1
|
Sun Q, Zhu X, Zou Q, Chen Y, Wen T, Jiang T, Li X, Wei F, Xie K, Liu J. OSBPL3 modulates the immunosuppressive microenvironment and predicts therapeutic outcomes in pancreatic cancer. Biol Direct 2025; 20:5. [PMID: 39789613 PMCID: PMC11716069 DOI: 10.1186/s13062-025-00596-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Pancreatic cancer is characterized by a complex tumor microenvironment that hinders effective immunotherapy. Identifying key factors that regulate the immunosuppressive landscape is crucial for improving treatment strategies. METHODS We constructed a prognostic and risk assessment model for pancreatic cancer using 101 machine learning algorithms, identifying OSBPL3 as a key gene associated with disease progression and prognosis. We integrated multi-dataset analyses, single-cell transcriptomic data, and functional experiments to explore the role of OSBPL3 in pancreatic cancer. RESULTS Our risk prediction model, developed using machine learning algorithms, demonstrated high predictive accuracy across multiple datasets. Notably, the "rf" algorithm model showed an AUC of 1 in the training set and AUCs of 0.887 and 0.977 in two validation datasets. Ridge regression analysis identified OSBPL3 as a core prognostic feature gene. High OSBPL3 expression in pancreatic cancer samples was associated with immunosuppressive characteristics, including reduced CD8 + T cell infiltration and increased immunosuppressive cell populations such as Treg cells and M2 macrophages. Transcriptomic sequencing following OSBPL3 knockdown revealed enrichment of immune-related pathways, suggesting OSBPL3's influence on the immune microenvironment. Single-cell analyses further confirmed OSBPL3's role in shaping the immunosuppressive landscape by modulating Treg cells and M2 macrophages. Additionally, OSBPL3 expression was linked to resistance to immunotherapy, with high OSBPL3 expression associated with lower Immunophenoscore (IPS) scores, indicating poor responsiveness to immunotherapy. CONCLUSIONS Our study reveals OSBPL3 as a critical regulator of the immunosuppressive microenvironment in pancreatic cancer and a potential therapeutic target. Targeting OSBPL3 may enhance the efficacy of immunotherapy and improve patient outcomes. Further research is warranted to explore OSBPL3 as a biomarker for predicting immunotherapy response and as a potential therapeutic target in combination with anti-PD1 therapy.
Collapse
Affiliation(s)
- Qihui Sun
- Center for Pancreatic Cancer Research, Department of Immunology, The South China University of Technology School of Medicine, Guangzhou, China
| | - Xiaoqi Zhu
- Center for Pancreatic Cancer Research, Department of Immunology, The South China University of Technology School of Medicine, Guangzhou, China
- Guangzhou Digestive Disease Center, The Second Affiliated Hospital, Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangzhou, China
| | - Qi Zou
- Center for Pancreatic Cancer Research, Department of Immunology, The South China University of Technology School of Medicine, Guangzhou, China
- Guangzhou Digestive Disease Center, The Second Affiliated Hospital, Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangzhou, China
| | - Yang Chen
- Center for Pancreatic Cancer Research, Department of Immunology, The South China University of Technology School of Medicine, Guangzhou, China
| | - Tingting Wen
- Center for Pancreatic Cancer Research, Department of Immunology, The South China University of Technology School of Medicine, Guangzhou, China
| | - Tingting Jiang
- Center for Pancreatic Cancer Research, Department of Immunology, The South China University of Technology School of Medicine, Guangzhou, China
| | - Xiaojia Li
- Center for Pancreatic Cancer Research, Department of Immunology, The South China University of Technology School of Medicine, Guangzhou, China
| | - Fang Wei
- Center for Pancreatic Cancer Research, Department of Immunology, The South China University of Technology School of Medicine, Guangzhou, China.
- Guangzhou Digestive Disease Center, The Second Affiliated Hospital, Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangzhou, China.
| | - Keping Xie
- Center for Pancreatic Cancer Research, Department of Immunology, The South China University of Technology School of Medicine, Guangzhou, China.
| | - Jia Liu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Štancl P, Gršković P, Držaić S, Vičić A, Karlić R, Korać P. RNA-Sequencing Identification of Genes Supporting HepG2 as a Model Cell Line for Hepatocellular Carcinoma or Hepatocytes. Genes (Basel) 2024; 15:1460. [PMID: 39596661 PMCID: PMC11593409 DOI: 10.3390/genes15111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Cell lines do not faithfully replicate the authentic transcriptomic condition of the disease under study. The HepG2 cell line is widely used for studying hepatocellular carcinoma (HCC), but not all biological processes and genes exhibit congruent expression patterns between cell lines and the actual disease. The objective of this study is to perform a comparative transcriptomic analysis of the HepG2 cell line, HCC, and primary hepatocytes (PH) in order to identify genes suitable for research in HepG2 as a model for PH or HCC research. Methods: We conducted a differential expression analysis between publicly available data from HCC patients, PH, and HepG2. We examined specific overlaps of differentially expressed genes (DEGs) in a pairwise manner between groups in order to obtain a valuable gene list for studying HCC or PH using different parameter filtering. We looked into the function and druggability of these genes. Conclusions: In total, we identified 397 genes for HepG2 as a valuable HCC model and 421 genes for HepG2 as a valuable PH model, and with more stringent criteria, we derived a smaller list of 40 and 21 genes, respectively. The majority of genes identified as a valuable set for the HCC model are involved in DNA repair and protein degradation mechanisms. This research aims to provide detailed guidance on gene selection for studying diseases like hepatocellular carcinoma, primary hepatocytes, or others using cell lines.
Collapse
Affiliation(s)
- Paula Štancl
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (S.D.)
| | - Paula Gršković
- Biomedical Research Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Sara Držaić
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (S.D.)
| | - Ana Vičić
- Department of Obstetrics and Gynecology, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia;
| | - Rosa Karlić
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (S.D.)
| | - Petra Korać
- Biomedical Research Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Shan S, Wang X, Qian L, Wang C, Zhao S. ENST00000534735 inhibits proliferation and migration, promotes apoptosis and pyroptosis of endometrial cancer via OSBPL3 through APMK/SIRT1/NF-κB pathway. Heliyon 2024; 10:e25281. [PMID: 38370231 PMCID: PMC10869759 DOI: 10.1016/j.heliyon.2024.e25281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024] Open
Abstract
Background The complete understanding of the biological roles of long non-coding RNAs (lncRNAs) in cancer remains elusive. The findings of this study indicate that the newly discovered lncRNA ENST00000534735 exhibited a decreased expression in both endometrial cancer (EC) tissues and cell lines. Methods The expression of ENST00000534735 in EC tissues was detected using RNA-sequencing analysis. The effects of ENST00000534735 on cell proliferation, migration, apoptosis, and pyroptosis were determined via in vitro and in vivo experiments. The proteins that interact with ENST00000534735 were confirmed by RNA pull-down assay. Furthermore, an investigation was conducted on the impact of ENST00000534735 on the in vivo growth of EC through a tumorigenicity assay in nude mice. Results We found that ENST00000534735 was significantly down-regulated in EC tissues compared to their adjacent non-cancerous tissues. The ectopic expression of ENST00000534735 drastically inhibited lung cancer cell proliferation and migration ability and facilitated apoptosis and pyroptosis. Knockdown of ENST00000534735 increased OSBPL3 expression, and the tumor-suppressing effects of ENST00000534735 overexpression were reversed by upregulation of OSBPL3 via the APMK/SIRT1/NF-κB pathway. The in vivo tumorigenic assays conducted on nude mice revealed that the excessive expression of ENST00000534735 impeded the growth of EC. Conclusions All results elucidated the role and molecular mechanism of ENST00000534735 in the malignant development of EC. ENST00000534735, a new antioncogene in EC, may serve as a survival biomarker or therapeutic target for EC.
Collapse
Affiliation(s)
- Shuzhi Shan
- Department of Gynecology and Obstetrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiao Wang
- Department of Gynecology and Obstetrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lijie Qian
- Hebei Women and Children's Health Center, Shijiazhuang, China
| | - Chunxiao Wang
- Department of Gynecology, Cangzhou People's Hospital, Cangzhou, China
| | - Sufen Zhao
- Department of Gynecology and Obstetrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Zhang C, Shen Q, Gao M, Li J, Pang B. The role of Cyclin Dependent Kinase Inhibitor 3 ( CDKN3) in promoting human tumors: Literature review and pan-cancer analysis. Heliyon 2024; 10:e26061. [PMID: 38380029 PMCID: PMC10877342 DOI: 10.1016/j.heliyon.2024.e26061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Background Although many experiments and clinical studies have proved the link between the expression of CDKN3 and human tumors, we have not been able to identify any bioinformatics study in which the extensive tumor-promoting effect of CDKN3 was systematically analyzed. Objective Explore the extensive tumor-promoting effects of CDKN3 and review the research progress of CDKN3 in cancer. Methods We systematically reviewed the literature on CDKN3 and tumors. We explored the potential tumor-promoting effects of CDKN3 on different tumors in the TCGA database and the GTEx database using multiple platforms and websites. We studied the expression level of CDKN3, survival, prognosis, diagnosis, genetic variation, immune infiltration, and enrichment analysis using databases such as TIMER 2.0, GEPIA2, cBioPortal, and STRING. Results We found that CDKN3 is highly expressed in most tumors. The expression of CDKN3 is closely related to the prognosis of some tumors. And CDKN3 may have diagnostic value. The conclusion of our literature review is roughly the same, but there are differences, which are worthy of further study. Moreover, CDKN3 may be related to immune cell infiltration in tumor tissues. The genetic alteration of LUAD, STAD, SARC, PCPG, and ESCA with "Amplification" as the main type. In addition, through enrichment analysis, we found that CDKN3 affects tumors mainly through the control of the cell cycle and mitosis. Conclusion CDKN3 is highly expressed in most tumor tissues and has a statistical correlation with survival prognosis. It has extensive tumor-promoting effects that may be related to mechanisms such as immune infiltration.
Collapse
Affiliation(s)
- Chuanlong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qian Shen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Mengqi Gao
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Junchen Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, China
| | - Bo Pang
- International Medical Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
5
|
Wang C, He Y, He Y, Liang W, Zhou C, Wu M, Meng Z, Li W, Cao J. Prognostic and biological function value of OSBPL3 in colorectal cancer analyzed by multi-omic data analysis. BMC Gastroenterol 2023; 23:270. [PMID: 37550605 PMCID: PMC10408063 DOI: 10.1186/s12876-023-02824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/17/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignancies in the world. This study proposes to reveal prognostic biomarkers for the prognosis and treatment of CRC patients. METHODS Differential analysis of OSBPL3 was performed in pan-cancer, and the correlation between clinical stage and OSBPL3 was analyzed. Multiple omics analysis was used to compare the relationship between survival of patients and copy number variation, single nucleotide variant, and methylation status. Survival differences between high and low OSBPL3 expression groups were analyzed. Differentially expressed genes (DEGs) between high and low OSBPL3 expression groups were obtained, and functional enrichment analysis was implemented. Correlations between immune cells and OSBPL3 was analyzed. Drug sensitivity between the two OSBPL3 expression groups was compared. Moreover, the expression of OSBPL3 was verified by immunohistochemistry and real-time quantitative PCR. RESULTS OSBPL3 was differentially expressed in 13 tumors and had some correlations with T and N stages. OSBPL3 expression was regulated by methylation and higher OSBPL3 expression was associated with poorer prognosis in CRC. 128 DEGs were obtained and they were mainly involved in signaling receptor activator activity, aspartate and glutamate metabolism. T cell gamma delta and T cell follicular helper were significantly different in the high and low OSBPL3 expression groups. Moreover, OSBPL3 showed negative correlations with multiple drugs. OSBPL3 was significantly upregulated in CRC samples compared to normal samples. CONCLUSIONS A comprehensive analysis demonstrated that OSBPL3 had potential prognostic value, and guiding significance for CRC chemotherapeutic.
Collapse
Affiliation(s)
- Chengxing Wang
- The First Affiliated Hospital, Jinan University, Guangzhou, 529000, Guangdong, China
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Jiangmen, 529000, Guangdong, China
| | - Yaoming He
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Jiangmen, 529000, Guangdong, China
| | - Yu He
- National Drug Clinical Trial Institution, Jiangmen Central Hospital, Jiangmen, 529000, Guangdong, China
| | - Weijun Liang
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Jiangmen, 529000, Guangdong, China
| | - Chaorong Zhou
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Jiangmen, 529000, Guangdong, China
| | - Meimei Wu
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, 529000, Guangdong, China
| | - Zijie Meng
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, 529000, Guangdong, China
| | - Wanglin Li
- The First Affiliated Hospital, Jinan University, Guangzhou, 529000, Guangdong, China.
| | - Jie Cao
- The First Affiliated Hospital, Jinan University, Guangzhou, 529000, Guangdong, China.
| |
Collapse
|
6
|
Aibara D, Sakaguchi A, Matsusue K. Oxysterol-binding protein-like 3 is a novel target gene of peroxisome proliferator-activated receptor γ in fatty liver disease. Mol Cell Endocrinol 2023; 565:111887. [PMID: 36781118 DOI: 10.1016/j.mce.2023.111887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Oxysterol-binding protein-like 3 (OSBPL3) plays a key role in the development of fatty liver disease. Herein, we found that OSBPL3 is highly expressed in the fatty liver of humans and mice. Although high expression of Osbpl3 was observed in the fatty liver of type 2 diabetic ob/ob mice, liver-specific Pparg knockout ameliorated this increase in these mice. Moreover, high hepatic Osbpl3 expression was observed in other mice models of fatty liver disease, such as leptin receptor-mutant db/db and alcohol-fed mice. Analysis of the human liver transcriptome data revealed that hepatic OSBPL3 expression is higher in patients with advanced non-alcoholic fatty liver disease (NAFLD) when compared to those with mild NAFLD. Reporter and electrophoretic mobility shift assays showed that PPARγ positively regulates Osbpl3 transcription by binding to the two functional PPARγ-responsive elements present in the 5' upstream region. Overall, our results indicate that Osbpl3 is a novel PPARγ target in the fatty liver.
Collapse
Affiliation(s)
- Daisuke Aibara
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Ai Sakaguchi
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Kimihiko Matsusue
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
7
|
Holý P, Hlaváč V, Ostašov P, Brynychová V, Koževnikovová R, Trnková M, Kopečková K, Měšťáková S, Mrhalová M, Souček P. Germline and somatic genetic variability of oxysterol-related genes in breast cancer patients with early disease of the luminal subtype. Biochimie 2022; 199:158-169. [PMID: 35525372 DOI: 10.1016/j.biochi.2022.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/12/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022]
Abstract
Oxysterols, oxidized derivatives of cholesterol, have been implicated in multiple pathologies, including cancer. In breast cancer, the link is especially strong due to interactions between oxysterols and estrogen receptor activity. Here, we provide the first dedicated study of 113 oxysterol-related genes in breast cancer patients of the luminal subtype, in terms of both their somatic and germline variability, using targeted high-throughput DNA sequencing of 100 normal-tumor pairs with very high coverage. In the full cohort, or subsets of patients stratified by therapy, we found 12 germline variants in ABCA1, ABCA8, ABCC1, GPR183, LDLR, MBTPS1, NR1I2, OSBPL2, OSBPL3, and OSBPL5 to associate with poor survival of patients and variants in ABCA8, ABCG2, and HSD3B7 (three in total) associated with better survival. However, no associations remained significant after correction for multiple tests. Analysis of somatic variants revealed significantly (after FDR correction) poorer survival in patients mutated in CYP46A1 and 9 interacting (according to STRING analysis) genes, as well as in OSBPL3 and a set of 20 genes that collectively associated with the progesterone receptor status of patients. We propose further exploration of these genes in an integrative manner together with gene expression and epigenomic data.
Collapse
Affiliation(s)
- Petr Holý
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Viktor Hlaváč
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Ostašov
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Veronika Brynychová
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | | | | | - Kateřina Kopečková
- Department of Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Soňa Měšťáková
- Department of Surgery, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Marcela Mrhalová
- Department of Pathology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| |
Collapse
|