1
|
Allam AA, Rudayni HA, Ahmed NA, Aba Alkhayl FF, Lamsabhi AM, Kamel EM. Multidimensional insights into squalene epoxidase drug development: in vitro mechanisms, in silico modeling, and in vivo implications. Expert Opin Ther Targets 2025. [PMID: 40304285 DOI: 10.1080/14728222.2025.2500420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/17/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
INTRODUCTION Squalene epoxidase (SQLE) is a pivotal enzyme in sterol biosynthesis, catalyzing the conversion of squalene to 2,3-oxidosqualene. Beyond its core role in cholesterol homeostasis, SQLE is implicated in cancer, hypercholesterolemia, and fungal infections, positioning it as a valuable therapeutic target. AREAS COVERED We conducted a comprehensive literature search across primary databases to gather in vitro, in silico, and in vivo evidence on SQLE. This review explores the enzyme's structural and functional features, including substrate specificity and catalytic mechanisms, and examines inhibitor interactions. Computational methods predict enzyme - inhibitor dynamics, guiding drug design, while in vivo investigations clarify SQLE's role in metabolic disorders and tumorigenesis. Challenges include drug resistance and study discrepancies, but emerging technologies, such as cryo-electron microscopy and CRISPR editing, offer new avenues for deeper exploration. EXPERT OPINION SQLE is an underexplored yet promising therapeutic target, with particular relevance to oxidative stress, ferroptosis, and gut microbiota research. Overcoming current barriers through advanced technologies and multidisciplinary strategies could propel SQLE-targeted treatments into clinical practice, supporting precision medicine and broader translational applications.
Collapse
Affiliation(s)
- Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Noha A Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Al Mokhtar Lamsabhi
- Departamento de Química and Institute for advanced research in chemical Science (IAdChem), Facultad de Ciencias, Madrid, Spain
| | - Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
2
|
Marcos CM, de Oliveira HC, Assato PA, de Oliveira LT, Fregonezi N, dos Santos KS, Costa-Orlandi CB, Fusco-Almeida AM, Mendes-Giannini MJS. Polypeptides Targeting Paracoccidioides brasiliensis Drk1. J Fungi (Basel) 2023; 9:980. [PMID: 37888236 PMCID: PMC10607314 DOI: 10.3390/jof9100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
Considering the toxicity of conventional therapeutic approaches and the importance of precise mechanistic targets, it is important to explore signaling pathways implicated in fungal pathobiology. Moreover, treatment of paracoccidioidomycosis, a systemic mycosis caused by a dimorphic fungus, requires prolonged therapeutic regimens. Among the numerous factors underpinning the establishment of Paracoccidioides spp. infection, the capacity to transition from the mycelial to the yeast form is of pivotal importance. The Drk1 protein of Paracoccidioides brasiliensis likely plays a decisive role in this morphological shift and subsequent virulence. We identified peptides with affinity for the PbDrk1 protein using the phage-display method and assessed the effects of these peptides on P. brasiliensis. The peptides were found to inhibit the phase transition of P. brasiliensis. Furthermore, a substantial proportion of these peptides prevented adhesion to pneumocytes. Although these peptides may not possess inherent antifungal properties, they can augment the effects of certain antifungal agents. Notably, the cell wall architecture of P. brasiliensis appears to be modulated by peptide intervention, resulting in a reduced abundance of glycosylated proteins and lipids. These peptides were also evaluated for their efficacy in a Galleria mellonella model and shown to contribute to enhanced larval survival rates. The role of PbDrk1, which is notably absent in mammals, should be further investigated to improve the understanding of its functional role in P. brasiliensis, which may be helpful for designing novel therapeutic modalities.
Collapse
Affiliation(s)
- Caroline Maria Marcos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
| | - Haroldo Cesar de Oliveira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba 81350-010, Brazil
| | - Patricia Akemi Assato
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
- Laboratório Central de Multiusuários, Faculdade de Ciências Agronômicas, Campus Botucatu, UNESP—Universidade Estadual Paulista, São Paulo 18610-034, Brazil
| | - Lariane Teodoro de Oliveira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
| | - Nathália Fregonezi
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
| | - Kelvin Sousa dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
| | - Caroline Barcelos Costa-Orlandi
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
| | - Ana Marisa Fusco-Almeida
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
| | - Maria José Soares Mendes-Giannini
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
| |
Collapse
|
3
|
Carreón-Anguiano KG, Gómez-Tah R, Pech-Balan E, Ek-Hernández GE, De los Santos-Briones C, Islas-Flores I, Canto-Canché B. Pseudocercospora fijiensis Conidial Germination Is Dominated by Pathogenicity Factors and Effectors. J Fungi (Basel) 2023; 9:970. [PMID: 37888226 PMCID: PMC10607838 DOI: 10.3390/jof9100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Conidia play a vital role in the survival and rapid spread of fungi. Many biological processes of conidia, such as adhesion, signal transduction, the regulation of oxidative stress, and autophagy, have been well studied. In contrast, the contribution of pathogenicity factors during the development of conidia in fungal phytopathogens has been poorly investigated. To date, few reports have centered on the pathogenicity functions of fungal phytopathogen conidia. Pseudocercospora fijiensis is a hemibiotrophic fungus and the causal agent of the black Sigatoka disease in bananas and plantains. Here, a conidial transcriptome of P. fijiensis was characterized computationally. Carbohydrates, amino acids, and lipid metabolisms presented the highest number of annotations in Gene Ontology. Common conidial functions were found, but interestingly, pathogenicity factors and effectors were also identified. Upon analysis of the resulting proteins against the Pathogen-Host Interaction (PHI) database, 754 hits were identified. WideEffHunter and EffHunter effector predictors identified 618 effectors, 265 of them were shared with the PHI database. A total of 1107 conidial functions devoted to pathogenesis were found after our analysis. Regarding the conidial effectorome, it was found to comprise 40 canonical and 578 non-canonical effectors. Effectorome characterization revealed that RXLR, LysM, and Y/F/WxC are the largest effector families in the P. fijiensis conidial effectorome. Gene Ontology classification suggests that they are involved in many biological processes and metabolisms, expanding our current knowledge of fungal effectors.
Collapse
Affiliation(s)
- Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Rufino Gómez-Tah
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Efren Pech-Balan
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Gemaly Elisama Ek-Hernández
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - César De los Santos-Briones
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico;
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| |
Collapse
|
4
|
Amran AI, Lim SJ, Muhd Noor ND, Salleh AB, Oslan SN. Enolase in Meyerozyma guilliermondii strain SO: Sequential and structural insights of MgEno4581 as a putative virulence factor and host-fungal interactions through comprehensive in silico approaches. Microb Pathog 2023; 176:106025. [PMID: 36754101 DOI: 10.1016/j.micpath.2023.106025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 02/04/2023] [Indexed: 02/08/2023]
Abstract
Meyerozyma guilliermondii is a rare opportunistic fungal pathogen that causes deadly invasive candidiasis in human. M. guilliermondii strain SO is a local yeast isolate that possesses huge industrial interests but also pathogenic towards zebrafish embryos. Enolases that bind to human extracellular matrix (ECM) proteins are among the fungal virulence factors. To understand its pathogenicity mechanism down to molecular level, especially in the rare M. guilliermondii, this study aimed to identify and characterize the potentially virulence-associated enolase in M. guilliermondii strain SO using bioinformatics approaches. Profile Hidden-Markov model was implemented to identify enolase-related sequences in the fungal proteome. Sequence analysis deciphered only one (MgEno4581) out of nine sequences exhibited potent virulence traits observed similarly in the pathogenic Candida albicans. MgEno4581 structure that was predicted via SWISS-MODEL using C. albicans enolase (CaEno1; PDB ID: 7vrd) as the homology modeling template portrayed a highly identical motif with CaEno1 that facilitates ECM proteins binding. Amino acid substitutions (D234K, K235A, Y238H, K239D, G243K, V248C and Y254F) in ECM-binding motif of Saccharomyces cerevisiae enolase (ScEno) compared to MgEno4581 and CaEno1 caused changes in motif's surface charges. Protein-protein docking indicated F253 in ScEno only interacted hydrophobically with human plasminogen (HPG). Hydrogen linkages were observed for both MgEno4581 and CaEno1, suggesting a stronger interaction with HPG in the hydrophilic host microenvironments. Thus, our in silico characterizations on MgEno4581 provided new perspectives on its potential roles in candidiasis (fungal-host interactions) caused by M. guilliermondii, especially M. guilliermondii strain SO on zebrafish embryos that mimic the immunocompromised individuals as previously evident.
Collapse
Affiliation(s)
- Alia Iwani Amran
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Noor Dina Muhd Noor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Siti Nurbaya Oslan
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
5
|
Nguyen S, Jovcevski B, Truong JQ, Pukala TL, Bruning JB. A structural model of the human plasminogen and
Aspergillus fumigatus
enolase complex. Proteins 2022; 90:1509-1520. [DOI: 10.1002/prot.26331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Stephanie Nguyen
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide Adelaide South Australia Australia
| | - Blagojce Jovcevski
- Adelaide Proteomics Centre, School of Physical Sciences The University of Adelaide Adelaide South Australia Australia
- School of Agriculture, Food and Wine The University of Adelaide Adelaide South Australia Australia
| | - Jia Q. Truong
- Adelaide Proteomics Centre, School of Physical Sciences The University of Adelaide Adelaide South Australia Australia
- School of Biological Sciences The University of Adelaide Adelaide South Australia Australia
| | - Tara L. Pukala
- Adelaide Proteomics Centre, School of Physical Sciences The University of Adelaide Adelaide South Australia Australia
| | - John B. Bruning
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide Adelaide South Australia Australia
| |
Collapse
|
6
|
Duan X, Xie Z, Ma L, Jin X, Zhang M, Xu Y, Liu Y, Lou H, Chang W. Selective Metal Chelation by a Thiosemicarbazone Derivative Interferes with Mitochondrial Respiration and Ribosome Biogenesis in Candida albicans. Microbiol Spectr 2022; 10:e0195121. [PMID: 35412374 PMCID: PMC9241695 DOI: 10.1128/spectrum.01951-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/04/2022] [Indexed: 11/20/2022] Open
Abstract
Metal chelation is generally considered as a promising antifungal approach but its specific mechanisms are unclear. Here, we identify 13 thiosemicarbazone derivatives that exert broad-spectrum antifungal activity with potency comparable or superior to that of fluconazole in vitro by screening a small compound library comprising 89 thiosemicarbazone derivatives as iron chelators. Among the hits, 19ak exhibits minimal cytotoxicity and potent activity against either azole-sensitive or azole-resistant fungal pathogens. Mechanism investigations reveal that 19ak inhibits mitochondrial respiration mainly by retarding mitochondrial respiratory chain complex I activity through iron chelation, and further reduces mitochondrial membrane potential and ATP synthesis in Candida albicans. In addition, 19ak inhibits fungal ribosome biogenesis mainly by disrupting intracellular zinc homeostasis. 19ak also stimulates the activities of antioxidant enzymes and decreases reactive oxygen species formation in C. albicans, resulting in an increase in detrimental intracellular reductive stress. However, 19ak has minor effects on mammalian cells in depleting intracellular iron and zinc. Moreover, 19ak exhibits low capacity to induce drug resistance and in vivo efficacy in a Galleria mellonella infection model. These findings uncover retarded fungal mitochondrial respiration and ribosome biogenesis as downstream effects of disruption of iron and zinc homeostasis in C. albicans and provide a basis for the thiosemicarbazone 19ak in antifungal application. IMPORTANCE The increasing incidence of fungal infections and resistance to existing antifungals call for the development of broad-spectrum antifungals with novel mechanisms of action. In this study, we demonstrate that a thiosemicarbazone derivative 19ak selectively inhibits mitochondrial respiration mainly by retarding mitochondrial respiratory chain complex I activity through iron chelation and inhibits ribosome biogenesis mainly by disrupting intracellular zinc homeostasis in C. albicans. In addition, 19ak exhibits low capacity to induce fungal resistance, minimal cytotoxicity, and in vivo antifungal efficacy. This study provides the basis of thiosemicarbazone derivative 19ak as a metal chelator for the treatment of fungal infections.
Collapse
Affiliation(s)
- Ximeng Duan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Zhiyu Xie
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan, People’s Republic of China
| | - Liying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueyang Jin
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Ming Zhang
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuliang Xu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yue Liu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
7
|
Falcão CMC, Andrade A, Holanda VN, de Figueiredo RCBQ, Ximenes EA, Gomes ASL. Activity of poly(methacrylic acid)-silver nanoparticles (PMAA-AgNPs) on fluconazole resistant Candida albicans strains: synergistic and cytotoxic effects. J Appl Microbiol 2022; 132:4300-4309. [PMID: 35338561 DOI: 10.1111/jam.15542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 11/27/2022]
Abstract
AIMS To synthesize and evaluate the antifungal activity of poly(methacrylic acid)-silver nanoparticles (PMAA-AgNPs) against nine Candida albicans isolated from clinical specimens. METHODS AND RESULTS The effects of PMAA-AgNPs-fluconazole combination was analyzed by checkerboard methodology. The synergistic potential of PMAA-AgNPs-fluconazole was determined by the fractional inhibitory concentration index (FICI). The inhibition of germ tube formation and the determination of PMAA-AgNPs cytotoxicity were also performed. All C. albicans strains were susceptible to PMAA-AgNPs and resistant to fluconazole. PMAA-AgNPs at sub-inhibitory concentrations restored the susceptibility of resistant C. albicans to fluconazole, whose FICI ranged from 0.3 to 0.5. The synergistic interaction of the combination was observed in eight of nine strains. The PMAA-AgNPs-fluconazole combination was also able to inhibit the germ tube formation. PMAA-AgNPs showed a dose-dependent decrease on viability for cells tested, with 50% cytotoxic concentration (CC50 ) values of 6.5, 4.9 and 6.8 μg ml-1 for macrophages, fibroblasts and Vero cells, respectively. CONCLUSIONS This study demonstrated that in general, PMAA-AgNPs acts synergistically in combination with fluconazole, inhibiting fluconazole-resistant C. albicans strains. PMAA-AgNPs-fluconazole combination was also able to inhibit germ tube formation, an important virulence factor. Inhibitory effect of PMAA-AgNPs alone or in combination was higher in C. albicans than in mammalian cells. SIGNIFICANCE AND IMPACT OF STUDY This study shows the potential of poly(methacrylic acid)-silver nanoparticles combined with fluconazole to inhibit fluconazole-resistant Candida albicans strains.
Collapse
Affiliation(s)
| | - Audrey Andrade
- Department of Physics, Federal University of Pernambuco, Recife, PE, Brazil.,Laboratory of Microscope and Microanalysis, Strategic Technologies Center of Northeast, 50740-540, Recife, PE, Brazil
| | | | | | | | - Anderson Stevens Leonidas Gomes
- Postgraduate Program in Dentistry, Federal University of Pernambuco, Recife, PE, Brazil.,Department of Physics, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
8
|
Ivanov M, Ćirić A, Stojković D. Emerging Antifungal Targets and Strategies. Int J Mol Sci 2022; 23:2756. [PMID: 35269898 PMCID: PMC8911111 DOI: 10.3390/ijms23052756] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 12/14/2022] Open
Abstract
Despite abundant research in the field of antifungal drug discovery, fungal infections remain a significant healthcare burden. There is an emerging need for the development of novel antifungals since those currently available are limited and do not completely provide safe and secure protection. Since the current knowledge regarding the physiology of fungal cells and the infection mechanisms is greater than ever, we have the opportunity to use this for the development of novel generations of antifungals. In this review, we selected and summarized recent studies describing agents employing different antifungal mechanisms. These mechanisms include interference with fungal resistance, including impact on the efflux pumps and heat shock protein 90. Additionally, interference with virulence factors, such as biofilms and hyphae; the impact on fungal enzymes, metabolism, mitochondria, and cell wall; and antifungal vaccines are explored. The agents investigated belong to different classes of natural or synthetic molecules with significant attention given also to plant extracts. The efficacy of these antifungals has been studied mainly in vitro with some in vivo, and clinical studies are needed. Nevertheless, there is a large quantity of products employing novel antifungal mechanisms that can be further explored for the development of new generation of antifungals.
Collapse
Affiliation(s)
- Marija Ivanov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (A.Ć.); (D.S.)
| | | | | |
Collapse
|
9
|
Nguyen S, Jovcevski B, Pukala TL, Bruning JB. Structural insights into the antifungal drug target guanosine monophosphate synthase from Aspergillus fumigatus. ACTA CRYSTALLOGRAPHICA SECTION D STRUCTURAL BIOLOGY 2022; 78:248-259. [DOI: 10.1107/s2059798321012031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/11/2021] [Indexed: 11/10/2022]
Abstract
Purine biosynthesis is a fundamental cellular process that sustains life by maintaining the intracellular pool of purines for DNA/RNA synthesis and signal transduction. As an integral determinant of fungal survival and virulence, the enzymes in this metabolic pathway have been pursued as potential antifungal targets. Guanosine monophosphate (GMP) synthase has been identified as an attractive target as it is essential for virulence in the clinically prominent fungal pathogens Aspergillus fumigatus, Candida albicans and Cryptococcus neoformans. However, a lack of structural information on GMP synthase has hindered drug-design efforts. Here, the first structure of a GMP synthase of fungal origin, that from A. fumigatus (at 2.3 Å resolution), is presented. Structural analysis of GMP synthase shows a distinct absence of the D1 dimerization domain that is present in the human homologue. Interestingly, A. fumigatus GMP synthase adopts a dimeric state, as determined by native mass spectrometry and gel-filtration chromatography, in contrast to the monomeric human homologue. Analysis of the substrate-binding pockets of A. fumigatus GMP synthase reveals key differences in the ATP- and XMP-binding sites that can be exploited for species-specific inhibitor drug design. Furthermore, the inhibitory activities of the glutamine analogues acivicin (IC50 = 16.6 ± 2.4 µM) and 6-diazo-5-oxo-L-norleucine (IC50 = 29.6 ± 5.6 µM) against A. fumigatus GMP synthase are demonstrated. Together, these data provide crucial structural information required for specifically targeting A. fumigatus GMP synthase for future antifungal drug-discovery endeavours.
Collapse
|
10
|
Murphy SE, Bicanic T. Drug Resistance and Novel Therapeutic Approaches in Invasive Candidiasis. Front Cell Infect Microbiol 2022; 11:759408. [PMID: 34970504 PMCID: PMC8713075 DOI: 10.3389/fcimb.2021.759408] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Candida species are the leading cause of invasive fungal infections worldwide and are associated with acute mortality rates of ~50%. Mortality rates are further augmented in the context of host immunosuppression and infection with drug-resistant Candida species. In this review, we outline antifungal drugs already in clinical use for invasive candidiasis and candidaemia, their targets and mechanisms of resistance in clinically relevant Candida species, encompassing not only classical resistance, but also heteroresistance and tolerance. We describe novel antifungal agents and targets in pre-clinical and clinical development, including their spectrum of activity, antifungal target, clinical trial data and potential in treatment of drug-resistant Candida. Lastly, we discuss the use of combination therapy between conventional and repurposed agents as a potential strategy to combat the threat of emerging resistance in Candida.
Collapse
Affiliation(s)
- Sarah E Murphy
- Institute of Infection & Immunity, St George's University of London, London, United Kingdom
| | - Tihana Bicanic
- Institute of Infection & Immunity, St George's University of London, London, United Kingdom.,Clinical Academic Group in Infection and Immunity, St. George's University Hospital National Health Service (NHS) Foundation Trust, London, United Kingdom
| |
Collapse
|
11
|
Ahmadipour S, Field RA, Miller GJ. Prospects for anti- Candida therapy through targeting the cell wall: A mini-review. Cell Surf 2021; 7:100063. [PMID: 34746525 PMCID: PMC8551693 DOI: 10.1016/j.tcsw.2021.100063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 01/08/2023] Open
Abstract
The impact of fungal infections on humans is a serious public health issue that has received much less attention than bacterial infection and treatment, despite ever-increasing incidence exacerbated by an increased incidence of immunocompromised individuals in the population. Candida species, in particular, cause some of the most prevalent hospital-related fungal infections. Fungal infections are also detrimental to the well-being of grazing livestock, with milk production in dairy cows, and body and coat condition adversely affected by fungal infections. Fungal cell walls are essential for viability, morphogenesis and pathogenesis: numerous anti-fungal drugs rely on targeting either the cell wall or cell membrane, but the pipeline of available bioactives is limited. There is a clear and unmet need to identify novel targets and develop new classes of anti-fungal agents. This mini review focuses on fungal cell wall structure, composition and biosynthesis in Candida spp., including C. auris. In addition, an overview of current advances in the development of cell wall targeted therapies is considered.
Collapse
Affiliation(s)
- Sanaz Ahmadipour
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom.,Iceni Diagnostics Ltd, The Innovation Centre, Norwich Research Park, Norwich, Norfolk NR4 7GJ, United Kingdom
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom.,Iceni Diagnostics Ltd, The Innovation Centre, Norwich Research Park, Norwich, Norfolk NR4 7GJ, United Kingdom
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| |
Collapse
|