1
|
Wang Y, Gao J, Ren Z, Shen Z, Gu W, Miao Q, Hu X, Wu Y, Liu W, Jia J, Cai Y, Wan C(C, Sun L, Yan T. A pan-cancer analysis of homeobox family: expression characteristics and latent significance in prognosis and immune microenvironment. Front Oncol 2025; 15:1521652. [PMID: 39980564 PMCID: PMC11840236 DOI: 10.3389/fonc.2025.1521652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
Background The Homeobox (HOX) gene family are conserved transcription factors that are essential for embryonic development, oncogenesis, and cancer suppression in biological beings. Abnormally expressed HOX genes in cancers are directly associated with prognosis. Methods Public databases such as TCGA and the R language were used to perform pan-cancer analyses of the HOX family in terms of expression, prognosis, and immune microenvironment. The HOX score was defined, and potential target compounds in cancers were predicted by Connective Map. Immunohistochemistry was employed to validate protein expression levels. Gene knockdowns were used to verify the effects of HOXB7 and HOXC6 on the proliferation and migration of lung adenocarcinoma (LUAD) cells. Results HOX genes play different roles in different cancers. Many HOX genes, especially HOXB7 and HOXC6, have higher expression and lower overall survival in specific cancers and are predicted as risk factors. The high expression of most HOX genes is mainly related to immune subtypes C1-C4 and C6. Potential anti-tumor compounds for down-regulating HOX gene expression were identified, such as HDAC inhibitors and tubulin inhibitors. LUAD Cell migration and proliferation were inhibited when HOXB7 or HOXC6 was knocked down. Conclusions Many HOX genes may act as both oncogenes and tumor suppressor genes, necessitating precision medicine based on specific cancers. The HOX gene family plays a crucial role in the development of certain cancers, and their expression patterns are closely related to cancer prognosis and the tumor microenvironment (TME), which may affect cancer prognosis and response to immunotherapy. Compounds that are negatively correlated with the expression levels of the HOX family in various cancers, such as HDAC inhibitors, are potential anti-cancer drugs. HOXB7 and HOXC6 may serve as potential targets for cancer treatment and the development of targeted compounds in the future.
Collapse
Affiliation(s)
- Yuanhui Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jie Gao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Ziyi Ren
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Ziyi Shen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wei Gu
- Translational Medicine Center, Zhejiang Xinda Hospital, School of Medicine&Nursing, Huzhou University, Huzhou, China
| | - Qinyi Miao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaomeng Hu
- Translational Medicine Center, Zhejiang Xinda Hospital, School of Medicine&Nursing, Huzhou University, Huzhou, China
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, China
| | - Yan Wu
- Translational Medicine Center, Zhejiang Xinda Hospital, School of Medicine&Nursing, Huzhou University, Huzhou, China
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, China
| | - Jia Jia
- School of Life Sciences, Shanghai University, Shanghai, China
- Translational Medicine Center, Zhejiang Xinda Hospital, School of Medicine&Nursing, Huzhou University, Huzhou, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration (NMPA) Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chunpeng (Craig) Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, Shanghai, China
- Translational Medicine Center, Zhejiang Xinda Hospital, School of Medicine&Nursing, Huzhou University, Huzhou, China
| |
Collapse
|
2
|
Khoshandam M, Sideris N, Ahmadieh-Yazdi A, Sheykhhasan M, Manoochehri H, Tanzadehpanah H, Mahaki H, Ghadam M, Lak S, Kalhor N, Rabiei M, Al-Musawi S, Dama P. The functional role of LncRNA HOXA-AS2 in multiple human cancers. Pathol Res Pract 2025; 266:155795. [PMID: 39756105 DOI: 10.1016/j.prp.2024.155795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Humans have more than 270,000 lncRNAs. Among these, lncRNA HOXA-AS2 is considered a transformative gene involved in various cellular processes, including cell proliferation, apoptosis, migration, and invasion. Thus, it can be regarded as a potential tumor marker for both diagnosis and prognosis. Aberrant expression of lncRNAs is associated with many cancers, including hepatocellular carcinoma (HCC), gallbladder carcinoma (GBC), acute promyelocytic leukemia (APL), lung cancer (LC), prostate cancer (PC), osteosarcoma (OS), colorectal cancer (CRC), cervical cancer (CC), and acute myeloid leukemia (AML). Targeting lncRNAs could be a promising strategy to complement or replace current cancer treatments. As a non-coding oncogene, lncRNA HOXA-AS2 is implicated in multiple cancers and could serve as a potential biomarker for various malignancies. The tumor size and disease stage of several cancers are correlated with HOXA-AS2 expression. Silencing HOXA-AS2 effectively suppresses tumor cell proliferation and promotes apoptosis, thereby inhibiting the progression of multiple cancer types. The regulatory mechanisms of HOXA-AS2 include inducing epithelial-mesenchymal transition (EMT), overexpressing B-cell lymphoma-2 (Bcl-2) and MYC proto-oncogene (c-Myc), gene silencing, activating AKT-MMP signaling pathways, EZH2 and LSD1, and functioning within a competing endogenous RNA (ceRNA) regulatory network by competitively binding miRNAs. This review surveys recent research on the structure, biological functions, abnormal expression, regulatory mechanisms, and diagnostic and therapeutic potential of HOXA-AS2 in various cancers.
Collapse
Affiliation(s)
- Mohadeseh Khoshandam
- Department of Reproductive Biology, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Nikolaos Sideris
- Research Fellow School of Life Sciences, University of Sussex, Brighton, UK.
| | - Amirhossein Ahmadieh-Yazdi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Ghadam
- National Institute of genetic engineering and biotechnology (NIGEB), Tehran, Iran
| | - Shermin Lak
- National Institute of genetic engineering and biotechnology (NIGEB), Tehran, Iran
| | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran
| | | | | | - Paola Dama
- Research Fellow School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
3
|
van Essen MJ, Nicheperovich A, Schuster-Böckler B, Becker EBE, Jacob J. Sonic hedgehog medulloblastoma cells in co-culture with cerebellar organoids converge towards in vivo malignant cell states. Neurooncol Adv 2025; 7:vdae218. [PMID: 39896075 PMCID: PMC11783571 DOI: 10.1093/noajnl/vdae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Background In the malignant brain tumor sonic hedgehog medulloblastoma (SHH-MB) the properties of cancer cells are influenced by their microenvironment, but the nature of those effects and the phenotypic consequences for the tumor are poorly understood. The aim of this study was to identify the phenotypic properties of SHH-MB cells that were driven by the nonmalignant tumor microenvironment. Methods Human induced pluripotent cells (iPSC) were differentiated to cerebellar organoids to simulate the nonmaliganant tumor microenvironment. Tumor spheroids were generated from 2 distinct, long-established SHH-MB cell lines which were co-cultured with cerebellar organoids. We profiled the cellular transcriptomes of malignant and nonmalignant cells by performing droplet-based single-cell RNA sequencing (scRNA-seq). The transcriptional profiles of tumor cells in co-culture were compared with those of malignant cell monocultures and with public SHH-MB datasets of patient tumors and patient-derived orthotopic xenograft (PDX) mouse models. Results SHH-MB cell lines in organoid co-culture adopted patient tumor-associated phenotypes and showed increased heterogeneity compared to monocultures. Subpopulations of co-cultured SHH-MB cells activated a key marker of differentiating granule cells, NEUROD1 that was not observed in tumor monocultures. Other subpopulations expressed transcriptional determinants consistent with a cancer stem cell-like state that resembled cell states identified in vivo. Conclusions For SHH-MB cell lines in co-culture, there was a convergence of malignant cell states towards patterns of heterogeneity in patient tumors and PDX models implying these states were non-cell autonomously induced by the microenvironment. Therefore, we have generated an advanced, novel in vitro model of SHH-MB with potential translational applications.
Collapse
Affiliation(s)
- Max J van Essen
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alina Nicheperovich
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benjamin Schuster-Böckler
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Esther B E Becker
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - John Jacob
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Yang J, Li J, Li S, Yang Y, Su H, Guo H, Lei J, Wang Y, Wen K, Li X, Zhang S, Wang Z. Effects of HOX family regulator-mediated modification patterns and immunity characteristics on tumor-associated cell type in endometrial cancer. MOLECULAR BIOMEDICINE 2024; 5:32. [PMID: 39138733 PMCID: PMC11322468 DOI: 10.1186/s43556-024-00196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Endometrial cancer (UCEC) is one of three major malignant tumors in women. The HOX gene regulates tumor development. However, the potential roles of HOX in the expression mechanism of multiple cell types and in the development and progression of tumor microenvironment (TME) cell infiltration in UCEC remain unknown. In this study, we utilized both the The Cancer Genome Atlas (TCGA) database and International Cancer Genome Consortium (ICGC) database to analyze transcriptome data of 529 patients with UCEC based on 39 HOX genes, combing clinical information, we discovered HOX gene were a pivotal factor in the development and progression of UCEC and in the formation of TME diversity and complexity. Here, a new scoring system was developed to quantify individual HOX patterns in UCEC. Our study found that patients in the low HOX score group had abundant anti-tumor immune cell infiltration, good tumor differentiation, and better prognoses. In contrast, a high HOX score was associated with blockade of immune checkpoints, which enhances the response to immunotherapy. The Real-Time quantitative PCR (RT-qPCR) and Immunohistochemistry (IHC) exhibited a higher expression of the HOX gene in the tumor patients. We revealed that the significant upregulation of the HOX gene in the epithelial cells can activate signaling pathway associated with tumour invasion and metastasis through single-cell RNA sequencing (scRNA-seq), such as nucleotide metabolic proce and so on. Finally, a risk prognostic model established by the positive relationship between HOX scores and cancer-associated fibroblasts (CAFs) can predict the prognosis of individual patients by scRNA-seq and transcriptome data sets. In sum, HOX gene may serve as a potential biomarker for the diagnosis and prediction of UCEC and to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- JiaoLin Yang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - JinPeng Li
- Shanxi Medical University, Taiyuan, 030001, China
| | - SuFen Li
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - YuTong Yang
- Shanxi Medical University, Taiyuan, 030001, China
| | - HuanCheng Su
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - HongRui Guo
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jing Lei
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - YaLin Wang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - KaiTing Wen
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xia Li
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - SanYuan Zhang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Zhe Wang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
5
|
Wang N, Shi S, Li M, Yu X, Ma G. Development and validation of a combined cuproptosis and immunogenic cell death prognostic model for diffuse large B-cell lymphoma. Aging (Albany NY) 2024; 16:1218-1236. [PMID: 38284893 PMCID: PMC10866411 DOI: 10.18632/aging.205399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/17/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma worldwide with a high degree of heterogeneity. Cuproptosis and immunogenic cell death (ICD) have been considered to be vital for tumor progression. However, current understanding of cuproptosis and immunogenic cell death in DLBCL is still very limited. We aim to explore a prognostic model combining cuproptosis and immunogenic cell death in DLBCL. METHODS Pearson's correlation analysis was utilized to acquire lncRNAs associated with cuproptosis and immunogenic cell death. Prognostic biomarker identification and model construction involved the use of univariate Cox regression, least absolute shrinkage and selection operator (LASSO) Cox regression, and multivariate Cox regression. We assessed the predictive capability of the risk model by conducting Kaplan-Meier analysis and time-dependent ROC analysis. The analysis and comparison of immune infiltration and drug sensitivity were conducted in this study. Moreover, RT-qPCR was employed to validate the expression of lncRNAs associated with cuproptosis and immunogenic cell death in DLBCL cell lines. RESULTS We identified 4 prognosis-related lncRNAs (ANKRD10-IT1, HOXB-AS1, LINC00520 and LINC01165) that were correlated with cuproptosis and immunogenic cell death. The model was verified to have a good and independent predictive ability in the prognostic prediction of DLBCL patients. Moreover, significant difference was observed in immune infiltration and drug sensitivity between high- and low-risk groups. CONCLUSION Our discoveries could enhance the comprehension of the role of cuproptosis and ICD in DLBCL, potentially offering novel viewpoints and knowledge for personalized and precise treatment of DLBCL individuals.
Collapse
Affiliation(s)
- Nana Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Shanshan Shi
- Department of Geriatrics, Hematology and Oncology Unit, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Moran Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiaoning Yu
- Department of Geriatrics, Hematology and Oncology Unit, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Guangxin Ma
- Department of Geriatrics, Hematology and Oncology Unit, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
6
|
Saadi W, Fatmi A, Pallardó FV, García-Giménez JL, Mena-Molla S. Long Non-Coding RNAs as Epigenetic Regulators of Immune Checkpoints in Cancer Immunity. Cancers (Basel) 2022; 15:cancers15010184. [PMID: 36612180 PMCID: PMC9819025 DOI: 10.3390/cancers15010184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
In recent years, cancer treatment has undergone significant changes, predominantly in the shift towards immunotherapeutic strategies using immune checkpoint inhibitors. Despite the clinical efficacy of many of these inhibitors, the overall response rate remains modest, and immunotherapies for many cancers have proved ineffective, highlighting the importance of knowing the tumor microenvironment and heterogeneity of each malignancy in patients. Long non-coding RNAs (lncRNAs) have attracted increasing attention for their ability to control various biological processes by targeting different molecular pathways. Some lncRNAs have a regulatory role in immune checkpoints, suggesting they might be utilized as a target for immune checkpoint treatment. The focus of this review is to describe relevant lncRNAs and their targets and functions to understand key regulatory mechanisms that may contribute in regulating immune checkpoints. We also provide the state of the art on super-enhancers lncRNAs (selncRNAs) and circular RNAs (circRNAs), which have recently been reported as modulators of immune checkpoint molecules within the framework of human cancer. Other feasible mechanisms of interaction between lncRNAs and immune checkpoints are also reported, along with the use of miRNAs and circRNAs, in generating new tumor immune microenvironments, which can further help avoid tumor evasion.
Collapse
Affiliation(s)
- Wiam Saadi
- Department of Biology, Faculty of Nature, Life and Earth Sciences, University of Djillali Bounaama, Khemis Miliana 44225, Algeria
- Correspondence: (W.S.); (S.M.-M.)
| | - Ahlam Fatmi
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
| | - Federico V. Pallardó
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - José Luis García-Giménez
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Salvador Mena-Molla
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Correspondence: (W.S.); (S.M.-M.)
| |
Collapse
|
7
|
Rajabi A, Kayedi M, Rahimi S, Dashti F, Mirazimi SMA, Homayoonfal M, Mahdian SMA, Hamblin MR, Tamtaji OR, Afrasiabi A, Jafari A, Mirzaei H. Non-coding RNAs and glioma: Focus on cancer stem cells. Mol Ther Oncolytics 2022; 27:100-123. [PMID: 36321132 PMCID: PMC9593299 DOI: 10.1016/j.omto.2022.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Glioblastoma and gliomas can have a wide range of histopathologic subtypes. These heterogeneous histologic phenotypes originate from tumor cells with the distinct functions of tumorigenesis and self-renewal, called glioma stem cells (GSCs). GSCs are characterized based on multi-layered epigenetic mechanisms, which control the expression of many genes. This epigenetic regulatory mechanism is often based on functional non-coding RNAs (ncRNAs). ncRNAs have become increasingly important in the pathogenesis of human cancer and work as oncogenes or tumor suppressors to regulate carcinogenesis and progression. These RNAs by being involved in chromatin remodeling and modification, transcriptional regulation, and alternative splicing of pre-mRNA, as well as mRNA stability and protein translation, play a key role in tumor development and progression. Numerous studies have been performed to try to understand the dysregulation pattern of these ncRNAs in tumors and cancer stem cells (CSCs), which show robust differentiation and self-regeneration capacity. This review provides recent findings on the role of ncRNAs in glioma development and progression, particularly their effects on CSCs, thus accelerating the clinical implementation of ncRNAs as promising tumor biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrdad Kayedi
- Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rahimi
- School of Medicine,Fasa University of Medical Sciences, Fasa, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Amin Mahdian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Afrasiabi
- Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Fan F, Mo H, Zhang H, Dai Z, Wang Z, Qu C, Liu F, Zhang L, Luo P, Zhang J, Liu Z, Cheng Q, Ding F. HOXA5: A crucial transcriptional factor in cancer and a potential therapeutic target. Biomed Pharmacother 2022; 155:113800. [PMID: 36271576 DOI: 10.1016/j.biopha.2022.113800] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/20/2022] Open
Abstract
HOX genes occupy a significant role in embryogenesis, hematopoiesis, and oncogenesis. HOXA5, a member of the A cluster of HOX genes, is essential for establishing the skeleton and normal organogenesis. As previously reported, aberrant HOXA5 expression contributes to anomalies and dysfunction of various organs, as well as affecting proliferation, differentiation, invasion, apoptosis, and other biological processes of tumor cells. Different cancers showed both downregulated and upregulated HOXA5 expression. The most common strategy for controlling HOXA5 downregulated expression may be CpG island hypermethylation. Additionally, current research demonstrated the regulatory network of HOXA5 and its connection with cancer stem cell progression and the immune microenvironment. Epigenetic modulators and upstream regulators, such as DNMTi and retinoic acid, may be beneficial for anti-tumor effects targeting HOXA5. Here, we summarize current knowledge about the HOXA5 gene, its role in various cancers, and its potential therapeutic value.
Collapse
Affiliation(s)
- Fan Fan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Haoyang Mo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chunrun Qu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.
| | - Fengqin Ding
- Department of Clinical Laboratory, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China.
| |
Collapse
|
9
|
Integrated Analysis of Tumor Mutation Burden and Immune Infiltrates in Hepatocellular Carcinoma. Diagnostics (Basel) 2022; 12:diagnostics12081918. [PMID: 36010268 PMCID: PMC9406847 DOI: 10.3390/diagnostics12081918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor mutation burdens (TMBs) act as an indicator of immunotherapeutic responsiveness in various tumors. However, the relationship between TMBs and immune cell infiltrates in hepatocellular carcinoma (HCC) is still obscure. The present study aimed to explore the potential diagnostic markers of TMBs for HCC and analyze the role of immune cell infiltration in this pathology. We used OA datasets from The Cancer Genome Atlas database. First, the “maftools” package was used to screen the highest mutation frequency in all samples. R software was used to identify differentially expressed genes (DEGs) according to mutation frequency and perform functional correlation analysis. Then, the gene ontology (GO) enrichment analysis was performed with “clusterProfiler”, “enrichplot”, and “ggplot2” packages. Finally, the correlations between diagnostic markers and infiltrating immune cells were analyzed, and CIBERSORT was used to evaluate the infiltration of immune cells in HCC tissues. As a result, we identified a total of 359 DEGs in this study. These DEGs may affect HCC prognosis by regulating fatty acid metabolism, hypoxia, and the P53 pathway. The top 15 genes were selected as the hub genes through PPI network analysis. SRSF1, SNRPA1, and SRSF3 showed strong similarities in biological effects, NCBP2 was demonstrated as a diagnostic marker of HCC, and high NCBP2 expression was significantly correlated with poor over survival (OS) in HCC. In addition, NCBP2 expression was correlated with the infiltration of B cells (r = 0.364, p = 3.30 × 10−12), CD8+ T cells (r = 0.295, p = 2.71 × 10−8), CD4+ T cells, (r = 0.484, p = 1.37 × 10−21), macrophages (r = 0.551, p = 1.97 × 10−28), neutrophils (r = 0.457, p = 3.26 × 10−19), and dendritic cells (r = 0.453, p = 1.97 × 10−18). Immune cell infiltration analysis revealed that the degree of central memory T-cell (Tcm) infiltration may be correlated with the HCC process. In conclusion, NCBP2 can be used as diagnostic markers of HCC, and immune cell infiltration plays an important role in the occurrence and progression of HCC.
Collapse
|