1
|
Golshany H, Helmy SA, Morsy NFS, Kamal A, Yu Q, Fan L. The gut microbiome across the lifespan: how diet modulates our microbial ecosystem from infancy to the elderly. Int J Food Sci Nutr 2025; 76:95-121. [PMID: 39701663 DOI: 10.1080/09637486.2024.2437472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/16/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024]
Abstract
This comprehensive review examines the impact of dietary patterns on gut microbiome composition and diversity from infancy to old age, linking these changes to age-related health outcomes. It investigates how the gut microbiome develops and changes across life stages, focusing on the influence of dietary factors. The review explores how early-life feeding practices, including breastfeeding and formula feeding, shape the infant gut microbiota and have lasting effects. In elderly individuals, alterations in the gut microbiome are associated with increased susceptibility to infections, chronic inflammation, metabolic disorders and cognitive decline. The critical role of diet in modulating the gut microbiome throughout life is emphasised, particularly the potential benefits of probiotics and fortified foods in promoting healthy ageing. By elucidating the mechanisms connecting food systems to gut health, this review provides insights into interventions that could enhance gut microbiome resilience and improve health outcomes across the lifespan.
Collapse
Affiliation(s)
- Hazem Golshany
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | | | - Aya Kamal
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Qun Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety & Quality Control, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Zhang Y, Ma R, Suolangduoerji, Ma S, Nuertai A, He K, Liu H, Zhu Y. Annual cycle variations in the gut microbiota of migratory black-necked cranes. Front Microbiol 2025; 16:1533282. [PMID: 39990144 PMCID: PMC11844351 DOI: 10.3389/fmicb.2025.1533282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025] Open
Abstract
Introduction Migratory birds exhibit unique annual cycles that complicate their gut microbiota. However, the annual dynamics of gut microbiota in migratory birds remain unclear, hindering our understanding of their environmental adaptation. Methods Here, we collected fecal samples from black-necked cranes (Grus nigricollis) across four seasons at their breeding grounds and used wintering ground data from databases to characterize their gut microbial compositions throughout the year. Results and discussion The results showed that the gut microbiota was clustered by season (Bray-Curtis: R 2 = 0.348, p < 0.001; UniFrac: R 2 = 0.352, p < 0.001). And the summer samples exhibited higher alpha (Simpson and Shannon), beta diversity (Bray-Curtis and UniFrac) and more diverse functions in gut microbiota compared to other seasons. Furthermore, in summer, the gut microbiota exhibited several balanced relative abundances at the family level, whereas Lactobacillaceae family dominated during the other seasons. Thirty-six ASVs were identified by random forest analysis to distinguish samples from distinct seasons. Despite having greater diversity, the summer gut microbiota had a simpler network structure than the other seasons (fewer edges and nodes). The dispersal limitation during random processes also significantly influenced gut microbial community assembly. Overall, the gut microbiota of the black-necked crane undergoes dynamic adjustments to adapt to seasonal environmental changes, which may be associated with the variations in diet across seasons. These results enhance our understanding of the gut microbiota of wild migratory birds and support further research on black-necked cranes.
Collapse
Affiliation(s)
- Yujia Zhang
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Ruifeng Ma
- College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Sichuan Provincial Forest and Grassland Key Laboratory of Alpine Grassland Conservation and Utilization of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| | - Suolangduoerji
- Sichuan Ruoergai Wetland National Nature Reserve Administration, Ruoergai, Ruoergai, Aba Tibetan and Qiang Autonomous Prefecture, China
| | - Shujuan Ma
- College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Sichuan Provincial Forest and Grassland Key Laboratory of Alpine Grassland Conservation and Utilization of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
- Luxian NO.1 High School, Luzhou, Luzhou, Sichuan, China
| | - Akebota Nuertai
- College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Sichuan Provincial Forest and Grassland Key Laboratory of Alpine Grassland Conservation and Utilization of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| | - Ke He
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Hongyi Liu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Ying Zhu
- College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Sichuan Provincial Forest and Grassland Key Laboratory of Alpine Grassland Conservation and Utilization of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Liukkonen M, Muriel J, Martínez-Padilla J, Nord A, Pakanen VM, Rosivall B, Tilgar V, van Oers K, Grond K, Ruuskanen S. Seasonal and environmental factors contribute to the variation in the gut microbiome: A large-scale study of a small bird. J Anim Ecol 2024; 93:1475-1492. [PMID: 39041321 DOI: 10.1111/1365-2656.14153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/25/2024] [Indexed: 07/24/2024]
Abstract
Environmental variation can shape the gut microbiome, but broad/large-scale data on among and within-population heterogeneity in the gut microbiome and the associated environmental factors of wild populations is lacking. Furthermore, previous studies have limited taxonomical coverage, and knowledge about wild avian gut microbiomes is still scarce. We investigated large-scale environmental variation in the gut microbiome of wild adult great tits across the species' European distribution range. We collected fecal samples to represent the gut microbiome and used the 16S rRNA gene sequencing to characterize the bacterial gut microbiome. Our results show that gut microbiome diversity is higher during winter and that there are compositional differences between winter and summer gut microbiomes. During winter, individuals inhabiting mixed forest habitat show higher gut microbiome diversity, whereas there was no similar association during summer. Also, temperature was found to be a small contributor to compositional differences in the gut microbiome. We did not find significant differences in the gut microbiome among populations, nor any association between latitude, rainfall and the gut microbiome. The results suggest that there is a seasonal change in wild avian gut microbiomes, but that there are still many unknown factors that shape the gut microbiome of wild bird populations.
Collapse
Affiliation(s)
- Martta Liukkonen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Jaime Muriel
- Department of Biology, University of Turku, Turku, Finland
| | - Jesús Martínez-Padilla
- Department of Biodiversity Conservation and Ecosystem Restoration, Pyrenean Institute of Ecology (IPE-CSIC), Jaca, Spain
| | - Andreas Nord
- Department of Biology, Lund University, Lund, Sweden
| | | | - Balázs Rosivall
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Vallo Tilgar
- Department of Zoology, Tartu University, Tartu, Estonia
| | - Kees van Oers
- Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Kirsten Grond
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska, USA
| | - Suvi Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Feng X, Zhu R, Luo C, Zhan T, Feng Y, Zhu Y, Zhang H, Liu J, Li S, Zhang J, Sun D, Li J, Ding N, Hua R. Alterations in captive Alexandrine parakeet (Palaeornis eupatria) gut microbiome and metabolome in response to dietary change. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101302. [PMID: 39084149 DOI: 10.1016/j.cbd.2024.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
The Alexandrine parakeet (Palaeornis eupatria), also known as the Alexandrine parrot, is a critically endangered species in the world and a national second class protected animal. Current knowledge on gut microbiome and metabolome of captive Alexandrine parrots is limited. In the current study, we characterized the effect of dietary change with pellet feeding on the gut microbiome and metaboliome in Alexandrine parrots using 16S gene sequencing and liquid chromatography with tandem mass spectrometry (LC-MS/MS). Total of 12 Alexandrine parrots were used in a cross-over study with each period for 10 days. The results showed that dietary change with pellet feeding did not affect alpha indices of gut microbiota. Cyanobacteria, Firmicutes and Proteobacteria were the predominant bacterial phyla in the gut of Alexandrine parrot with Cynobacteria being the highest. Change of diet significantly increased the relative abundance of Actinobacteria and decreased Spirochaetota. The relative abundance of Fusobacteriota tended to increase with pellet feeding. No treatment effects were observed between the control and pellet feeding groups at the genus level. Based on the annotation results from Clusters of Orthologous Genes (COG) database, dietary change with pellet feeding significantly increased the relative abundance of genes coding for extracellular structures and lipid transport and metabolism. Metabolomics analysis combined with enrichment analysis revealed that dietary change altered the concentrations of gut metabolites as well as the metabolic pattern, and significantly affected the concentrations of fecal metabolites involved in isoflavonoid biosynthesis, flavonoid biosynthesis, nucleotide metabolism etc. In summary, dietary changes with pellet feeding affected the gut microbial composition and metabolites to some extent. The relevance of current findings to Alexandrine parrots' health and potential zoonosis need further exploring.
Collapse
Affiliation(s)
- Xin Feng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Rongxia Zhu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Caiyu Luo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Tongtong Zhan
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Yan Feng
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Yunyun Zhu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Huan Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Jia Liu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Shuhong Li
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Jing Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Dongting Sun
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Jing Li
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Nan Ding
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China.
| | - Rong Hua
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China.
| |
Collapse
|
5
|
Sakda P, Xiang X, Song Z, Wu Y, Zhou L. Impact of Season on Intestinal Bacterial Communities and Pathogenic Diversity in Two Captive Duck Species. Animals (Basel) 2023; 13:3879. [PMID: 38136916 PMCID: PMC10740475 DOI: 10.3390/ani13243879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Vertebrates and their gut bacteria interact in complex and mutually beneficial ways. The intestinal microbial composition is influenced by several external influences. In addition to food, the abiotic elements of the environment, such as temperature, humidity, and seasonal fluctuation are also important determinants. Fecal samples were collected from two captive duck species, Baikal teal (Sibirionetta formosa) and common teal (Anas crecca) across four seasons (summer, autumn, winter, and spring). These ducks were consistently fed the same diet throughout the entire experiment. High throughput sequencing (Illumina Mi-seq) was employed to analyze the V4-V5 region of the 16sRNA gene. The dominant phyla in all seasons were Proteobacteria and Firmicutes. Interestingly, the alpha diversity was higher in winter for both species. The NMDS, PCoA, and ANOSIM analysis showed the distinct clustering of bacterial composition between different seasons, while no significant differences were discovered between duck species within the same season. In addition, LefSe analysis demonstrated specific biomarkers in different seasons, with the highest number revealed in winter. The co-occurrence network analysis also showed that during winter, the network illustrated a more intricate structure with the greatest number of nodes and edges. However, this study identified ten potentially pathogenic bacterial species, which showed significantly enhanced diversity and abundance throughout the summer. Overall, our results revealed that season mainly regulated the intestinal bacterial community composition and pathogenic bacteria of captive ducks under the instant diet. This study provides an important new understanding of the seasonal variations in captive wild ducks' intestinal bacterial community structure. The information available here may be essential data for preventing and controlling infections caused by pathogenic bacteria in captive waterbirds.
Collapse
Affiliation(s)
- Patthanan Sakda
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Xingjia Xiang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
- Anhui Shengjin Lake Wetland Ecology National Long-Term Scientific Research Base, Chizhou 247230, China
| | - Zhongqiao Song
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
| | - Yuannuo Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Lizhi Zhou
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
- Anhui Shengjin Lake Wetland Ecology National Long-Term Scientific Research Base, Chizhou 247230, China
| |
Collapse
|