1
|
Roy P, Sharma S, Baranwal M. Computational Insight in the Identification of Non-Synonymous Single-Nucleotide Polymorphism Affecting the Structure and Function of Interleukin-4. Proteomics Clin Appl 2025; 19:e202400070. [PMID: 39648289 DOI: 10.1002/prca.202400070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND IL4 is a versatile cytokine essentially known for differentiation, proliferation and cell death in cells. Its dysregulation has been found to be associated with the development of inflammatory disorders. OBJECTIVE The goal of the current investigation is to identify and select non-synonymous single-nucleotide polymorphisms (nsSNPs) in the IL-4 gene by employing computational methods which may have a potential functional impact on the occurrence of disease. METHOD AND RESULT Six different nsSNPs were predicted to be deleterious based on the consensus of different algorithms: SIFT, Polyphen2 (Humdiv and HumVar), PredictSNP and SNP&GO. I-mutant and MuPro assessment revealed a decrease in the stability of these mutants except K150M. Modelling was then carried out to build the wild type along with its mutants, followed by superimposition of the wild type with mutants to evaluate the RMSD value, which lies between 0.26 and 0.34. Simulation results of mutant models, along with wild type, showed that four of the mutants (N113Y, A118G, R109W and K150M) deviated most and were unstable. A118G showed a significant deviation from the wild type, while V53A and C123R were stable. CONCLUSION The finding establishes the evidence that the identified six nsSNPs of IL-4 can be the new entrant presenting their candidature for genetic testing.
Collapse
Affiliation(s)
- Pratima Roy
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| |
Collapse
|
2
|
Ali T, Anjum F, Choudhury A, Shafie A, Ashour AA, Almalki A, Mohammad T, Hassan MI. Identification of natural product-based effective inhibitors of spleen tyrosine kinase (SYK) through virtual screening and molecular dynamics simulation approaches. J Biomol Struct Dyn 2024; 42:3459-3471. [PMID: 37261484 DOI: 10.1080/07391102.2023.2218938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023]
Abstract
Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase that plays an essential role in signal transduction across different cell types. In the context of allergy and autoimmune disorders, it is a crucial regulator of immune receptor signaling in inflammatory cells such as B cells, mast cells, macrophages, and neutrophils. Developing SYK kinase inhibitors has gained significant interest for potential therapeutic applications in neurological and cancer-related conditions. The clinical use of the most advanced SYK inhibitor, Fostamatinib, has been limited due to its unwanted side effects. Thus, a more targeted approach to SYK inhibition would provide a more comprehensive treatment window. In this study, we used a virtual screening approach to identify potential SYK inhibitors from natural compounds from the IMPPAT database. We identified two compounds, Isolysergic acid and Michelanugine, which showed strong affinity and specificity for the SYK binding pocket. All-atom molecular dynamics (MD) simulations were also performed to explore the stability, conformational changes, and interaction mechanism of SYK in complexes with the identified compounds. The identified compounds might have the potential to be developed into promising SYK inhibitors for the treatment of various diseases, including autoimmune disorders, cancer, and inflammatory diseases. This work aims to identify potential phytochemicals to develop a new protein kinase inhibitor for treating advanced malignancies by providing an updated understanding of the role of SYK.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tufail Ali
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| | - Abdulraheem Almalki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
3
|
Jairajpuri DS, Mohammad T, Hussain A, Amir S, Fatima U, AlAjmi MF, Yadav DK, Hassan MI. An integrated docking and molecular dynamics simulation approach to discover potential inhibitors of activin receptor-like kinase 1. J Mol Recognit 2024; 37:e3069. [PMID: 38053481 DOI: 10.1002/jmr.3069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 11/04/2023] [Indexed: 12/07/2023]
Abstract
Activin receptor-like kinase 1 (ALK1) is a transmembrane receptor involved in crucial signaling pathways associated with angiogenesis and vascular development. Inhibition of ALK1 signaling has emerged as a promising therapeutic strategy for various angiogenesis-related diseases, including cancer and hereditary hemorrhagic telangiectasia. This study aimed to investigate the potential of phytoconstituents as inhibitors of ALK1 using a combined approach of virtual screening and molecular dynamics (MDs) simulations. Phytoconstituents from the IMPPAT 2.0 database underwent virtual screening to identify potential inhibitors of ALK1. The compounds were initially filtered based on physicochemical parameters, following Lipinski's rules and the PAINS filter. Subsequently, compounds demonstrating high binding affinities in docking analysis were further analyzed. Additional assessments, including ADMET, PAINS, and PASS evaluations, were conducted to identify more potent hits. Through interaction analysis, a phytoconstituent, Candidine, exhibited appreciable affinity and specific interactions with the ALK1 active site. To validate the results, MD simulations and principal components analysis were performed. The MD simulations demonstrated that Candidine stabilized the ALK1 structure and reduced conformational fluctuations. In conclusion, Candidine shows promising potential as binding partners of ALK1. These findings provide a foundation for further exploration and development of Candidine as a lead molecule for therapeutic interventions targeting ALK1-associated diseases.
Collapse
Affiliation(s)
- Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Samira Amir
- Department of Chemistry, King Saud University, Riyadh, Saudi Arabia
| | - Urooj Fatima
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Republic of Korea
- Arontier Co., Seoul, Republic of Korea
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
4
|
Gulzar M, Noor S, Hasan GM, Hassan MI. The role of serum and glucocorticoid-regulated kinase 1 in cellular signaling: Implications for drug development. Int J Biol Macromol 2024; 258:128725. [PMID: 38092114 DOI: 10.1016/j.ijbiomac.2023.128725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1) is a ubiquitously expressed protein belonging to the Ser/Thr kinase family. It regulates diverse physiological processes, including epithelial sodium channel activity, hypertension, cell proliferation, and insulin sensitivity. Due to its significant role in the pathogenesis of numerous diseases, SGK1 can be exploited as a potential therapeutic target to address challenging health problems. SGK1 is associated with the development of obesity, and its overexpression enhances the sodium-glucose co-transporter 1 activity, which absorbs intestinal glucose. This review highlighted the detailed functional significance of SGK1 signaling and role in different diseases and subsequent therapeutic targeting. We aim to provide deeper mechanistic insights into understanding the pathogenesis and recent advancements in the SGK1 targeted drug development process. Small-molecule inhibitors are being developed with excellent binding affinity and improved SGK1 inhibition with desired selectivity. We have discussed small molecule inhibitors designed explicitly as potent SGK1 inhibitors and their therapeutic implications in various diseases. We further addressed the therapeutic potential and mechanism of action of these SGK1 inhibitors and provided a strong scientific foundation for developing effective therapeutics.
Collapse
Affiliation(s)
- Mehak Gulzar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
5
|
Alam M, Ahmed S, Abid M, Hasan GM, Islam A, Hassan MI. Therapeutic targeting of microtubule affinity-regulating kinase 4 in cancer and neurodegenerative diseases. J Cell Biochem 2023; 124:1223-1240. [PMID: 37661636 DOI: 10.1002/jcb.30468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
Microtubule affinity-regulating kinase 4 (MARK4) is a member of the Ser/Thr protein kinase family, phosphorylates the microtubule-connected proteins and plays a vital role in causing cancers and neurodegenerative diseases. This kinase modulates multiple signaling pathways, including mammalian target of rapamycin, nuclear factor-κB, and Hippo-signaling, presumably responsible for cancer and Alzheimer's. MARK4 acts as a negative controller of the Hippo-kinase cassette for promoting YAP/TAZ action, and the loss of MARK4 detains the tumorigenic properties of cancer cells. MARK4 is involved in tau hyperphosphorylation that consequently affects neurodegeneration. MARK4 is a promising drug target for cancer, diabetes, and Alzheimer's. Developing the potent and selective inhibitors of MAKR4 are promising in the therapeutic management of associated diseases. Despite its great significance, a few reviews are available to discuss its structure, function and clinical significance. In the current review, we aimed to provide detailed information on the structural features of MARK4 targeted in drug development and its role in various signaling pathways related to cancer and neurodegenerative diseases. We further described the therapeutic potential of MARK4 inhibitors in preventing numerous diseases. Finally, the updated information on MARK4 will be helpful in the further development of effective therapeutic molecules.
Collapse
Affiliation(s)
- Manzar Alam
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sarfraz Ahmed
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Asimul Islam
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
6
|
Bhale AS, Venkataraman K. Delineating the impact of pathogenic mutations on the conformational dynamics of HDL's vital protein ApoA1: a combined computational and molecular dynamic simulation approach. J Biomol Struct Dyn 2023; 41:15661-15681. [PMID: 36943736 DOI: 10.1080/07391102.2023.2191131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/09/2023] [Indexed: 03/23/2023]
Abstract
Apolipoprotein A1 (ApoA1), is the important component of high-density lipoproteins (HDL), that has key role in HDL biogenesis, cholesterol trafficking, and reverse cholesterol transport (RCT). Non-synonymous Single Nucleotide Polymorphisms (nsSNPs) in ApoA1 have been linked to cardiovascular diseases and amyloidosis as they alter the protein's native structure and function. Therefore in this study, we attempted to understand the molecular pathogenicity profile of nsSNPs of ApoA1 using various computational approaches. We used state-of-the-art computational methods to thoroughly investigate the 295 ApoA1 nsSNPs at sequence and structural levels. Seven nsSNPs (L13R, L84R, L84P, L99P, R173P, L187P, and L238P) out of 295 were classified as the most deleterious and destabilizing. In order to estimate the effect of such destabilizing mutations on the protein conformation, all-atom molecular dynamics simulations (MDS) of ApoA1 wild-type (WT), L99P and R173P for 100 ns, was carried out using GROMACS 5.0.1 package. The MD simulation investigation revealed significant structural alterations in L99P and R173P. In addition, they had changed principal component analysis and electrostatic surface potential, decreased structural compactness, and intramolecular hydrogen bonds, which supported the rationale underpinning ApoA1 dysfunction with such mutations. This work sheds light on ApoA1 dysfunction due to single amino acid alterations, and offers new insight into the molecular basis of ApoA1-related diseases progression.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
7
|
Mutational analysis of catalytic site domain of CCHFV L RNA segment. J Mol Model 2023; 29:88. [PMID: 36877258 PMCID: PMC9987378 DOI: 10.1007/s00894-023-05487-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/24/2023] [Indexed: 03/07/2023]
Abstract
INTRODUCTION Crimean-Congo haemorrhagic fever virus (CCHFV) has tripartite RNA genome and is endemic in various countries of Asia, Africa and Europe. METHOD The present study is focused on mutation profiling of CCHFV L segment and phylogenetic clustering of protein dataset into six CCHFV genotypes. RESULTS Phylogenetic tree rooted with NCBI reference sequence (YP_325663.1) indicated less divergence from genotype III and the sequences belonging to same genotypes have shown less divergence among each other. Mutation frequency at 729 mutated positions was calculated and 563, 49, 33, 46 and 38 amino acid positions were found to be mutated at mutation frequency intervals of 0-0.2, 0.21-0.4, 0.41-0.6, 0.61-0.8 and 0.81-1.0 respectively. Thirty-eight highly frequent mutations (0.81-1.0 interval) were found in all genotypes and mapping in L segment (encoded for RdRp) revealed four mutations (V2074I, I2134T/A, V2148A and Q2695H/R) in catalytic site domain and no mutation in OTU domain. Molecular dynamic simulation and in silico analysis showed that catalytic site domain displayed large deviation and fluctuation upon introduction of these point mutations. CONCLUSION Overall study provides strong evidence that OTU domain is highly conserved and less prone to mutation whereas point mutations recorded in catalytic domain have affected the stability of protein and were found to be persistent in the large population.
Collapse
|
8
|
Laskar FS, Bappy MNI, Hossain MS, Alam Z, Afrin D, Saha S, Ali Zinnah KM. An In silico Approach towards Finding the Cancer-Causing Mutations in Human MET Gene. Int J Genomics 2023; 2023:9705159. [PMID: 37200850 PMCID: PMC10188262 DOI: 10.1155/2023/9705159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/20/2023] Open
Abstract
Mesenchymal-epithelial transition (MET) factor is a proto-oncogene encoding tyrosine kinase receptor with hepatocyte growth factor (HGF) or scatter factor (SF). It is found on the human chromosome number 7 and regulates the diverse cellular mechanisms of the human body. The impact of mutations occurring in the MET gene is demonstrated by their detrimental effects on normal cellular functions. These mutations can change the structure and function of MET leading to different diseases such as lung cancer, neck cancer, colorectal cancer, and many other complex syndromes. Hence, the current study focused on finding deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) and their subsequent impact on the protein's structure and functions, which may contribute to the emergence of cancers. These nsSNPs were first identified utilizing computational tools like SIFT, PROVEAN, PANTHER-PSEP, PolyPhen-2, I-Mutant 2.0, and MUpro. A total of 45359 SNPs of MET gene were accumulated from the database of dbSNP, and among them, 1306 SNPs were identified as non-synonymous or missense variants. Out of all 1306 nsSNPs, 18 were found to be the most deleterious. Moreover, these nsSNPs exhibited substantial effects on structure, binding affinity with ligand, phylogenetic conservation, secondary structure, and post-translational modification sites of MET, which were evaluated using MutPred2, RaptorX, ConSurf, PSIPRED, and MusiteDeep, respectively. Also, these deleterious nsSNPs were accompanied by changes in properties of MET like residue charge, size, and hydrophobicity. These findings along with the docking results are indicating the potency of the identified SNPs to alter the structure and function of the protein, which may lead to the development of cancers. Nonetheless, Genome-wide association study (GWAS) studies and experimental research are required to confirm the analysis of these nsSNPs.
Collapse
Affiliation(s)
- Fayeza Sadia Laskar
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md. Nazmul Islam Bappy
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md. Sowrov Hossain
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Zenifer Alam
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Dilruba Afrin
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Sudeb Saha
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- Department of Dairy Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Kazi Md. Ali Zinnah
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
9
|
Khatoon F, Kumar V, Anjum F, Shafie A, Adnan M, Hassan MI. Frustration analysis of TBK1 missense mutations reported in ALS/FTD and cancer patients. 3 Biotech 2022; 12:174. [PMID: 35845111 PMCID: PMC9283588 DOI: 10.1007/s13205-022-03240-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Tank-binding kinase 1 (TBK1) is a multifunctional kinase having essential roles in cellular processes, autophagy/mitophagy, and selective clearance of damaged proteins. More than 90 mutations in the TBK1 gene are linked with multiple cancer types, amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). Some of these missense mutations disrupt the abilities of TBK1 to dimerize, associate with the mitophagy receptor optineurin (OPTN), autoactivate, or catalyze phosphorylation. Some mutations may cause severe dysregulation of the pathway, while others induce a limited disruption. Here, we have studied those mutations reported in cancer, ALS and FTD, and subsequently investigated the effect of missense mutations on the structure and function of TBK1 for localized residual frustration change. Out of 33 ALS/FTD causing mutations and 28 oncogenic mutations, 10 mutations and 12 oncogenic mutations showed significant change in the residual frustration. The local frustration plays an important role in the conformation of protein structure in active and inactive kinases. Our analysis reports the change in residual frustration state, conformational change and effect on active and inactive TBK1 function due to ALS/FTD causing and oncogenic missense mutations. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03240-0.
Collapse
|
10
|
Ali S, Alam M, Khatoon F, Fatima U, Elasbali AM, Adnan M, Islam A, Hassan MI, Snoussi M, De Feo V. Natural products can be used in therapeutic management of COVID-19: Probable mechanistic insights. Biomed Pharmacother 2022; 147:112658. [PMID: 35066300 PMCID: PMC8769927 DOI: 10.1016/j.biopha.2022.112658] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The unexpected emergence of the new Coronavirus disease (COVID-19) has affected more than three hundred million individuals and resulted in more than five million deaths worldwide. The ongoing pandemic has underscored the urgent need for effective preventive and therapeutic measures to develop anti-viral therapy. The natural compounds possess various pharmaceutical properties and are reported as effective anti-virals. The interest to develop an anti-viral drug against the novel severe acute respiratory syndrome Coronavirus (SARS-CoV-2) from natural compounds has increased globally. Here, we investigated the anti-viral potential of selected promising natural products. Sources of data for this paper are current literature published in the context of therapeutic uses of phytoconstituents and their mechanism of action published in various reputed peer-reviewed journals. An extensive literature survey was done and data were critically analyzed to get deeper insights into the mechanism of action of a few important phytoconstituents. The consumption of natural products such as thymoquinone, quercetin, caffeic acid, ursolic acid, ellagic acid, vanillin, thymol, and rosmarinic acid could improve our immune response and thus possesses excellent therapeutic potential. This review focuses on the anti-viral functions of various phytoconstituent and alkaloids and their potential therapeutic implications against SARS-CoV-2. Our comprehensive analysis provides mechanistic insights into phytoconstituents to restrain viral infection and provide a better solution through natural, therapeutically active agents.
Collapse
Affiliation(s)
- Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Fatima Khatoon
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, Uttar Pradesh 201303, India
| | - Urooj Fatima
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | | | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, Italy.
| |
Collapse
|