1
|
Dong Y, Liu X, Xiong S, Cao M, Wu H, Chen L, Zhao M, Zheng Y, Zhang Z, Liu Y, Li Y, Qu Q, Dong C. Guanosine enhances the bactericidal effect of ceftiofur sodium on Streptococcus suis by activating bacterial metabolism. Virulence 2025; 16:2453525. [PMID: 39915976 PMCID: PMC11810099 DOI: 10.1080/21505594.2025.2453525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/09/2024] [Accepted: 12/29/2024] [Indexed: 02/12/2025] Open
Abstract
The emergence and rapid development of antibiotic resistance poses a serious threat to global public health. Streptococcus suis (S. suis) is an important zoonotic pathogen, and the development of its antibiotic resistance has made the infections difficult to treat. The combination of non-antibiotic compounds with antibiotics is considered a promising strategy against multidrug-resistant bacteria. However, the mechanism by which metabolites act as antibiotic adjuvant remains unclear. Here, we found that guanosine metabolism was repressed in multidrug-resistant S. suis. Exogenous guanosine promoted the antibacterial effects of ceftiofur sodium (CEF) in vitro and in vivo. Furthermore, we demonstrated that exogenous guanosine promoted the biosynthesis of purine pathway, TCA cycle and bacterial respiration, which make bacteria more sensitive to the killing effect of antibacterial. In addition, the function of the cell membrane is affected by guanosine and the accumulation of antimicrobials in the bacteria increased. Bacterial-oxidative stress and DNA damage induced by guanosine is also one of the mechanisms by which the antibacterial effect is enhanced. These results suggest that guanosine is a promising adjuvant for antibacterial drugs and provide new theoretical basis for the clinical treatment of S. suis infection.
Collapse
Affiliation(s)
- Yue Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Xiaona Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Shanshan Xiong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Mingyu Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Haojie Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Long Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Mengmeng Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Yadan Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Zhiyun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Yanyan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Qianwei Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| | - Chunliu Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, P R China
| |
Collapse
|
2
|
Marciniak T, Kirchner L, Wolf SA, Walther B, Bischler T, Nyasinga J, Gunturu R, Semmler T, Gräfenhan T, Whitelaw A, Scherf-Clavel O, Holzgrabe U, Ziebuhr W. Emergence of transferable daptomycin resistance in Gram-positive bacteria. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:33. [PMID: 40287593 PMCID: PMC12033364 DOI: 10.1038/s44259-025-00109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Daptomycin (DAP) is a last-resort antibiotic to treat infections by multiresistant Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci. DAP resistance and clinical treatment failure has been associated with adaptive chromosomal mutations, but so far not with transmissible resistance traits. Here we report for the first time an acquired DAP-R determinant (named drc) that we detected in a livestock-associated Mammaliicoccus sciuri isolate. drc consists of a two-gene operon (drcAB) that is controlled by an adjacent two-component system (drcRS). The DrcAB proteins, which mediate DAP inactivation, are similar to BceAB-like antimicrobial peptide transporters of Gram-positives, but are distinct from currently known systems. The mobile drc locus is functional in various bacterial backgrounds, including MRSA. It circulates primarily among Gram-positives in the environment, but also in commensal staphylococci and enterococci, suggesting a risk of transmission into pathogens and emphasizing the importance of low and apathogenic microorganisms as resistance gene reservoirs.
Collapse
Affiliation(s)
- Tessa Marciniak
- Institute of Molecular Infection Biology, University of Wurzburg, Wurzburg, Germany
| | - Lukas Kirchner
- Institute for Pharmacy and Food Chemistry, University of Wurzburg, Wurzburg, Germany
| | - Silver A Wolf
- Genome Competence Centre (MF1), Robert Koch Institute, Berlin, Germany
| | - Birgit Walther
- Microbiological Risks (II 1.4), German Environment Agency, Berlin, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Wurzburg, Wurzburg, Germany
| | | | | | - Torsten Semmler
- Genome Competence Centre (MF1), Robert Koch Institute, Berlin, Germany
| | - Tom Gräfenhan
- Core Unit Systems Medicine, University of Wurzburg, Wurzburg, Germany
| | - Andrew Whitelaw
- Division of Medical Microbiology, Stellenbosch University, Cape Town and National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Oliver Scherf-Clavel
- Department of Pharmacy, Clinical Pharmacy and Pharmacotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Ulrike Holzgrabe
- Institute for Pharmacy and Food Chemistry, University of Wurzburg, Wurzburg, Germany
| | - Wilma Ziebuhr
- Institute of Molecular Infection Biology, University of Wurzburg, Wurzburg, Germany.
| |
Collapse
|
3
|
Lam LN, Savage KE, Shakir CN, Lemos JA. Genome-wide analysis of Enterococcus faecalis genes that facilitate interspecies competition with Lactobacillus crispatus. J Bacteriol 2025; 207:e0043824. [PMID: 39902966 PMCID: PMC11925238 DOI: 10.1128/jb.00438-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Enterococci are opportunistic pathogens notorious for causing a variety of infections. While both Enterococcus faecalis and Lactobacillus crispatus are commensal residents of the vaginal tract, the molecular mechanisms that enable E. faecalis to take advantage of a vaginal biome with lower counts of lactobacilli to colonize the vaginal tract and induce aerobic vaginitis remain unknown. Here, we show that L. crispatus eradicates E. faecalis in a contact-independent manner. Using transposon sequencing to identify E. faecalis OG1RF transposon (Tn) mutants that are either under-represented or over-represented when co-cultured with L. crispatus, we found that Tn mutants with disruption in the dltABCD operon, that encodes the proteins responsible for the D-alanylation of teichoic acids, and OG1RF_11697 encoding for an uncharacterized hypothetical protein are more susceptible to killing by L. crispatus. Inversely, Tn mutants with disruption in ldh1, which encodes for L-lactate dehydrogenase, are more resistant to L. crispatus killing. Using the Galleria mellonella infection model, we show that co-injection of L. crispatus with E. faecalis OG1RF enhances larvae survival while this L. crispatus-mediated protection was lost in larvae co-infected with either L. crispatus and E. faecalisΔldh1 or Δldh1Δldh2 strains. Last, using RNA sequencing to identify E. faecalis genes that are differently expressed in the presence of L. crispatus, we found major changes in the expression of genes associated with glycerophospholipid metabolism, central metabolism, and general stress responses. The findings in this study provide insights into how E. faecalis mitigate assaults by L. crispatus.IMPORTANCEEnterococcus faecalis is an opportunistic pathogen notorious for causing a multitude of infections. As vaginal commensals, E. faecalis must interact with Lactobacillus crispatus, but how E. faecalis overcomes or mitigate assaults by L. crispatus killing remains unknown. We show that L. crispatus eradicates E. faecalis temporally in a contact-independent manner. Using high-throughput molecular approaches, we identified genetic determinants that enable E. faecalis to compete with L. crispatus. This study represents an important first step for the identification of adaptive genetic traits required for enterococci to tolerate assaults by lactobacilli.
Collapse
Affiliation(s)
- Ling Ning Lam
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Kathryn E. Savage
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Camille N. Shakir
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - José A. Lemos
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Supandy A, Van Tyne D. AMPing Up the Pressure: Cell Envelope Signaling Protects Enterococcus faecalis From Antimicrobial Peptides. J Infect Dis 2025; 231:287-290. [PMID: 38576416 DOI: 10.1093/infdis/jiae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024] Open
Affiliation(s)
- Adeline Supandy
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Qu S, Yang S, Xu Q, Zhang M, Gao F, Wu Y, Li L. A Milk Extracellular Vesicle-Based Nanoplatform Enhances Combination Therapy Against Multidrug-Resistant Bacterial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406496. [PMID: 39721033 PMCID: PMC11831456 DOI: 10.1002/advs.202406496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/09/2024] [Indexed: 12/28/2024]
Abstract
The increasing occurrence of infections caused by multidrug-resistant (MDR) bacteria drives the need for new antibacterial drugs. Due to the current lack of antibiotic discovery and development, new strategies to fight MDR bacteria are urgently needed. Efforts to develop new antibiotic adjuvants to increase the effectiveness of existing antibiotics and design delivery systems are essential to address this issue. Here, a bioinspired delivery system equipped with combination therapy and paracellular transport is shown to enhance the efficacy against bacterial infections by improving oral delivery. A screening platform is established using an in vitro-induced high polymyxin-resistant strain to acquire plumbagin, which enhances the efficacy of polymyxin. Functionalized milk extracellular vesicles (FMEVs) coloaded with polymyxin and plumbagin cleared 99% of the bacteria within 4 h. Mechanistic studies revealed that the drug combination damaged the membrane, disrupted energy metabolism, and accelerated bacterial death. Finally, FMEVs are efficiently transported transcellularly through the citric acid-mediated reversible opening of the tight junctions and showed high efficacy against an MDR Escherichia coli-associated peritonitis-sepsis model in mice. These findings provide a potential therapeutic strategy to improve the efficacy of combination therapy by enhancing oral delivery using a biomimetic delivery platform.
Collapse
Affiliation(s)
- Shaoqi Qu
- Animal‐Derived Food Safety Innovation TeamCollege of Veterinary MedicineAnhui Agricultural UniversityHefei230036China
| | - Shuo Yang
- Animal‐Derived Food Safety Innovation TeamCollege of Veterinary MedicineAnhui Agricultural UniversityHefei230036China
| | - Qingjun Xu
- Animal‐Derived Food Safety Innovation TeamCollege of Veterinary MedicineAnhui Agricultural UniversityHefei230036China
| | - Mengying Zhang
- Animal‐Derived Food Safety Innovation TeamCollege of Veterinary MedicineAnhui Agricultural UniversityHefei230036China
| | - Feng Gao
- Animal‐Derived Food Safety Innovation TeamCollege of Veterinary MedicineAnhui Agricultural UniversityHefei230036China
| | - Yongning Wu
- Animal‐Derived Food Safety Innovation TeamCollege of Veterinary MedicineAnhui Agricultural UniversityHefei230036China
- Research Unit of Food SafetyChinese Academy of Medical Sciences (No. 2019RU014)NHC Key Laboratory of Food Safety Risk AssessmentChina National Center for Food Safety Risk Assessment (CFSA)Beijing100022China
| | - Lin Li
- Animal‐Derived Food Safety Innovation TeamCollege of Veterinary MedicineAnhui Agricultural UniversityHefei230036China
| |
Collapse
|
6
|
Qiao F, Wang S, He J, Ma X, Sun T, Li J, De Souza C, Yi H, Zhang L, Lin K. Characterization of Key Lipid Components in the Cell Membrane of Freeze-Drying Resistant Lacticaseibacillus paracasei Strains Using Nontargeted Lipidomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2696-2711. [PMID: 39787005 DOI: 10.1021/acs.jafc.4c11237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Lactic acid bacteria (LAB) are usually freeze-dried into powder for transportation and storage, with the bacterial membrane playing a crucial role in this process. However, different strains exhibit different levels of freeze-drying resistance in their cell membranes. In this study, Lacticaseibacillus paracasei (L. paracasei) strains 1F20, K56, and J5, demonstrating survival rates of 59.51, 25.86, and 4.05% after freeze-drying, respectively, were selected. The membrane structure and composition of these strains were subsequently analyzed. Bacterial live/dead staining results indicated that strain 1F20 maintained the highest membrane integrity after drying. Nontargeted lipidomics analysis revealed six differential lipid species that differed in membrane lipid compositions. KEGG functional enrichment analysis revealed 13 significantly different pathways, with glycerophospholipid metabolism being the most critical. This study explored the membrane composition of L. paracasei at the cellular level and identified key lipid species associated with freeze-drying resistance, providing a reference for screening highly resistant strains.
Collapse
Affiliation(s)
- Fengzhi Qiao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Shaolei Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jian He
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010000, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010000, China
| | - Xia Ma
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010000, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010000, China
| | - Ting Sun
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010000, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010000, China
| | - Jiadong Li
- Innochina Biotech Co., Ltd, Shanghai 201400, China
| | - Cristabelle De Souza
- Department of Stem Cell Research and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Huaxi Yi
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Lanwei Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Kai Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
7
|
Wu Y, Pang Y, Yang H, Zhu L, Ma T, Chen X. Repurposed Anti-Multiple Sclerosis Drug Fty720 Targets Carbapenem-Resistant Acinetobacter baumannii via Multiple Pathways. Curr Microbiol 2024; 82:17. [PMID: 39607538 DOI: 10.1007/s00284-024-03986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Bacterial antimicrobial resistance (AMR), particularly multidrug resistance (MDR) in gram-negative bacterial strains, has emerged as a formidable challenge of substantial consequence, necessitating an urgent pursuit of a sustainable and efficacious strategic response. Repurposing nonantibiotic drugs as potential antibiotics or antibiotic adjuvants is a valuable approach to targeting MDR bacteria. A total of 1,750 FDA-approved drugs (APExBIO, USA) were screened to test their antimicrobial activities against MDR bacteria using the broth microdilution method according to the standard of the Clinical and Laboratory Standards Institute (CLSI). Microscale thermophoresis (MST) analysis was performed to detect the Fty720-LPS interactions. Fty720-indcued lipid changes were measured by untargeted lipidomic analysis. Isothermal titration calorimetry (ITC) analysis was used to determine the Fty720-lipid binding affinities. DNA degradation was assessed via agarose gel electrophoresis with ethidium bromide (EB) staining and visualized using a gel imaging system. Galleria mellonella larvae infection model and Mouse peritonitis infection models were used to evaluated the antibacterial ability of Fty720 in vivo. In this study, we identified Fty720, a pharmaceutical agent for treating multiple sclerosis, as a potent inhibitor of carbapenem-resistant Acinetobacter baumannii (CRAB). We demonstrated that Fty720 exerts antibacterial effects through multiple strategies, including disruption of the structural integrity of the membranes by interacting with LPS and glycerophospholipids, as well as degradation of bacterial DNA. Furthermore, through judicious structural modification, the pivotal role of the positively charged moiety (NH2) in Fty720's antibacterial activity was substantiated. Intriguingly, the translation of Fty720's antibacterial efficacy was demonstrated in vivo, substantiating its pronounced influence on elevating survival rates among models afflicted with MDR gram-negative bacterial infections. Fty720 targets CRAB via multiple pathways, including disruption of outer and inner membrane integrity and DNA degradation. This investigation unveils the multifaceted antibacterial mechanisms of Fty720 while concurrently delineating a prospective therapeutic avenue to counteract MDR gram-negative bacterial strains.
Collapse
Affiliation(s)
- Yuxuan Wu
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China
| | - Yufan Pang
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China
| | - Han Yang
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China
| | - Li Zhu
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China
| | - Tonghui Ma
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China.
| | - Xiuli Chen
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
8
|
Yu Z, Hong Y, Zhao S, Zhou M, Tan X. Antibacterial Effect of Fermented Pomegranate Peel Polyphenols on Vibrio alginolyticus and Its Mechanism. BIOLOGY 2024; 13:934. [PMID: 39596889 PMCID: PMC11591687 DOI: 10.3390/biology13110934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Vibrio alginolyticus frequently breaks out in aquatic animal breeding operations involving shrimp, and it can endanger human health through food and wound infections. The antibacterial effect and mechanism of fermented pomegranate peel polyphenols (FPPPs) on V. alginolyticus were investigated. The results indicated that FPPPs had a strong inhibitory effect on the growth of V. alginolyticus, and their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were 2 and 4 mg/mL. FPPPs significantly reduced biofilm formation and biofilm metabolic activity in V. alginolyticus, down-regulated the expression levels of lafA, lafK, fliS and flaK genes involved in flagellar synthesis and inhibited swimming and swarming motility (p < 0.05). Meanwhile, under the treatment of FPPPs, the activities of catalase (CAT) and superoxide dismutase (SOD) in V. alginolyticus were significantly reduced, and the levels of reactive oxygen species (ROS) and extracellular malondialdehyde (MDA) were significantly increased (p < 0.05). FPPPs also resulted in a significant increase in alkaline phosphatase (AKP) activity, protein and nucleic acid content, as well as conductivity from V. alginolyticus cultures. Scanning electron microscopy (SEM) images further revealed that V. alginolyticus treated with FPPPs showed leakage of intracellular substances, abnormal cell morphology and damage to cell walls and cell membranes, with the severity of the damage in a clear dose-dependent manner. Therefore, FPPPs can be used as a promising food-grade antibacterial agent, notably in seafood to control V. alginolyticus.
Collapse
Affiliation(s)
- Zhoulin Yu
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Yucong Hong
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Biotechnology Co., Ltd., Jieyang 515500, China; (Y.H.); (S.Z.)
| | - Shuyan Zhao
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Biotechnology Co., Ltd., Jieyang 515500, China; (Y.H.); (S.Z.)
| | - Meng Zhou
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Xiaohong Tan
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| |
Collapse
|
9
|
Shi N, Wang ZJ, Shi YZ, Jiang L, Zhu YY, He XC, Zhou ZS, Wei MZ, Zhao YL, Luo XD. New resorcylic acid derivatives of Lysimachia tengyuehensis against MRSA and VRE by interfering with bacterial metabolic imbalance. Eur J Med Chem 2024; 277:116714. [PMID: 39096819 DOI: 10.1016/j.ejmech.2024.116714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/05/2024]
Abstract
The abuse of antibiotics leads to the rapid spread of bacterial resistance, which seriously threatens human life and health. Now, 8 resorcylic acid derivatives, including 4 new compounds (1-4) were isolated from Lysimachia tengyuehensis by bio-guided isolation, and they inhibited both methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) (MIC = 4-8 μg/mL). Notably, 1 and 2 rapidly killed MRSA and VRE within 40 min without drug resistance in 20 days. Mechanically, they potently disrupted biofilm and cell membrane by interfering with bacterial metabolic imbalance. The structure-activity relationship (SAR) revealed that the lipophilic long carbon chains (C-5/C-6) and hydrophilic hydroxyl/carboxyl groups were essential for the anti-MRSA and VRE bioactivity. Additionally, they effectively recovered MRSA-infected skin wounds and VRE-infected peritoneal in vivo. Resorcylic acid derivatives showed significant anti-MRSA and VRE bioactivity in vitro and in vivo with potential application for the first time.
Collapse
Affiliation(s)
- Nian Shi
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China
| | - Zhao-Jie Wang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China
| | - Yang-Zhu Shi
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China
| | - Ling Jiang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China
| | - Yan-Yan Zhu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China
| | - Xing-Chao He
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China
| | - Zhong-Shun Zhou
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China
| | - Mei-Zhen Wei
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
10
|
Yang X, Yin ML, Zhu YB, Zhao SP, Xi HL. Key genomes, transcriptomes, proteins, and metabolic factors involved in the detoxification/tolerance of TNT and its intermediates by bacteria in anaerobic/aerobic environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135489. [PMID: 39137547 DOI: 10.1016/j.jhazmat.2024.135489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/22/2024] [Accepted: 08/10/2024] [Indexed: 08/15/2024]
Abstract
Novel microbial strains capable of efficient degradation of TNT and typical intermediates (2-ADNT and 4-ADNT) in aerobic/anaerobic environment were screened and isolated from ammunition-contaminated sites. The key genomes, transcriptomes, proteins, and metabolic factors for microbial detoxification/tolerance to pollutants in anaerobic and aerobic environments were analyzed for the first time. The bacterial genome, which is rich in metabolism and environmental information-processing functional genes, provides transcriptional and translational-related proteins for detoxifying/tolerating pollutants. At the transcriptional level, bacteria significantly expressed genes related to inositol phosphate metabolism for regulating membrane transport, maintaining the cytoskeleton, and signal transduction. At the protein level, genes involved in antioxidation, fat metabolism, sugar synthesis/degradation, and pyruvate metabolism were significantly expressed. At the metabolic level, riboflavin metabolism, which regulates membrane integrity, protects against oxidative stress, and maintains the sugar-protein-fat balance, showed significant responses. Bacteria simultaneously regulate amino acid metabolism, carbohydrate metabolism, and N/P/S cycles to maintain homeostatic cellular energy supplies. The key pathway for pollutant degradation in bacteria is nitrotoluene degradation. The molecular mechanism of bacterial tolerance to pollutants involves the regulation of oxidative phosphorylation and basic cycle pathways to maintain gene transcription, protein translation, and metabolic cycles.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Mao-Ling Yin
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yong-Bing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - San-Ping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Hai-Ling Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
11
|
Dessenne C, Ménart B, Acket S, Dewulf G, Guerardel Y, Vidal O, Rossez Y. Lipidomic analyses reveal distinctive variations in homeoviscous adaptation among clinical strains of Acinetobacter baumannii, providing insights from an environmental adaptation perspective. Microbiol Spectr 2024; 12:e0075724. [PMID: 39254344 PMCID: PMC11448061 DOI: 10.1128/spectrum.00757-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
Acinetobacter baumannii is known for its antibiotic resistance and is increasingly found outside of healthcare settings. To survive colder temperatures, bacteria, including A. baumannii, adapt by modifying glycerophospholipids (GPL) to maintain membrane flexibility. This study examines the lipid composition of six clinical A. baumannii strains, including the virulent AB5075, at two temperatures. At 18°C, five strains consistently show an increase in palmitoleic acid (C16:1), while ABVal2 uniquely shows an increase in oleic acid (C18:1). LC-HRMS2 analysis identifies shifts in GPL and glycerolipid composition between 18°C and 37°C, highlighting variations in phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) lipids. ABVal2 shows increased PE with C18:1 and C16:1 at 18°C, but no change in PG, in contrast to other strains that show increased PE and PG with C16:1. Notably, although A. baumannii typically lacks FabA, a key enzyme for unsaturated fatty acid synthesis, this enzyme was found in both ABVal2 and ABVal3. In addition, ABVal2 contains five candidate desaturases that may contribute to its lipid profile. The study also reveals variations in strain motility and biofilm formation over temperature. These findings enhance our understanding of A. baumannii's physiological adaptations, survival strategies and ecological fitness in different environments.IMPORTANCEAcinetobacter baumannii, a bacterium known for its resistance to antibiotics, is a concern in healthcare settings. This study focused on understanding how this bacterium adapts to different temperatures and how its lipid composition changes. Lipids are the building blocks of cell membranes. By studying these changes, scientists can gain insights into how the bacterium survives and behaves in various environments. This understanding improves our understanding of its global dissemination capabilities. The results of the study contribute to our broader understanding of how Acinetobacter baumannii works, which is important for developing strategies to combat its impact on patient health.
Collapse
Affiliation(s)
- Clara Dessenne
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Benoît Ménart
- Centre Hospitalier de valenciennes, Laboratoire de Biologie Hygiène-service de Microbiologie, Valenciennes, France
| | - Sébastien Acket
- Université de technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne Cedex, Compiègne, France
| | - Gisèle Dewulf
- Centre Hospitalier de valenciennes, Laboratoire de Biologie Hygiène-service de Microbiologie, Valenciennes, France
| | - Yann Guerardel
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Olivier Vidal
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yannick Rossez
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Université de technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne Cedex, Compiègne, France
| |
Collapse
|
12
|
Liu Q, Tang Y, Jiang S, Yu X, Zhu H, Xie X, Ning X. Mechanisms of action of berberine hydrochloride in planktonic cells and biofilms of Pseudomonas aeruginosa. Microb Pathog 2024; 193:106774. [PMID: 38969184 DOI: 10.1016/j.micpath.2024.106774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/30/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
The increasing prevalence of extensively drug-and pan-drug-resistant Pseudomonas aeruginosa is a major concern for global public health. Therefore, it is crucial to develop novel antimicrobials that specifically target P. aeruginosa and its biofilms. In the present study, we determined that berberine hydrochloride inhibited the growth of planktonic bacteria as well as prevented the formation of biofilms. Moreover, we observed downregulation in the expression of pslA and pelA biofilm-related genes. Compared with existing antibiotics, berberine hydrochloride exhibits multiple modes of action against P. aeruginosa. Our findings suggest that berberine hydrochloride exerts its antimicrobial effects by damaging bacterial cell membranes, generating reactive oxygen species (ROS), and reducing intracellular adenosine triphosphate (ATP) levels. Furthermore, berberine hydrochloride showed minimal cytotoxicity and reduced susceptibility to drug resistance. In a mouse model of peritonitis, it significantly inhibited the growth of P. aeruginosa and exhibited a strong bacteriostatic action. In conclusion, berberine hydrochloride is a safe and effective antibacterial agent that inhibits the growth of P. aeruginosa.
Collapse
Affiliation(s)
- Qingyu Liu
- The First hospital of Hunan University of Chinese Medicine, Changsha, 410000, China.
| | - Yongxue Tang
- The First hospital of Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Siyu Jiang
- The First hospital of Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Xiao Yu
- The First hospital of Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Huibin Zhu
- The First hospital of Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Xiaobing Xie
- The First hospital of Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Xingwang Ning
- The First hospital of Hunan University of Chinese Medicine, Changsha, 410000, China.
| |
Collapse
|
13
|
Qiu Z, Huang R, Wu Y, Li X, Sun C, Ma Y. Decoding the Structural Diversity: A New Horizon in Antimicrobial Prospecting and Mechanistic Investigation. Microb Drug Resist 2024; 30:254-272. [PMID: 38648550 DOI: 10.1089/mdr.2023.0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
The escalating crisis of antimicrobial resistance (AMR) underscores the urgent need for novel antimicrobials. One promising strategy is the exploration of structural diversity, as diverse structures can lead to diverse biological activities and mechanisms of action. This review delves into the role of structural diversity in antimicrobial discovery, highlighting its influence on factors such as target selectivity, binding affinity, pharmacokinetic properties, and the ability to overcome resistance mechanisms. We discuss various approaches for exploring structural diversity, including combinatorial chemistry, diversity-oriented synthesis, and natural product screening, and provide an overview of the common mechanisms of action of antimicrobials. We also describe techniques for investigating these mechanisms, such as genomics, proteomics, and structural biology. Despite significant progress, several challenges remain, including the synthesis of diverse compound libraries, the identification of active compounds, the elucidation of complex mechanisms of action, the emergence of AMR, and the translation of laboratory discoveries to clinical applications. However, emerging trends and technologies, such as artificial intelligence, high-throughput screening, next-generation sequencing, and open-source drug discovery, offer new avenues to overcome these challenges. Looking ahead, we envisage an exciting future for structural diversity-oriented antimicrobial discovery, with opportunities for expanding the chemical space, harnessing the power of nature, deepening our understanding of mechanisms of action, and moving toward personalized medicine and collaborative drug discovery. As we face the continued challenge of AMR, the exploration of structural diversity will be crucial in our search for new and effective antimicrobials.
Collapse
Affiliation(s)
- Ziying Qiu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Rongkun Huang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yuxuan Wu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xinghao Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chunyu Sun
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yunqi Ma
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
14
|
Taylor SD, Moreira R. Daptomycin: Mechanism of action, mechanisms of resistance, synthesis and structure-activity relationships. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 212:163-234. [PMID: 40122645 DOI: 10.1016/bs.pmbts.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Daptomycin is a cyclic lipodepsipeptide antibiotic that is a mainstay for the treatment of serious infections caused by Gram-positive bacteria, including methicillin-resistant Streptococcus aureus and vancomycin resistant enterococci. It is one of the so-called last-resort antibiotics that are used to tackle life-threatening infections that do not respond to first-line treatments. However, resistance to daptomycin is eroding its clinical efficacy motivating the design and/or discovery of analogues that overcome resistance. The strategy of antibiotic analogue synthesis has been used to overcome bacterial resistance to many classes of antibiotics such as the β-lactams. Pursuing this strategy with daptomycin requires a detailed understanding of daptomycin's action mechanism and synthesis. Here, we discuss the action mechanism of daptomycin in a holistic manner and expand this discussion to rationalize conferred modes of resistance. Synthetic efforts, both chemical and biological, are discussed in detail and the structure-activity relationship emanating from these works is distilled into a usable model that can guide the design of new daptomycin analogues.
Collapse
Affiliation(s)
- Scott D Taylor
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada.
| | - Ryan Moreira
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
15
|
Jiang JH, Cameron DR, Nethercott C, Aires-de-Sousa M, Peleg AY. Virulence attributes of successful methicillin-resistant Staphylococcus aureus lineages. Clin Microbiol Rev 2023; 36:e0014822. [PMID: 37982596 PMCID: PMC10732075 DOI: 10.1128/cmr.00148-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of severe and often fatal infections. MRSA epidemics have occurred in waves, whereby a previously successful lineage has been replaced by a more fit and better adapted lineage. Selection pressures in both hospital and community settings are not uniform across the globe, which has resulted in geographically distinct epidemiology. This review focuses on the mechanisms that trigger the establishment and maintenance of current, dominant MRSA lineages across the globe. While the important role of antibiotic resistance will be mentioned throughout, factors which influence the capacity of S. aureus to colonize and cause disease within a host will be the primary focus of this review. We show that while MRSA possesses a diverse arsenal of toxins including alpha-toxin, the success of a lineage involves more than just producing toxins that damage the host. Success is often attributed to the acquisition or loss of genetic elements involved in colonization and niche adaptation such as the arginine catabolic mobile element, as well as the activity of regulatory systems, and shift metabolism accordingly (e.g., the accessory genome regulator, agr). Understanding exactly how specific MRSA clones cause prolonged epidemics may reveal targets for therapies, whereby both core (e.g., the alpha toxin) and acquired virulence factors (e.g., the Panton-Valentine leukocidin) may be nullified using anti-virulence strategies.
Collapse
Affiliation(s)
- Jhih-Hang Jiang
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David R Cameron
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Cara Nethercott
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Marta Aires-de-Sousa
- Laboratory of Molecular Genetics, Institutode Tecnologia Químicae Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
- Escola Superior de Saúde da Cruz Vermelha Portuguesa-Lisboa (ESSCVP-Lisboa), Lisbon, Portugal
| | - Anton Y Peleg
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Boutet-Dubois A, Magnan C, Lienard A, Pouget C, Bouchet F, Marchandin H, Larcher R, Lavigne JP, Pantel A. In Vivo-Acquired Resistance to Daptomycin during Methicillin-Resistant Staphylococcus aureus Bacteremia. Antibiotics (Basel) 2023; 12:1647. [PMID: 38136681 PMCID: PMC10740961 DOI: 10.3390/antibiotics12121647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Daptomycin (DAP) represents an interesting alternative to treat methicillin-resistant Staphylococcus aureus (MRSA) infections. Different mechanisms of DAP resistance have been described; however, in vivo-acquired resistance is uncharacterized. This study described the phenotypic and genotypic evolution of MRSA strains that became resistant to DAP in two unrelated patients with bacteremia under DAP treatment, in two hospitals in the South of France. DAP MICs were determined using broth microdilution method on the pairs of isogenic (DAP-S/DAP-R) S. aureus isolated from bloodstream cultures. Whole genome sequencing was carried out using Illumina MiSeq Sequencing system. The two cases revealed DAP-R acquisition by MRSA strains within three weeks in patients treated by DAP. The isolates belonged to the widespread ST5 (patient A) and ST8 (patient B) lineages and were of spa-type t777 and t622, respectively. SNP analysis comparing each DAP-S/DAP-R pair confirmed that the isolates were isogenic. The causative mutations were identified in MprF (Multiple peptide resistance Factor) protein: L826F (Patient A) and S295L (Patient B), and in Cls protein: R228H (Patient B). These proteins encoded both proteins of the lipid biosynthetic enzymes. The resistance to DAP is particularly poorly described whereas DAP is highly prescribed to treat MRSA. Our study highlights the non-systematic cross-resistance between DAP and glycopeptides and the importance of monitoring DAP MIC in persistent MRSA bacteremia.
Collapse
Affiliation(s)
- Adeline Boutet-Dubois
- VBIC, INSERM U1047, Department of Microbiology and Hospital Hygiene, University of Montpellier, CHU Nîmes, 30029 Nîmes, France; (A.B.-D.); (C.M.); (C.P.); (A.P.)
| | - Chloé Magnan
- VBIC, INSERM U1047, Department of Microbiology and Hospital Hygiene, University of Montpellier, CHU Nîmes, 30029 Nîmes, France; (A.B.-D.); (C.M.); (C.P.); (A.P.)
| | - Alexi Lienard
- Laboratory of Medical Biology, CH Bassin de Thau, 34207 Sète, France;
| | - Cassandra Pouget
- VBIC, INSERM U1047, Department of Microbiology and Hospital Hygiene, University of Montpellier, CHU Nîmes, 30029 Nîmes, France; (A.B.-D.); (C.M.); (C.P.); (A.P.)
| | - Flavien Bouchet
- Department of Internal Medicine-Infectiology, CH Bassin de Thau, 34207 Sète, France;
| | - Hélène Marchandin
- HydroSciences Montpellier, Department of Microbiology and Hospital Hygiene, University of Montpellier, CNRS, IRD, CHU Nîmes, 30029 Nîmes, France;
| | - Romaric Larcher
- Department of Infectious Diseases, CHU Nîmes, 30029 Nîmes, France;
| | - Jean-Philippe Lavigne
- VBIC, INSERM U1047, Department of Microbiology and Hospital Hygiene, University of Montpellier, CHU Nîmes, 30029 Nîmes, France; (A.B.-D.); (C.M.); (C.P.); (A.P.)
| | - Alix Pantel
- VBIC, INSERM U1047, Department of Microbiology and Hospital Hygiene, University of Montpellier, CHU Nîmes, 30029 Nîmes, France; (A.B.-D.); (C.M.); (C.P.); (A.P.)
| |
Collapse
|
17
|
Krok E, Stephan M, Dimova R, Piatkowski L. Tunable biomimetic bacterial membranes from binary and ternary lipid mixtures and their application in antimicrobial testing. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184194. [PMID: 37328023 DOI: 10.1016/j.bbamem.2023.184194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
The reconstruction of accurate yet simplified mimetic models of cell membranes is a very challenging goal of synthetic biology. To date, most of the research focuses on the development of eukaryotic cell membranes, while reconstitution of their prokaryotic counterparts has not been fully addressed, and the proposed models do not reflect well the complexity of bacterial cell envelopes. Here, we describe the reconstitution of biomimetic bacterial membranes with an increasing level of complexity, developed from binary and ternary lipid mixtures. Giant unilamellar vesicles composed of phosphatidylcholine (PC) and phosphatidylethanolamine (PE); PC and phosphatidylglycerol (PG); PE and PG; PE, PG and cardiolipin (CA) at varying molar ratios were successfully prepared by the electroformation method. Each of the proposed mimetic models focuses on reproducing specific membrane features such as membrane charge, curvature, leaflets asymmetry, or the presence of phase separation. GUVs were characterized in terms of size distribution, surface charge, and lateral organization. Finally, the developed models were tested against the lipopeptide antibiotic daptomycin. The obtained results showed a clear dependency of daptomycin binding efficiency on the amount of negatively charged lipid species present in the membrane. We anticipate that the models proposed here can be applied not only in antimicrobial testing but also serve as platforms for studying fundamental biological processes in bacteria as well as their interaction with physiologically relevant biomolecules.
Collapse
Affiliation(s)
- Emilia Krok
- Poznan University of Technology, Faculty of Materials Engineering and Technical Physics, Institute of Physics, Piotrowo 3, 60-965 Poznan, Poland; Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany.
| | - Mareike Stephan
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany.
| | - Lukasz Piatkowski
- Poznan University of Technology, Faculty of Materials Engineering and Technical Physics, Institute of Physics, Piotrowo 3, 60-965 Poznan, Poland
| |
Collapse
|
18
|
Tharmalingam N, Xu S, Felix LO, Roy B, Xian M, Mylonakis E, Fuchs BB. Gold complex compounds that inhibit drug-resistant Staphylococcus aureus by targeting thioredoxin reductase. FRONTIERS IN ANTIBIOTICS 2023; 2:1179354. [PMID: 39816643 PMCID: PMC11732138 DOI: 10.3389/frabi.2023.1179354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/22/2023] [Indexed: 01/18/2025]
Abstract
Introduction There is a significant need for new antimicrobial compounds that are effective against drug-resistant microbes. Thioredoxin reductase (TrxR) is critical in redox homeostasis and was identified as a potential drug target and confirmed through inhibition by compounds auranofin and Bay11-7085. Methods Additional TrxR inhibitors were designed and found to exhibit antimicrobial activity against Gram-positive (Enterococcus faecium and Staphylococcus aureus) and glutathione-deficient bacteria (Helicobacter pylori). Investigational compounds were tested for antimicrobial activity, anti-biofilm efficacy, target impact, and cytotoxicity. Results The first-generation molecules AU1 and AU5 inhibited TrxR activity and inhibited methicillin-resistant S. aureus strain MW2 with minimal inhibitory concentrations (MIC) of 0.125 and 0.5 μg/mL, respectively. In an S. aureus enzymatic assay, AU1 inhibited TrxR enzymatic activity in a dose-dependent manner causing a decrease in intracellular free thiols. In addition, biofilm studies demonstrated that AU1 and AU5 reduced biofilm formation at 1X MIC and disrupted mature biofilms at 4X MIC. Cytotoxicity profiles were created using human cell lines and primary cells with LD50 exceeding MICs by at least 12X. Discussion Thus, AU1 and AU5 were TrxR inhibitors that yielded low-concentration antimicrobial activity impacting S. aureus in planktonic and biofilm forms with limited toxic liability.
Collapse
Affiliation(s)
- Nagendran Tharmalingam
- Division of Infectious Diseases, Warren Alpert Medical School of Brown University, The Miriam Hospital, Providence, RI, United States
| | - Shi Xu
- Department of Chemistry, Brown University, Providence, RI, United States
| | - Lewis Oscar Felix
- Division of Infectious Diseases, Warren Alpert Medical School of Brown University, The Miriam Hospital, Providence, RI, United States
| | - Biswajit Roy
- Department of Chemistry, Brown University, Providence, RI, United States
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI, United States
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Warren Alpert Medical School of Brown University, The Miriam Hospital, Providence, RI, United States
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Warren Alpert Medical School of Brown University, The Miriam Hospital, Providence, RI, United States
| |
Collapse
|
19
|
Glycosylation and Lipidation Strategies: Approaches for Improving Antimicrobial Peptide Efficacy. Pharmaceuticals (Basel) 2023; 16:ph16030439. [PMID: 36986538 PMCID: PMC10059750 DOI: 10.3390/ph16030439] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Antimicrobial peptides (AMPs) have recently gained attention as a viable solution for combatting antibiotic resistance due to their numerous advantages, including their broad-spectrum activity, low propensity for inducing resistance, and low cytotoxicity. Unfortunately, their clinical application is limited due to their short half-life and susceptibility to proteolytic cleavage by serum proteases. Indeed, several chemical strategies, such as peptide cyclization, N-methylation, PEGylation, glycosylation, and lipidation, are widely used for overcoming these issues. This review describes how lipidation and glycosylation are commonly used to increase AMPs’ efficacy and engineer novel AMP-based delivery systems. The glycosylation of AMPs, which involves the conjugation of sugar moieties such as glucose and N-acetyl galactosamine, modulates their pharmacokinetic and pharmacodynamic properties, improves their antimicrobial activity, and reduces their interaction with mammalian cells, thereby increasing selectivity toward bacterial membranes. In the same way, lipidation of AMPs, which involves the covalent addition of fatty acids, has a significant impact on their therapeutic index by influencing their physicochemical properties and interaction with bacterial and mammalian membranes. This review highlights the possibility of using glycosylation and lipidation strategies to increase the efficacy and activity of conventional AMPs.
Collapse
|