1
|
López de Egea G, González-Díaz A, Olsen RJ, Guédon G, Berbel D, Grau I, Càmara J, Saiz-Escobedo L, Calvo-Silveria S, Cadenas-Jiménez I, Marimón JM, Cercenado E, Casabella A, Martí S, Domínguez MÁ, Leblond-Bourget N, Musser JM, Ardanuy C. Emergence of invasive Streptococcus dysgalactiae subsp. equisimilis in Spain (2012-2022): genomic insights and clinical correlations. Int J Infect Dis 2025; 153:107778. [PMID: 39800082 DOI: 10.1016/j.ijid.2025.107778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025] Open
Abstract
OBJECTIVES An increase in Streptococcus dysgalactiae subsp. equisimilis (SDSE) infections has been documented worldwide. This study aims to analyze invasive disease caused by SDSE (iSDSE) in adults over an 11-year period in Spain. METHODS We conducted a retrospective, laboratory-based study of iSDSE detected at Hospital Universitari de Bellvitge (HUB) from 2012 to 2022 (n = 89) and isolates collected in three Spanish hospitals in 2018 (n = 22). Clinical data from HUB were collected. Isolates were tested for antimicrobial susceptibility (European Committee on Antimicrobial Susceptibility Testing 2023), subjected to whole genome sequencing and analyzed for mobile genetic elements (MGEs). A mouse model was used to analyze virulence. RESULTS iSDSE episodes at HUB occurred predominantly in older patients with comorbidities (particularly, diabetes, chronic heart disease, and malignancies). Whole genome sequencing revealed a high genetic diversity, with the most common lineages being CC15, CC17, and CC20. Various virulence factors, including the superantigen speG, were identified. Macrolides, lincosamides, and tetracyclines exhibited the highest resistance rates (>27%) and changed over time, linked to multiple MGEs. The mouse model highlighted the virulence of the CC20-stG62647 lineage, but these results were discordant with clinical data. CONCLUSION iSDSE incidence is increasing and associated with older patients with comorbidities. Genetically, SDSE is diverse with a high capacity to integrate MGEs carrying resistance determinants. Mouse model studies showed the enhanced virulence of the CC20-stG62647 lineage. These findings underscore the need for ongoing surveillance of this emerging pathogen.
Collapse
Affiliation(s)
- Guillem López de Egea
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain; Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Aida González-Díaz
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Randall J Olsen
- Laboratory of Molecular and Translational Human Infectious Disease Research, Center for Infectious Diseases, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, USA
| | - Gérard Guédon
- Université de Lorraine, INRAE, DynAMic, Nancy, France
| | - Dàmaris Berbel
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Immaculada Grau
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain; Infectious Diseases Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Spain
| | - Jordi Càmara
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Lucía Saiz-Escobedo
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Spain
| | - Sara Calvo-Silveria
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Irene Cadenas-Jiménez
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - José María Marimón
- Biodonostia, Infectious Diseases Area, Respiratory Infection and Antimicrobial Resistance Group, Osakidetza Basque Health Service, Donostialdea Integrated Health Organization, Microbiology Department, San Sebastián, Spain
| | - Emilia Cercenado
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain; Clinical Microbiology and Infectious Disease Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Antonio Casabella
- Microbiology Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Sara Martí
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - M Ángeles Domínguez
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; Research Network for Infectious Diseases (CIBERINFEC), ISCIII, Madrid, Spain
| | | | - James M Musser
- Laboratory of Molecular and Translational Human Infectious Disease Research, Center for Infectious Diseases, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, USA
| | - Carmen Ardanuy
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain; Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
2
|
Ma J, Wu H, Ma Z, Wu Z. Bacterial and host factors involved in zoonotic Streptococcal meningitis. Microbes Infect 2025; 27:105335. [PMID: 38582147 DOI: 10.1016/j.micinf.2024.105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Zoonotic streptococci cause several invasive diseases with high mortality rates, especially meningitis. Numerous studies elucidated the meningitis pathogenesis of zoonotic streptococci, some specific to certain bacterial species. In contrast, others are shared among different bacterial species, involving colonization and invasion of mucosal barriers, survival in the bloodstream, breaching the blood-brain and/or blood-cerebrospinal fluid barrier to access the central nervous system, and triggering inflammation of the meninges. This review focuses on the recent advancements in comprehending the molecular and cellular events of five major zoonotic streptococci responsible for causing meningitis in humans or animals, including Streptococcus agalactiae, Streptococcus equi subspecies zooepidemicus, Streptococcus suis, Streptococcus dysgalactiae, and Streptococcus iniae. The underlying mechanism was summarized into four themes, including 1) bacterial survival in blood, 2) brain microvascular endothelial cell adhesion and invasion, 3) penetration of the blood-brain barrier, and 4) activation of the immune system and inflammatory reaction within the brain. This review may contribute to developing therapeutics to prevent or mitigate injury of streptococcal meningitis and improve risk stratification.
Collapse
Affiliation(s)
- Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Huizhen Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China; Guangdong Provincial Key Laboratory of Research on the Technology of Pig-breeding and Pig-disease Prevention, Guangzhou 511400, China.
| |
Collapse
|
3
|
Eraso JM, Olsen RJ, Long SW, Gadd R, Boukthir S, Faili A, Kayal S, Musser JM. Integrative genomic, virulence, and transcriptomic analysis of emergent Streptococcus dysgalactiae subspecies equisimilis (SDSE) emm type stG62647 isolates causing human infections. mBio 2024; 15:e0257824. [PMID: 39417630 PMCID: PMC11559094 DOI: 10.1128/mbio.02578-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Streptococcus dysgalactiae subspecies equisimilis (SDSE) is a Gram-positive bacterial pathogen that infects humans and is closely related to group A streptococcus (GAS). Compared with GAS, far less is known about SDSE pathobiology. Increased rates of invasive SDSE infections have recently been reported in many countries. One SDSE emm type (stG62647) is known to cause severe diseases, including necrotizing soft-tissue infections, endocarditis, and osteoarticular infections. To increase our understanding of the molecular pathogenesis of stG62647 SDSE isolates causing human infections, we sequenced to closure the genomes of 120 stG62647 SDSE isolates. The genomes varied in size from 2.1 to 2.24 Mb pairs. The great majority of stG62647 isolates had IS1548 integrated into the silB gene, thereby inactivating it. Regions of difference, such as mobile genetic elements, were the largest source of genomic diversity. All 120 stG62647 isolates were assayed for virulence using a well-established mouse model of necrotizing myositis. An unexpectedly wide range of virulence was identified (20% to 95%), as assessed by near-mortality data. To explore the molecular mechanisms underlying virulence differences, we analyzed RNAseq transcriptome profiles for 38 stG62647 isolates (comprising the 19 least and most virulent) grown in vitro. Genetic polymorphisms were identified from whole-genome sequence data. Collectively, the results suggest that these SDSE isolates use multiple genetic pathways to alter virulence phenotype. The data also suggest that human genetics and underlying medical conditions contribute to disease severity. Our study integrates genomic, mouse virulence, and RNAseq data to advance our understanding of SDSE pathobiology and its molecular pathogenesis. IMPORTANCE This study integrated genomic sequencing, mouse virulence assays, and bacterial transcriptomic analysis to advance our understanding of the molecular mechanisms contributing to Streptococcus dysgalactiae subsp. equisimilis emm type stG62647 pathogenesis. We tested a large cohort of genetically closely related stG62647 isolates for virulence using an established mouse model of necrotizing myositis and discovered a broad spectrum of virulence phenotypes, with near-mortality rates ranging from 20% to 95%. This variation was unexpected, given their close genetic proximity. Transcriptome analysis of stG62647 isolates responsible for the lowest and highest near-mortality rates suggested that these isolates used multiple molecular pathways to alter their virulence. In addition, some genes encoding transcriptional regulators and putative virulence factors likely contribute to SDSE emm type stG62647 pathogenesis. These data underscore the complexity of pathogen-host interactions in an emerging SDSE clonal group.
Collapse
Affiliation(s)
- Jesus M. Eraso
- Laboratory for Molecular and Translational Human Infectious Diseases Research, Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Randall J. Olsen
- Laboratory for Molecular and Translational Human Infectious Diseases Research, Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - S. Wesley Long
- Laboratory for Molecular and Translational Human Infectious Diseases Research, Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - Ryan Gadd
- Laboratory for Molecular and Translational Human Infectious Diseases Research, Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Sarrah Boukthir
- CHU de Rennes, Service de Bacteriologie-Hygiène Hospitalière, Rennes, France
- INSERM, CIC 1414, Rennes, France
- Université Rennes 1, Faculté de Médecine, Rennes, France
| | - Ahmad Faili
- INSERM, CIC 1414, Rennes, France
- Université Rennes 1, Faculté de Pharmacie, Rennes, France
- OSS-Oncogenesis, Stress, and Signaling, INSERM 1242, Rennes, France
| | - Samer Kayal
- CHU de Rennes, Service de Bacteriologie-Hygiène Hospitalière, Rennes, France
- INSERM, CIC 1414, Rennes, France
- Université Rennes 1, Faculté de Médecine, Rennes, France
- OSS-Oncogenesis, Stress, and Signaling, INSERM 1242, Rennes, France
| | - James M. Musser
- Laboratory for Molecular and Translational Human Infectious Diseases Research, Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
4
|
Xie O, Davies MR, Tong SYC. Streptococcus dysgalactiae subsp. equisimilis infection and its intersection with Streptococcus pyogenes. Clin Microbiol Rev 2024; 37:e0017523. [PMID: 38856686 PMCID: PMC11392527 DOI: 10.1128/cmr.00175-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYStreptococcus dysgalactiae subsp. equisimilis (SDSE) is an increasingly recognized cause of disease in humans. Disease manifestations range from non-invasive superficial skin and soft tissue infections to life-threatening streptococcal toxic shock syndrome and necrotizing fasciitis. Invasive disease is usually associated with co-morbidities, immunosuppression, and advancing age. The crude incidence of invasive disease approaches that of the closely related pathogen, Streptococcus pyogenes. Genomic epidemiology using whole-genome sequencing has revealed important insights into global SDSE population dynamics including emerging lineages and spread of anti-microbial resistance. It has also complemented observations of overlapping pathobiology between SDSE and S. pyogenes, including shared virulence factors and mobile gene content, potentially underlying shared pathogen phenotypes. This review provides an overview of the clinical and genomic epidemiology, disease manifestations, treatment, and virulence determinants of human infections with SDSE with a particular focus on its overlap with S. pyogenes. In doing so, we highlight the importance of understanding the overlap of SDSE and S. pyogenes to inform surveillance and disease control strategies.
Collapse
Affiliation(s)
- Ouli Xie
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Monash Infectious Diseases, Monash Health, Melbourne, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Steven Y C Tong
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Disease Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
5
|
Mårli MT, Oppegaard O, Porcellato D, Straume D, Kjos M. Genetic modification of Streptococcus dysgalactiae by natural transformation. mSphere 2024; 9:e0021424. [PMID: 38904369 PMCID: PMC11288034 DOI: 10.1128/msphere.00214-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Streptococcus dysgalactiae is an emerging human and animal pathogen. Functional studies of genes involved in virulence of S. dysgalactiae and other pyogenic group streptococci are often hampered by limited genetic tractability. It is known that pyogenic streptococci carry genes required for competence for natural transformation; however, in contrast to other streptococcal subgroups, there is limited evidence for gene transfer by natural transformation in these bacteria. In this study, we systematically assessed the genomes of 179 S. dysgalactiae strains of both human and animal origins (subsp. equisimilis and dysgalactiae, respectively) for the presence of genes required for natural transformation. While a considerable fraction of the strains contained inactive genes, the majority (64.2%) of the strains had an intact gene set. In selected strains, we examined the dynamics of competence activation after addition of competence-inducing pheromones using transcriptional reporter assays and exploratory RNA-seq. Based on these findings, we were able to establish a protocol allowing us to utilize natural transformation to construct deletion mutants by allelic exchange in several S. dysgalactiae strains of both subspecies. As part of the work, we deleted putative lactose utilization genes to study their role in growth on lactose. The data presented here provide new knowledge on the potential of horizonal gene transfer by natural transformation in S. dysgalactiae and, importantly, demonstrates the possibility to exploit natural transformation for genetic engineering in these bacteria. IMPORTANCE Numerous Streptococcus spp. exchange genes horizontally through natural transformation, which also facilitates efficient genetic engineering in these organisms. However, for the pyogenic group of streptococci, including the emerging pathogen Streptococcus dysgalactiae, there is limited experimental evidence for natural transformation. In this study, we demonstrate that natural transformation in vitro indeed is possible in S. dysgalactiae strains under optimal conditions. We utilized this method to perform gene deletion through allelic exchange in several strains, thereby paving the way for more efficient gene engineering methods in pyogenic streptococci.
Collapse
Affiliation(s)
- Marita Torrissen Mårli
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Oddvar Oppegaard
- Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Daniel Straume
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
6
|
Glambek M, Skrede S, Sivertsen A, Kittang BR, Kaci A, Jonassen CM, Jørgensen HJ, Oppegaard O. Antimicrobial resistance patterns in Streptococcus dysgalactiae in a One Health perspective. Front Microbiol 2024; 15:1423762. [PMID: 39193432 PMCID: PMC11348040 DOI: 10.3389/fmicb.2024.1423762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 08/29/2024] Open
Abstract
Background Streptococcus dysgalactiae (SD) is an important pathogen in humans as well as in a broad range of animal species. Escalating rates of antibiotic resistance in SD has been reported in both human and veterinary clinical practice, but the dissemination of resistance determinants has so far never been examined in a One Health Perspective. We wanted to explore the occurrence of zoonotic transmission of SD and the potential for exchange of resistance traits between SD from different host populations. Methods We compared whole genome sequences and phenotypical antimicrobial susceptibility of 407 SD isolates, comprising all isolates obtained from human bloodstream infections in 2018 (n = 274) and available isolates associated with animal infections from the years 2018 and 2019 (n = 133) in Norway. Results Antimicrobial resistance genes were detected in 70 (26%), 9 (25%) and 2 (2%) of the isolates derived from humans, companion animals and livestock, respectively. Notably, distinct host associated genotypic resistomes were observed. The erm(A) gene was the dominant cause of erythromycin resistance in human associated isolates, whereas only erm(B) and lsa(C) were identified in SD isolates from animals. Moreover, the tetracycline resistance gene tet(O) was located on different mobile genetic elements in SD from humans and animals. Evidence of niche specialization was also evident in the phylogenetic analysis, as the isolates could be almost perfectly delineated in accordance with host species. Nevertheless, near identical mobile genetic elements were observed in four isolates from different host species including one human, implying potential transmission of antibiotic resistance between different environments. Conclusion We found a phylogenetic delineation of SD strains in line with host adapted populations and niche specialization. Direct transmission of strains or genetic elements carrying resistance genes between SD from different ecological niches appears to be rare in our geographical region.
Collapse
Affiliation(s)
- Marte Glambek
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Steinar Skrede
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine 2, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Audun Sivertsen
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Bård Reiakvam Kittang
- Department of Clinical Medicine 2, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Haraldsplass Deaconess Hospital (HDS), Bergen, Norway
| | - Alba Kaci
- Center for Laboratory Medicine, Østfold Hospital, Grålum, Norway
| | - Christine Monceyron Jonassen
- Center for Laboratory Medicine, Østfold Hospital, Grålum, Norway
- Department of Virology, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | - Oddvar Oppegaard
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine 2, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Xie O, Morris JM, Hayes AJ, Towers RJ, Jespersen MG, Lees JA, Ben Zakour NL, Berking O, Baines SL, Carter GP, Tonkin-Hill G, Schrieber L, McIntyre L, Lacey JA, James TB, Sriprakash KS, Beatson SA, Hasegawa T, Giffard P, Steer AC, Batzloff MR, Beall BW, Pinho MD, Ramirez M, Bessen DE, Dougan G, Bentley SD, Walker MJ, Currie BJ, Tong SYC, McMillan DJ, Davies MR. Inter-species gene flow drives ongoing evolution of Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis. Nat Commun 2024; 15:2286. [PMID: 38480728 PMCID: PMC10937727 DOI: 10.1038/s41467-024-46530-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Streptococcus dysgalactiae subsp. equisimilis (SDSE) is an emerging cause of human infection with invasive disease incidence and clinical manifestations comparable to the closely related species, Streptococcus pyogenes. Through systematic genomic analyses of 501 disseminated SDSE strains, we demonstrate extensive overlap between the genomes of SDSE and S. pyogenes. More than 75% of core genes are shared between the two species with one third demonstrating evidence of cross-species recombination. Twenty-five percent of mobile genetic element (MGE) clusters and 16 of 55 SDSE MGE insertion regions were shared across species. Assessing potential cross-protection from leading S. pyogenes vaccine candidates on SDSE, 12/34 preclinical vaccine antigen genes were shown to be present in >99% of isolates of both species. Relevant to possible vaccine evasion, six vaccine candidate genes demonstrated evidence of inter-species recombination. These findings demonstrate previously unappreciated levels of genomic overlap between these closely related pathogens with implications for streptococcal pathobiology, disease surveillance and prevention.
Collapse
Affiliation(s)
- Ouli Xie
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Monash Infectious Diseases, Monash Health, Melbourne, Australia
| | - Jacqueline M Morris
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Andrew J Hayes
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Rebecca J Towers
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Magnus G Jespersen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - John A Lees
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Hinxton, Cambridgeshire, UK
| | - Nouri L Ben Zakour
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Olga Berking
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Sarah L Baines
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Glen P Carter
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | | | - Layla Schrieber
- Faculty of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Liam McIntyre
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jake A Lacey
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Taylah B James
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kadaba S Sriprakash
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Science & Technology, University of New England, Armidale, Australia
| | - Scott A Beatson
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Tadao Hasegawa
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Phil Giffard
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Andrew C Steer
- Tropical Diseases, Murdoch Children's Research Institute, Parkville, Australia
| | - Michael R Batzloff
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Bernard W Beall
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Marcos D Pinho
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Mario Ramirez
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Debra E Bessen
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Gordon Dougan
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Bart J Currie
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Steven Y C Tong
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Disease Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David J McMillan
- School of Science, Technology and Engineering, and Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
8
|
Patel SM, Sahoo M, Thakor JC, Murali D, Kumar P, Singh R, Singh KP, Saikumar G, Jana C, Patel SK, Mote AB, Karthikeyan R, Vandre RK, Biswal JK, Sahoo NR. Pathomolecular epidemiology, antimicrobial resistance, and virulence genes of Streptococcus dysgalactiae subsp. equisimilis isolates from slaughtered pigs in India. J Appl Microbiol 2024; 135:lxae002. [PMID: 38178631 DOI: 10.1093/jambio/lxae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
AIMS We aimed to investigate the prevalence, pathology, and characterization of Streptococcus dysgalactiae subsp. equisimilis (SDSE) in slaughtered pigs of India. METHODS AND RESULTS We collected 1254 morbid tissues (lungs-627 and spleen-627) and 627 heart-blood from 627 slaughtered pigs. The bacterial isolation, antibiogram, virulence gene profiling, and mouse pathogenicity testing were performed for the detection and characterization of SDSE. A total of 177 isolates (heart-blood-160 and tissues-17) were recovered from 627 slaughtered pigs with higher isolation rate in heart-blood (25.51%). The prevalence of SDSE was 11% in morbid tissues by polymerase chain reaction. Majority of isolates showed higher detection of streptolysin O, followed by streptokinase and extracellular phospholipase A virulence genes with higher degree of resistance to azithromycin, clindamycin, erythromycin, and penicillin antibiotics. Mouse pathogenicity testing confirmed virulence based on histopathological lesions and re-isolation of SDSE. CONCLUSIONS Our findings highlight the high prevalence of SDSE in slaughtered pigs. The presence of virulence genes and mouse pathogenicity testing confirm their pathogenic potential.
Collapse
Affiliation(s)
- Sagar M Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar 243122, India
| | - Monalisa Sahoo
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar 243122, India
- ICAR-National Institute on Foot and Mouth Disease (NIFMD), Arugul, Jatni, Bhubaneswar 752050, India
| | - Jigarji Chaturji Thakor
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar 243122, India
| | - Dinesh Murali
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar 243122, India
| | - Pradeep Kumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar 243122, India
| | - Rajendra Singh
- Veterinary Pathology, Institute of Veterinary Science and Animal Husbandry, Siksha "O" Anusandhan, Ghatikia, Bhubaneswar 751030, India
| | - Karam Pal Singh
- CADRAD, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar 243122, India
| | - G Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar 243122, India
| | - Chandrakanta Jana
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar 243122, India
| | - Shailesh Kumar Patel
- Department of Veterinary Pathology, College of Veterinary Science & Animal Husbandry, Rewa 486001, India
| | - Akash B Mote
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar 243122, India
| | - Ravichandran Karthikeyan
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar 243122, India
| | - Rajesh Kumar Vandre
- Department of Animal Genetics and Breeding, College of Veterinary Science & Animal Husbandry, Rewa, India
| | - Jitendra Kumar Biswal
- ICAR-National Institute on Foot and Mouth Disease (NIFMD), Arugul, Jatni, Bhubaneswar 752050, India
| | - Nihar Ranjan Sahoo
- ICAR-National Institute on Foot and Mouth Disease (NIFMD), Arugul, Jatni, Bhubaneswar 752050, India
| |
Collapse
|