria Tzounakou
- Center for the Prevention and Management of Overweight and Obesity, Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (A.-M.T.); (G.S.)
| | - Galateia Stathori
- Center for the Prevention and Management of Overweight and Obesity, Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (A.-M.T.); (G.S.)
| | - George Paltoglou
- Diabetes Unit, Second Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘P. & A. Kyriakou’ Children’s Hospital, 11527 Athens, Greece;
| | - Georgios Valsamakis
- Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, ‘Aretaieion’ University Hospital, 11528 Athens, Greece; (G.V.); (G.M.); (N.F.V.)
| | - George Mastorakos
- Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, ‘Aretaieion’ University Hospital, 11528 Athens, Greece; (G.V.); (G.M.); (N.F.V.)
| | - Nikolaos F. Vlahos
- Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, ‘Aretaieion’ University Hospital, 11528 Athens, Greece; (G.V.); (G.M.); (N.F.V.)
| | - Evangelia Charmandari
- Center for the Prevention and Management of Overweight and Obesity, Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (A.-M.T.); (G.S.)
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
16
|
Yi C, Zou H, Lin X, Liu S, Wang J, Tian Y, Deng X, Luo J, Li C, Long Y. Zhibai dihuang pill (ZBDH) exhibits therapeutic effects on idiopathic central sexual precocity in rats by modulating the gut microflora. Heliyon 2024; 10:e29723. [PMID: 38707434 PMCID: PMC11066310 DOI: 10.1016/j.heliyon.2024.e29723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024] Open
Abstract
To reveal the role of gut microbiota (GM) in the occurrence and development of idiopathic central precocious puberty (ICPP) using 16S rDNA sequencing and bioinformatics analysis. The Danazol-induced ICPP model was successfully constructed in this study. ZBDH and GnRHa treatments could effectively inhibit ICPP in rats, as manifested by the delayed vaginal opening time, reduced weight, decreased uterine organ coefficient, and decreased uterine wall thickness and corpus luteum number, as well as remarkably reduced serum hormone (LH, FSH, and E2) levels. According to 16S rDNA sequencing analysis results, there was no significant difference in the GM community diversity across different groups; however, the composition of the microbial community and the abundance of the dominant microbial community were dramatically different among groups. ZBDH and GnRHa treatments could effectively reduce the abundance of Muribaculateae and Lactobacillus and promote Prevotella abundance. ZBDH and GnRHa were effective in treating Danazol-induced ICPP model rats. The therapeutic effects of ZBDH and GnRHa could be related to the changes in GM in rats.
Collapse
Affiliation(s)
- Canhong Yi
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Hui Zou
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Xiaojuan Lin
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Shanshan Liu
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Juan Wang
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Yuquan Tian
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Xujing Deng
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Jianhong Luo
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Chan Li
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Yin Long
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| |
Collapse
|
17
|
Peralta M, Lizcano F. Endocrine Disruptors and Metabolic Changes: Impact on Puberty Control. Endocr Pract 2024; 30:384-397. [PMID: 38185329 DOI: 10.1016/j.eprac.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
OBJECTIVE This study aims to explore the significant impact of environmental chemicals on disease development, focusing on their role in developing metabolic and endocrine diseases. The objective is to understand how these chemicals contribute to the increasing prevalence of precocious puberty, considering various factors, including epigenetic changes, lifestyle, and emotional disturbances. METHODS The study employs a comprehensive review of descriptive observational studies in both human and animal models to identify a degree of causality between exposure to environmental chemicals and disease development, specifically focusing on endocrine disruption. Due to ethical constraints, direct causation studies in human subjects are not feasible; therefore, the research relies on accumulated observational data. RESULTS Puberty is a crucial life period with marked physiological and psychological changes. The age at which sexual characteristics develop is changing in many regions. The findings indicate a correlation between exposure to endocrine-disrupting chemicals and the early onset of puberty. These chemicals have been shown to interfere with normal hormonal processes, particularly during critical developmental stages such as adolescence. The research also highlights the interaction of these chemical exposures with other factors, including nutritional history, social and lifestyle changes, and emotional stress, which together contribute to the prevalence of precocious puberty. CONCLUSION Environmental chemicals significantly contribute to the development of certain metabolic and endocrine diseases, particularly in the rising incidence of precocious puberty. Although the evidence is mainly observational, it adequately justifies regulatory actions to reduce exposure risks. Furthermore, these findings highlight the urgent need for more research on the epigenetic effects of these chemicals and their wider impact on human health, especially during vital developmental periods.
Collapse
Affiliation(s)
- Marcela Peralta
- Center of Biomedical Investigation Universidad de La Sabana, CIBUS, Chía, Colombia
| | - Fernando Lizcano
- Center of Biomedical Investigation Universidad de La Sabana, CIBUS, Chía, Colombia; Department of Endocrinology, Diabetes and Nutrition, Fundación CardioInfantil-Instituto de Cardiología, Bogotá, Colombia.
| |
Collapse
|
18
|
Yue M, Zhang L. Exploring the Mechanistic Interplay between Gut Microbiota and Precocious Puberty: A Narrative Review. Microorganisms 2024; 12:323. [PMID: 38399733 PMCID: PMC10892899 DOI: 10.3390/microorganisms12020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The gut microbiota has been implicated in the context of sexual maturation during puberty, with discernible differences in its composition before and after this critical developmental stage. Notably, there has been a global rise in the prevalence of precocious puberty in recent years, particularly among girls, where approximately 90% of central precocious puberty cases lack a clearly identifiable cause. While a link between precocious puberty and the gut microbiota has been observed, the precise causality and underlying mechanisms remain elusive. This narrative review aims to systematically elucidate the potential mechanisms that underlie the intricate relationship between the gut microbiota and precocious puberty. Potential avenues of exploration include investigating the impact of the gut microbiota on endocrine function, particularly in the regulation of hormones, such as gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), and follicle-stimulating hormone (FSH). Additionally, this review will delve into the intricate interplay between the gut microbiome, metabolism, and obesity, considering the known association between obesity and precocious puberty. This review will also explore how the microbiome's involvement in nutrient metabolism could impact precocious puberty. Finally, attention is given to the microbiota's ability to produce neurotransmitters and neuroactive compounds, potentially influencing the central nervous system components involved in regulating puberty. By exploring these mechanisms, this narrative review seeks to identify unexplored targets and emerging directions in understanding the role of the gut microbiome in relation to precocious puberty. The ultimate goal is to provide valuable insights for the development of non-invasive diagnostic methods and innovative therapeutic strategies for precocious puberty in the future, such as specific probiotic therapy.
Collapse
Affiliation(s)
- Min Yue
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lei Zhang
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
19
|
Anderson GM, Hill JW, Kaiser UB, Navarro VM, Ong KK, Perry JRB, Prevot V, Tena-Sempere M, Elias CF. Metabolic control of puberty: 60 years in the footsteps of Kennedy and Mitra's seminal work. Nat Rev Endocrinol 2024; 20:111-123. [PMID: 38049643 PMCID: PMC10843588 DOI: 10.1038/s41574-023-00919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/06/2023]
Abstract
An individual's nutritional status has a powerful effect on sexual maturation. Puberty onset is delayed in response to chronic energy insufficiency and is advanced under energy abundance. The consequences of altered pubertal timing for human health are profound. Late puberty increases the chances of cardiometabolic, musculoskeletal and neurocognitive disorders, whereas early puberty is associated with increased risks of adult obesity, type 2 diabetes mellitus, cardiovascular diseases and various cancers, such as breast, endometrial and prostate cancer. Kennedy and Mitra's trailblazing studies, published in 1963 and using experimental models, were the first to demonstrate that nutrition is a key factor in puberty onset. Building on this work, the field has advanced substantially in the past decade, which is largely due to the impressive development of molecular tools for experimentation and population genetics. In this Review, we discuss the latest advances in basic and translational sciences underlying the nutritional and metabolic control of pubertal development, with a focus on perspectives and future directions.
Collapse
Affiliation(s)
- Greg M Anderson
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor M Navarro
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken K Ong
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - John R B Perry
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Vincent Prevot
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain.
| | - Carol F Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Zhang M, Sun J, Wang Y, Wu Y, Li X, Li R, Fang Y, Bai H, Luo P, Yuan Y. The value of luteinizing hormone basal values and sex hormone-binding globulin for early diagnosis of rapidly progressive central precocious puberty. Front Endocrinol (Lausanne) 2024; 14:1273170. [PMID: 38317710 PMCID: PMC10840421 DOI: 10.3389/fendo.2023.1273170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/26/2023] [Indexed: 02/07/2024] Open
Abstract
Objective This study aimed to investigate the diagnostic value of luteinizing hormone (LH) basal values and sex hormone-binding globulin (SHBG) for rapidly progressive central precocious puberty (RP-CPP). Methods A total of 121 girls presenting with secondary sexual characteristics were selected from the Department of Pediatric Endocrinology, Lianyungang Clinical Medical College of Nanjing Medical University, from May 2021 to June 2023. The children were followed up for 6 months and were divided into three groups: RP-CPP group (n=40), slowly progressive central precocious puberty (SP-CPP) group (n=40), and premature thelarche (PT) group (n=41). The differences in LH basal values and SHBG among girls in the three groups were compared. ROC curves were drawn to analyze the value of LH basal values and SHBG in identifying RP-CPP. Results Significant differences were observed in age, height, predicted adult height (PAH), weight, body mass index (BMI), bone age (BA), BA-chronological age (CA), LH basal, LH peak, FSH basal, LH peak/FSH peak, estradiol (E2), testosterone, and SHBG levels between the RP-CPP group and the SP-CPP and PT groups (P < 0.05). The LH basal value in the RP-CPP group was higher than that in the SP-CPP group and the PT group, while SHBG levels were lower than in the latter two groups, and these differences were statistically significant (P < 0.05). When the LH basal value was ≥0.58 IU/L and SHBG was ≤58.79 nmol/L, the sensitivity for diagnosing RP-CPP was 77.5% and 67.5%, and the specificity was 66.7% and 74.1%. Conclusion Detection of basal LH and SHBG levels allows for early diagnosis of the progression of central precocious puberty.
Collapse
Affiliation(s)
- Meiyu Zhang
- Pediatric Endocrinology Department, The First People's Hospital of Lianyuangang, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Jun Sun
- Pediatric Endocrinology Department, The First People's Hospital of Lianyuangang, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
- Pediatric Endocrinology Department, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, China
| | - Ying Wang
- Pediatric Endocrinology Department, Postgraduate Training Base of Lianyungang First People's Hospital of Jinzhou Medical University, Liaoning, China
| | - Yanhui Wu
- Pediatric Endocrinology Department, The First People's Hospital of Lianyuangang, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Xiaona Li
- Pediatric Endocrinology Department, The First People's Hospital of Lianyuangang, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
- Pediatric Endocrinology Department, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, China
| | - Rong Li
- Pediatric Endocrinology Department, The First People's Hospital of Lianyuangang, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
- Pediatric Endocrinology Department, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, China
| | - Yafei Fang
- Pediatric Endocrinology Department, The First People's Hospital of Lianyuangang, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
- Pediatric Endocrinology Department, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, China
| | - Hua Bai
- Pediatric Endocrinology Department, The First People's Hospital of Lianyuangang, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
- Pediatric Endocrinology Department, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, China
| | - Peiliang Luo
- Pediatric Endocrinology Department, The First People's Hospital of Lianyuangang, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
- Pediatric Endocrinology Department, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, China
| | - Yingdi Yuan
- Pediatric Endocrinology Department, The First People's Hospital of Lianyuangang, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
- Pediatric Endocrinology Department, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, China
- Pediatric Endocrinology Department, Postgraduate Training Base of Lianyungang First People's Hospital of Jinzhou Medical University, Liaoning, China
| |
Collapse
|
21
|
Yuan Y, Szeto IMY, Li N, Yang H, Zhou Y, Liu B, He F, Zhang L, Duan S, Chen J. Effects of Menaquinone-7 on the Bone Health of Growing Rats under Calcium Restriction: New Insights from Microbiome-Metabolomics. Nutrients 2023; 15:3398. [PMID: 37571336 PMCID: PMC10421271 DOI: 10.3390/nu15153398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Insufficient calcium intake during growth is a global public health concern. The aim of this study was to investigate the effects of dietary menaquinone-7 (MK-7) on bone accrual in growing Sprague-Dawley rats under calcium restriction. Following 13 weeks of treatment, various bone quality parameters, including microarchitecture, were measured. Fecal and cecal samples were subjected to microbiome (16S rRNA gene sequencing) analyses, while metabolomics analysis of the cecum and humerus samples was analyzed based on UHPLC-Q/TOF-MS. We found that calcium deficiency diminished the richness of the microbiome and disrupted microbiome composition, accompanied by an elevation in the relative abundance of Parasutterella. Furthermore, calcium insufficiency escalated the level of isovaleric acid and modified the metabolic profiles. MK-7 supplementation significantly increased the cortical thickness, cortical bone area, and the calcium content of the femur. Apart from improving bone calcium deposition and diminishing bone resorption, the mechanisms underlying the beneficial effects of MK on bone quality also involve the modulation of the host's metabolic pathways and the composition of gut microbiota. The gut-bone axis holds promise as an efficacious target for ameliorating calcium deficiency in children's bone quality, and MK-7 is a promising dietary supplement from this perspective.
Collapse
Affiliation(s)
- Ya Yuan
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Y.Y.); (N.L.); (Y.Z.); (F.H.); (L.Z.)
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Ignatius Man-Yau Szeto
- Yili Maternal and Infant Nutrition Institute (YMINI), Inner Mongolia Yili Industrial Group, Co., Ltd., Beijing 100071, China; (I.M.-Y.S.); (B.L.)
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
- National Center of Technology Innovation for Dairy, Hohhot 013757, China
| | - Na Li
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Y.Y.); (N.L.); (Y.Z.); (F.H.); (L.Z.)
- Department of Nutrition, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hua Yang
- The Analysis and Assay Center of Sichuan University West China School of Public Health, Sichuan University, Chengdu 610093, China;
| | - Yunzheng Zhou
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Y.Y.); (N.L.); (Y.Z.); (F.H.); (L.Z.)
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Biao Liu
- Yili Maternal and Infant Nutrition Institute (YMINI), Inner Mongolia Yili Industrial Group, Co., Ltd., Beijing 100071, China; (I.M.-Y.S.); (B.L.)
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
| | - Fang He
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Y.Y.); (N.L.); (Y.Z.); (F.H.); (L.Z.)
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Y.Y.); (N.L.); (Y.Z.); (F.H.); (L.Z.)
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Sufang Duan
- Yili Maternal and Infant Nutrition Institute (YMINI), Inner Mongolia Yili Industrial Group, Co., Ltd., Beijing 100071, China; (I.M.-Y.S.); (B.L.)
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
- National Center of Technology Innovation for Dairy, Hohhot 013757, China
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Y.Y.); (N.L.); (Y.Z.); (F.H.); (L.Z.)
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu 610041, China
| |
Collapse
|
22
|
Huang X, Chen J, Zou H, Huang P, Luo H, Li H, Cai Y, Liu L, Li Y, He X, Xiang W. Gut microbiome combined with metabolomics reveals biomarkers and pathways in central precocious puberty. J Transl Med 2023; 21:316. [PMID: 37170084 PMCID: PMC10176710 DOI: 10.1186/s12967-023-04169-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/30/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Central precocious puberty (CPP) is a common disease in prepubertal children and results mainly from disorders in the endocrine system. Emerging evidence has highlighted the involvement of gut microbes in hormone secretion, but their roles and downstream metabolic pathways in CPP remain unknown. METHODS To explore the gut microbes and metabolism alterations in CPP, we performed the 16S rRNA sequencing and untargeted metabolomics profiling for 91 CPP patients and 59 healthy controls. Bioinformatics and statistical analyses, including the comparisons of alpha and beta diversity, abundances of microbes, were undertaken on the 16S rRNA gene sequences and metabolism profiling. Classifiers were constructed based on the microorganisms and metabolites. Functional and pathway enrichment analyses were performed for identification of the altered microorganisms and metabolites in CPP. RESULTS We integrated a multi-omics approach to investigate the alterations and functional characteristics of gut microbes and metabolites in CPP patients. The fecal microbiome profiles and fecal and blood metabolite profiles for 91 CPP patients and 59 healthy controls were generated and compared. We identified the altered microorganisms and metabolites during the development of CPP and constructed a machine learning-based classifier for distinguishing CPP. The Area Under Curves (AUCs) of the classifies were ranged from 0.832 to 1.00. In addition, functional analysis of the gut microbiota revealed that the nitric oxide synthesis was closely associated with the progression of CPP. Finally, we investigated the metabolic potential of gut microbes and discovered the genus Streptococcus could be a candidate molecular marker for CPP treatment. CONCLUSIONS Overall, we utilized multi-omics data from microorganisms and metabolites to build a classifier for discriminating CPP patients from the common populations and recognized potential therapeutic molecular markers for CPP through comprehensive analyses.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Department of Genetics, Metabolism and Endocrinology, Hainan Women and Children's Medical Center, Haikou, Hainan, China
| | - Jixiong Chen
- Department of Medical Care Center, Hainan Provincial People's Hospital, Haikou, Hainan, China
| | - Haozhe Zou
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hailing Luo
- Department of Genetics, Metabolism and Endocrinology, Hainan Women and Children's Medical Center, Haikou, Hainan, China
| | - Haidan Li
- Department of Genetics, Metabolism and Endocrinology, Hainan Women and Children's Medical Center, Haikou, Hainan, China
| | - Yuhua Cai
- Department of Genetics, Metabolism and Endocrinology, Hainan Women and Children's Medical Center, Haikou, Hainan, China
| | - Li Liu
- Department of Genetics, Metabolism and Endocrinology, Hainan Women and Children's Medical Center, Haikou, Hainan, China
| | - Yongsheng Li
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan, China.
| | - Xiaojie He
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Wei Xiang
- Department of Genetics, Metabolism and Endocrinology, Hainan Women and Children's Medical Center, Haikou, Hainan, China.
| |
Collapse
|
23
|
Calcaterra V, Magenes VC, Hruby C, Siccardo F, Mari A, Cordaro E, Fabiano V, Zuccotti G. Links between Childhood Obesity, High-Fat Diet, and Central Precocious Puberty. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020241. [PMID: 36832370 PMCID: PMC9954755 DOI: 10.3390/children10020241] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023]
Abstract
In recent years, the existing relationship between excess overweight and central precocious puberty (CPP) has been reported, especially in girls. Different nutritional choices have been associated with different patterns of puberty. In particular, the involvement of altered biochemical and neuroendocrine pathways and a proinflammatory status has been described in connection with a high-fat diet (HFD). In this narrative review, we present an overview on the relationship between obesity and precocious pubertal development, focusing on the role of HFDs as a contributor to activating the hypothalamus-pituitary-gonadal axis. Although evidence is scarce and studies limited, especially in the paediatric field, the harm of HFDs on PP is a relevant problem that cannot be ignored. Increased knowledge about HFD effects will be useful in developing strategies preventing precocious puberty in children with obesity. Promoting HFD-avoiding behavior may be useful in preserving children's physiological development and protecting reproductive health. Controlling HFDs may represent a target for policy action to improve global health.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
- Correspondence:
| | | | - Chiara Hruby
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
| | | | - Alessandra Mari
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
| | - Erika Cordaro
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
| | - Valentina Fabiano
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milano, 20157 Milano, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milano, 20157 Milano, Italy
| |
Collapse
|
24
|
Chen D. Commentary: Gut microbiota and its derived SCFAs regulate the HPGA to reverse obesity-induced precocious puberty in female rats. Front Endocrinol (Lausanne) 2023; 14:1121124. [PMID: 36761186 PMCID: PMC9905803 DOI: 10.3389/fendo.2023.1121124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
|
25
|
Calcaterra V, Rossi V, Massini G, Regalbuto C, Hruby C, Panelli S, Bandi C, Zuccotti G. Precocious puberty and microbiota: The role of the sex hormone-gut microbiome axis. Front Endocrinol (Lausanne) 2022; 13:1000919. [PMID: 36339428 PMCID: PMC9634744 DOI: 10.3389/fendo.2022.1000919] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Puberty is a critical phase of life associated with physiological changes related to sexual maturation, and represents a complex process regulated by multiple endocrine and genetic controls. Puberty is driven by hormones, and it can impact the gut microbiome (GM). GM differences between sex emerge at puberty onset, confirming a relationship between microbiota and sex hormones. In this narrative review, we present an overview of precocious pubertal development and the changes in the GM in precocious puberty (PP) in order to consider the role of the sex hormone-gut microbiome axis from the perspective of pediatric endocrinology. Bidirectional interactions between the GM and sex hormones have been proposed in different studies. Although the evidence on the interaction between microbiota and sex hormones remains limited in pediatric patients, the evidence that GM alterations may occur in girls with central precocious puberty (CPP) represents an interesting finding for the prediction and prevention of PP. Deepening the understanding of the connection between the sex hormones and the role of microbiota changes can lead to the implementation of microbiota-targeted therapies in pubertal disorders by offering a pediatric endocrinology perspective.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
- Department of Internal Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Valeria Calcaterra,
| | - Virginia Rossi
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
| | - Giulia Massini
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
| | - Corrado Regalbuto
- Pediatric unit , Fondazione Istituto di Ricovero e Cura a Carattere (IRCCS) Policlinico S. Matteo and University of Pavia, Pavia, Italy
| | - Chiara Hruby
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
| | - Simona Panelli
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Claudio Bandi
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| |
Collapse
|
26
|
Wang L, Xu H, Tan B, Yi Q, Liu H, Deng H, Chen Y, Wang R, Tian J, Zhu J. Gut microbiota and its derived SCFAs regulate the HPGA to reverse obesity-induced precocious puberty in female rats. Front Endocrinol (Lausanne) 2022; 13:1051797. [PMID: 36568086 PMCID: PMC9782419 DOI: 10.3389/fendo.2022.1051797] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
The intestinal microbiota and its derived short-chain fatty acids (SCFAs) can reverse obesity and obesity-related metabolic diseases, but whether it has an effect on obesity complicated by precocious puberty and its potential mechanism need to be further understood. The purpose of this study was to investigate the effect of the gut microbiota and its derived short-chain fatty acids (SCFAs) on obesity-induced precocious puberty rats and their regulatory mechanisms. We constructed obesity-induced precocious puberty rats using a high-fat diet (HFD) had notable similarity to precocious puberty caused by obesity due to overeating in children. We then added acetate, propionate, butyrate or their mixture to the HFD, and investigated the effect of intestinal microbiota and its derived SCFAs on the hypothalamic-pituitary-gonadal axis (HPGA) in rats with obesity-induced precocious puberty. We found that obesity-induced precocious puberty rats had an early first estrous cycle, increased hypothalamic mRNA expression of Kiss1, GPR54 and GnRH, and early gonadal maturation. Meanwhile, the intestinal microbiota imbalance and the main SCFAs production decreased in the colon. The addition of acetate, propionate, butyrate or their mixture to the HFD could significantly reverse the precocious puberty of rats, reduce GnRH release from the hypothalamus and delay the development of the gonadal axis through the Kiss1-GPR54-PKC-ERK1/2 pathway. Our findings suggest that gut microbiota-derived SCFAs are promising therapeutic means for the prevention of obesity-induced precocious puberty and provide new therapeutic strategies with clinical value.
Collapse
Affiliation(s)
- Li Wang
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Department of Clinical Laboratory, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Xu
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Department of Clinical Laboratory, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Tan
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qin Yi
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Huiwen Liu
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hongrong Deng
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yunxia Chen
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Rui Wang
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jie Tian
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Department of Cardiovascular Internal Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhu
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
- *Correspondence: Jing Zhu,
| |
Collapse
|