1
|
Shi Y, Li W, Yu X, Zhao Y, Zhu D, Song Y, Zhao Z, Gu Y, Wei B, Li L, Yu D, Zhang P, Gao Q, Sun M. Paternal Obesity-Induced H3K27me3 Elevation Leads to MANF-Mediated Transgenerational Metabolic Dysfunction in Female Offspring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415956. [PMID: 40041941 PMCID: PMC12021121 DOI: 10.1002/advs.202415956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/20/2025] [Indexed: 04/26/2025]
Abstract
Paternal lifestyle and environmental exposures can alter epigenetic changes in sperm and play a critical role in the offspring's future health, yet the underlying mechanisms remain elusive. The present study established a model of paternal obesity and found that the increased levels of H3K27me3 in sperm persist into the 8-cell embryo stage, resulting in a transgenerational decrease of Manf, which causes endoplasmic reticulum stress and activates the GRP78-PERK-EIF2α-ATF4-CHOP axis. This consequently leads to impaired glucose metabolism and apoptosis in the liver of female offspring. Based on these findings, the F0 mice are treated with 3-deazaneplanocin A, an EZH2 inhibitor, which successfully prevented metabolic dysfunction in F0 mice of the high-fat diet (HFD) group. Meanwhile, intravenous injection of recombinant human MANF in F1 female offspring can successfully rescue the metabolic dysfunction in the HFD-F1 group. These results demonstrate that paternal obesity triggers transgenerational metabolic dysfunction through sperm H3K27me3-dependent epigenetic regulation. The present study also identifies the H3K27me3-MANF pathway as a potentially preventive and therapeutic strategy for diabetes, although further studies are needed to validate its clinical applicability.
Collapse
Affiliation(s)
- Yajun Shi
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
| | - Weisheng Li
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
- Department of GynecologyUniversity of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital)Shandong provinceQingdao266000China
| | - Xi Yu
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
| | - Yan Zhao
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
| | - Dan Zhu
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
| | - Yueyang Song
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
| | - Zejun Zhao
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
| | - Yannan Gu
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
| | - Bin Wei
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
| | - Lingjun Li
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
| | - Dongyi Yu
- Center for Medical Genetics and Prenatal DiagnosisShandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao UniversityShandong provinceJinan250000China
| | - Pengjie Zhang
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
| | - Qinqin Gao
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
| | - Miao Sun
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
- McKusick‐Zhang Center for Genetic MedicineState Key Laboratory for Complex Severe and Rare DiseasesInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| |
Collapse
|
2
|
Banushi B, Collova J, Milroy H. Epigenetic Echoes: Bridging Nature, Nurture, and Healing Across Generations. Int J Mol Sci 2025; 26:3075. [PMID: 40243774 PMCID: PMC11989090 DOI: 10.3390/ijms26073075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Trauma can impact individuals within a generation (intragenerational) and future generations (transgenerational) through a complex interplay of biological and environmental factors. This review explores the epigenetic mechanisms that have been correlated with the effects of trauma across generations, including DNA methylation, histone modifications, and non-coding RNAs. These mechanisms can regulate the expression of stress-related genes (such as the glucocorticoid receptor (NR3C1) and FK506 binding protein 5 (FKBP5) gene), linking trauma to biological pathways that may affect long-term stress regulation and health outcomes. Although research using model organisms has elucidated potential epigenetic mechanisms underlying the intergenerational effects of trauma, applying these findings to human populations remains challenging due to confounding variables, methodological limitations, and ethical considerations. This complexity is compounded by difficulties in establishing causality and in disentangling epigenetic influences from shared environmental factors. Emerging therapies, such as psychedelic-assisted treatments and mind-body interventions, offer promising avenues to address both the psychological and potential epigenetic aspects of trauma. However, translating these findings into effective interventions will require interdisciplinary methods and culturally sensitive approaches. Enriched environments, cultural reconnection, and psychosocial interventions have shown the potential to mitigate trauma's impacts within and across generations. By integrating biological, social, and cultural perspectives, this review highlights the critical importance of interdisciplinary frameworks in breaking cycles of trauma, fostering resilience, and advancing comprehensive healing across generations.
Collapse
Affiliation(s)
- Blerida Banushi
- School of Indigenous Studies, The University of Western Australia, Crawley, WA 6009, Australia; (J.C.); (H.M.)
| | | | | |
Collapse
|
3
|
Mehta P, Singh R. The composition of human sperm sncRNAome: a cross-country small RNA profiling. Reprod Biol Endocrinol 2025; 23:36. [PMID: 40050854 PMCID: PMC11883963 DOI: 10.1186/s12958-025-01358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/07/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Over the last decade, numerous studies have implicated sperm-borne small non-coding RNAs (sncRNAs) in fertility and transgenerational inheritance. Spermatozoa contain a variety of small RNAs; however, inter-individual and inter-population variations in the human sperm sncRNA content (sncRNAome) have not yet been ascertained. METHODS We performed sncRNA sequencing in 54 normozoospermic proven fertile Indian donors. We also obtained a second semen sample from 13 donors and a third semen sample from eight donors and repeated sncRNA sequencing. To better understand sperm sncRNAome similarities and variations, sncRNA sequencing data for eligible Chinese (n = 87), US (n = 14), and Spanish (n = 2) normozoospermic (fertile or presumptive fertile) samples were downloaded and analyzed in a uniform manner. sncRNA data were compared within and across populations to identify similarities and differences. RESULTS In Indian samples, rsRNAs (13.71-78.76%), YsRNAs (0.64-76.53%) and tsRNAs (5.63-35.16%) constituted the major fraction and miRNAs, piRNAs, mt-tsRNAs, and other sncRNAs constituted the minor fraction. Across three other populations, rsRNAs (11-80%) and tsRNAs (10-60%) constituted the major fraction, and YsRNAs (0.62-4.28%), miRNAs (0.41-7.37%), piRNAs (1.37-4.36%), mt-tsRNAs (0.14-4.33%), and other sncRNAs constituted the minor fraction. Only 47 miRNAs were consistent across the Indian samples, and only 17 miRNAs were consistent across the four populations. Interestingly, all piRNAs detected in Indian samples were derived from the chromosome 15 piRNA cluster, which were also predominantly present in other populations. tRNA-Gly-GCC contributed approximately 50% of the tsRNA pool across all populations. The mt-tsRNAs also originated majorly from one mt-tRNA that differed across populations. Among the rsRNAs, the maximum number of reads belonged to 28S, followed by 18S, 5S, 5.8S, and 45S in decreasing order. Y4sRNAs were the most abundant YsRNAs, while the second most common contributor differed across populations. CONCLUSIONS The human sperm sncRNAome has a 'core component' that shows small variations and a 'peripheral component' that shows significant variations across individuals and populations. The availability of the normal human sperm sncRNAome would help delineate biologically meaningful variations from sample-to-sample natural/random variations.
Collapse
Affiliation(s)
- Poonam Mehta
- CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajender Singh
- CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
4
|
Yang J, Shrestha A, Ramalingam L. Fishing for Solutions: How Pre-Conceptional Fish Oil Supplementation in Obese Fathers Reduces Risk of Non-Alcoholic Fatty Liver Disease in Offspring Mice. Mol Nutr Food Res 2025; 69:e202400452. [PMID: 39910853 PMCID: PMC11874265 DOI: 10.1002/mnfr.202400452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/30/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025]
Abstract
Metabolic dysfunction associated fatty liver disease (MAFLD) is a chronic condition with hepatic fat accumulation. The intergenerational effect of obesity has predominantly focused on mothers, with limited studies on paternal obesity. Nutritional intervention with fish oil (FO) has beneficial effects in reducing markers of obesity. We hypothesized that supplementing obese fathers with FO before conception could enhance the metabolic health of their offspring liver. Male mice were assigned to low-fat (LF), high fat (HF), or HF supplemented with FO for 10 weeks. Subsequently, these males were mated with females on a chow diet. Offspring were sacrificed at 8 weeks, and liver tissues were analyzed for gene expression and histology. Offspring body weight was not significantly impacted by paternal diet. However, male offspring of HF fathers had higher levels of markers of inflammation and fatty acid synthesis compared to offspring of LF fed fathers. Paternal FO supplementation significantly reduced fatty acid synthesis and glucose metabolism, while increasing fatty acid oxidation in male offspring, with a less pronounced effect in female offspring. These findings suggest that FO supplementation in obese fathers prior to conception attenuates the development of MAFLD in male offspring. This data underscores the significance of paternal nutritional intervention in promoting offspring health.
Collapse
Affiliation(s)
- Junhui Yang
- Department of Nutrition and Food StudiesSyracuse UniversitySyracuseNew YorkUSA
| | - Akriti Shrestha
- Department of Nutrition and Food StudiesSyracuse UniversitySyracuseNew YorkUSA
| | - Latha Ramalingam
- Department of Nutrition and Food StudiesSyracuse UniversitySyracuseNew YorkUSA
| |
Collapse
|
5
|
Li L, Ma Y, Zhu C, Li Y, Cao H, Wu Z, Jin T, Wang Y, Chen S, Dong W. Paternal obesity induces subfertility in male offspring by modulating the oxidative stress-related transcriptional network. Int J Obes (Lond) 2024; 48:1318-1331. [PMID: 38902387 DOI: 10.1038/s41366-024-01562-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND/OBJECTIVE The effects of fathers' high-fat diet (HFD) on the reproductive health of their male offspring (HFD- F1) remain to be elucidated. Parental obesity is known to have a negative effect on offspring fertility, but there are few relevant studies on the effects of HFD-F1 on reproductive function. METHODS We first succeeded in establishing the HFD model, which provides a scientific basis in the analysis of HFD-F1 reproductive health. Next, we assessed biometric indices, intratesticular cellular status, seminiferous tubules and testicular transcriptomic homeostasis in HFD-F1. Finally, we examined epididymal (sperm-containing) apoptosis, as well as antioxidant properties, motility, plasma membrane oxidation, DNA damage, and sperm-egg binding in the epididymal sperm. RESULTS Our initial results showed that HFD-F1 mice had characteristics similar to individuals with obesity, including higher body weight and altered organ size. Despite no major changes in the types of testicular cells, we found decreased activity of important genes and noticed the presence of abnormally shaped sperm at seminiferous tubule lumen. Further analysis of HFD-F1 testes suggests that these changes might be caused by increased vulnerability to oxidative stress. Finally, we measured several sperm parameters, these results presented HFD-F1 offspring exhibited a deficiency in antioxidant properties, resulting in damaged sperm mitochondrial membrane potential, insufficient ATP content, increased DNA fragmentation, heightened plasma membrane oxidation, apoptosis-prone and decreased capacity for sperm-oocyte binding during fertilization. CONCLUSION HFD- F1 subfertility arises from the susceptibility of the transcriptional network to oxidative stress, resulting in reduced antioxidant properties, motility, sperm-egg binding, and elevated DNA damage. Schematic representation of the HFD-F1 oxidative stress susceptibility to subfertility. Notably, excessive accumulation of ROS surpasses the physiological threshold, thereby damaging PUFAs within the sperm plasma membrane. This oxidative assault affects crucial components such as mitochondria and DNA. Consequently, the sperm's antioxidant defense mechanisms become compromised, leading to a decline in vitality, motility, and fertility.
Collapse
Affiliation(s)
- Long Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Yuxuan Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
- Ankang R&D Center of Se-enriched Products, Ankang, Shaanxi, 725000, China
| | - Yan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Shaoxian Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China.
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Ma Z, Tang N, Zhang R, Deng H, Chen K, Liu Y, Ding Z. Ribonuclease Inhibitor 1 (RNH1) Regulates Sperm tsRNA Generation for Paternal Inheritance through Interacting with Angiogenin in the Caput Epididymis. Antioxidants (Basel) 2024; 13:1020. [PMID: 39199264 PMCID: PMC11351606 DOI: 10.3390/antiox13081020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Environmental stressors can induce paternal epigenetic modifications that are a key determinant of the intergenerational inheritance of acquired phenotypes in mammals. Some of them can affect phenotypic expression through inducing changes in tRNA-derived small RNAs (tsRNAs), which modify paternal epigenetic regulation in sperm. However, it is unclear how these stressors can affect changes in the expression levels of tsRNAs and their related endonucleases in the male reproductive organs. We found that Ribonuclease inhibitor 1 (RNH1), an oxidation responder, interacts with ANG to regulate sperm tsRNA generation in the mouse caput epididymis. On the other hand, inflammation and oxidative stress induced by either lipopolysaccharide (LPS) or palmitate (PA) treatments weakened the RNH1-ANG interaction in the epididymal epithelial cells (EEC). Accordingly, ANG translocation increased from the nucleus to the cytoplasm, which led to ANG upregulation and increases in cytoplasmic tsRNA expression levels. In conclusion, as an antioxidant, RNH1 regulates tsRNA generation through targeting ANG in the mouse caput epididymis. Moreover, the tsRNA is an epigenetic factor in sperm that modulates paternal inheritance in offspring via the fertilization process.
Collapse
Affiliation(s)
- Zhuoyao Ma
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Z.M.); (N.T.)
- Department of Teaching Laboratory Center for Basic Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Ningyuan Tang
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Z.M.); (N.T.)
| | - Ruiyan Zhang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.Z.); (H.D.); (K.C.)
| | - Hanyu Deng
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.Z.); (H.D.); (K.C.)
| | - Kexin Chen
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.Z.); (H.D.); (K.C.)
| | - Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Z.M.); (N.T.)
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Z.M.); (N.T.)
| |
Collapse
|
7
|
Sivakumar S, Lama D, Rabhi N. Childhood obesity from the genes to the epigenome. Front Endocrinol (Lausanne) 2024; 15:1393250. [PMID: 39045266 PMCID: PMC11263020 DOI: 10.3389/fendo.2024.1393250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
The prevalence of obesity and its associated comorbidities has surged dramatically in recent decades. Especially concerning is the increased rate of childhood obesity, resulting in diseases traditionally associated only with adulthood. While obesity fundamentally arises from energy imbalance, emerging evidence over the past decade has revealed the involvement of additional factors. Epidemiological and murine studies have provided extensive evidence linking parental obesity to increased offspring weight and subsequent cardiometabolic complications in adulthood. Offspring exposed to an obese environment during conception, pregnancy, and/or lactation often exhibit increased body weight and long-term metabolic health issues, suggesting a transgenerational inheritance of disease susceptibility through epigenetic mechanisms rather than solely classic genetic mutations. In this review, we explore the current understanding of the mechanisms mediating transgenerational and intergenerational transmission of obesity. We delve into recent findings regarding both paternal and maternal obesity, shedding light on the underlying mechanisms and potential sex differences in offspring outcomes. A deeper understanding of the mechanisms behind obesity inheritance holds promise for enhancing clinical management strategies in offspring and breaking the cycle of increased metabolic risk across generations.
Collapse
Affiliation(s)
| | | | - Nabil Rabhi
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
8
|
Wang B, Zhu Y, Wei B, Zeng H, Zhang P, Li L, Wang H, Wu X, Zheng Y, Sun M. miR-377-3p Regulates Hippocampal Neurogenesis via the Zfp462-Pbx1 Pathway and Mediates Anxiety-Like Behaviors in Prenatal Hypoxic Offspring. Mol Neurobiol 2024; 61:1920-1935. [PMID: 37817032 DOI: 10.1007/s12035-023-03683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023]
Abstract
Prenatal hypoxia (PH) is one of the most common complications of obstetrics and is closely associated with many neurological disorders such as depression, anxiety, and cognitive impairment. Our previous study found that Zfp462 heterozygous (Het) mice exhibit significant anxiety-like behavior. Interestingly, offspring mice with PH also have anxiety-like behaviors in adulthood, accompanied by reduced expression of Zfp462 and increased expression of miR-377-3p; however, the exact regulatory mechanisms remain unclear. In this study, western blotting, gene knockdown, immunofluorescence, dual-luciferase reporter assay, immunoprecipitation, cell transfection with miR-377-3p mimics or inhibitors, quantitative real-time PCR, and rescue assay were used to detect changes in the miR-377-3p-Zfp462-Pbx1 (pre-B-cell leukemia homeobox1) pathway in the brains of prenatal hypoxic offspring to explain the pathogenesis of anxiety-like behaviors. We found that Zfp462 deficiency promoted Pbx1 protein degradation through ubiquitination and that Zfp462 Het mice showed downregulation of the protein kinase B (PKB, also called Akt)-glycogen synthase kinase-3β (GSK3β)-cAMP response element-binding protein (CREB) pathway and hippocampal neurogenesis with anxiety-like behavior. In addition, PH mice exhibited upregulation of miR-377-3p, downregulation of Zfp462/Pbx1-Akt-GSK3β-CREB pathway activity, reduced hippocampal neurogenesis, and an anxiety-like phenotype. Intriguingly, miR-377-3p directly targets the 3'UTR of Zfp462 mRNA to regulate Zfp462 expression. Importantly, microinjection of miR-377-3p antagomir into the hippocampal dentate gyrus of PH mice upregulated Zfp462/Pbx1-Akt-GSK3β-CREB pathway activity, increased hippocampal neurogenesis, and improved anxiety-like behaviors. Collectively, our findings demonstrated a crucial role for miR-377-3p in the regulation of hippocampal neurogenesis and anxiety-like behaviors via the Zfp462/Pbx1-Akt-GSK3β-CREB pathway. Therefore, miR-377-3p could be a potential therapeutic target for anxiety-like behavior in prenatal hypoxic offspring.
Collapse
Affiliation(s)
- Bin Wang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China.
| | - Yichen Zhu
- Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, Suzhou Medical College of Soochow University, Jiangsu, 215123, China
| | - Bin Wei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Hongtao Zeng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Pengjie Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Lingjun Li
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital Research Center, Institute of Reproduction and Development, Fudan University, Shanghai, 200433, China
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaohui Wu
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, 200433, China
| | - Yufang Zheng
- Obstetrics and Gynecology Hospital Research Center, Institute of Reproduction and Development, Fudan University, Shanghai, 200433, China
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, 200433, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China.
| |
Collapse
|
9
|
Zhang Q, Zhao X, Sun M, Dong D. Novel insights into transfer RNA-derived small RNA (tsRNA) in cardio-metabolic diseases. Life Sci 2024; 341:122475. [PMID: 38309576 DOI: 10.1016/j.lfs.2024.122475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Cardio-metabolic diseases, including a cluster of metabolic disorders and their secondary affections on cardiovascular physiology, are gradually brought to the forefront by researchers due to their high prevalence and mortality, as well as an unidentified pathogenesis. tRNA-derived small RNAs (tsRNAs), cleaved by several specific enzymes and once considered as some "metabolic junks" in the past, have been proved to possess numerous functions in human bodies. More interestingly, such a potential also seems to influence the progression of cardio-metabolic diseases to some extent. In this review, the biogenesis, classification and mechanisms of tsRNAs will be discussed based on some latest studies, and their relations with several cardio-metabolic diseases will be highlighted in sequence. Lastly, some future prospects, such as their clinical applications as biomarkers and therapeutic targets will also be mentioned, in order to provide researchers with a comprehensive understanding of the research status of tsRNAs as well as its association with cardio-metabolic diseases, thus presenting as a beacon to indicate directions for the next stage of study.
Collapse
Affiliation(s)
- Qingya Zhang
- Innovation Institute, China Medical University, Shenyang 110122, Liaoning, China
| | - Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
10
|
Senaldi L, Hassan N, Cullen S, Balaji U, Trigg N, Gu J, Finkelstein H, Phillips K, Conine C, Smith-Raska M. Khdc3 Regulates Metabolism Across Generations in a DNA-Independent Manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582278. [PMID: 38464133 PMCID: PMC10925209 DOI: 10.1101/2024.02.27.582278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Genetic variants can alter the profile of heritable molecules such as small RNAs in sperm and oocytes, and in this manner ancestral genetic variants can have a significant effect on offspring phenotypes even if they are not themselves inherited. Here we show that wild type female mice descended from ancestors with a mutation in the mammalian germ cell gene Khdc3 have hepatic metabolic defects that persist over multiple generations. We find that genetically wild type females descended from Khdc3 mutants have transcriptional dysregulation of critical hepatic metabolic genes, which persist over multiple generations and pass through both female and male lineages. This was associated with dysregulation of hepatically-metabolized molecules in the blood of these wild type mice with mutational ancestry. The oocytes of Khdc3-null females, as well as their wild type descendants, had dysregulation of multiple small RNAs, suggesting that these epigenetic changes in the gametes transmit the phenotype between generations. Our results demonstrate that ancestral mutation in Khdc3 can produce transgenerational inherited phenotypes, potentially indefinitely.
Collapse
Affiliation(s)
- Liana Senaldi
- Division of Neonatology, Department of Pediatrics, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
| | - Nora Hassan
- Division of Neonatology, Department of Pediatrics, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | - Sean Cullen
- Division of Neonatology, Department of Pediatrics, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
| | - Uthra Balaji
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
| | - Natalie Trigg
- Departments of Genetics and Paediatrics, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jinghua Gu
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
| | - Hailey Finkelstein
- Division of Neonatology, Department of Pediatrics, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | - Kathryn Phillips
- Division of Neonatology, Department of Pediatrics, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | - Colin Conine
- Departments of Genetics and Paediatrics, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew Smith-Raska
- Division of Neonatology, Department of Pediatrics, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
11
|
Liao T, Gan M, Lei Y, Wang Y, Chen L, Shen L, Zhu L. Dynamic changes in the transcriptome of tRNA-derived small RNAs related with fat metabolism. Sci Data 2023; 10:703. [PMID: 37838754 PMCID: PMC10576826 DOI: 10.1038/s41597-023-02624-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023] Open
Abstract
The prevalence of obesity and overweight is steadily rising, posing a significant global challenge for humanity. The fundamental cause of obesity and overweight lies in the abnormal accumulation of adipose tissue. While numerous regulatory factors related to fat deposition have been identified in previous studies, a considerable number of regulatory mechanisms remain unknown. tRNA-derived small RNAs (tsRNAs), a novel class of non-coding RNAs, have emerged as significant regulators in various biological processes. In this study, we obtained small RNA sequencing data from subcutaneous white adipose tissue and omental white adipose tissue of lean and obese pigs. In addition, we similarly obtained tsRNAs profiles from scapular brown adipose tissue (BAT), inguinal white adipose tissue (iWAT) and epigonadal white adipose tissue (eWAT) of normal mice. Finally, we successfully identified a large number of expressed tsRNAs in each tissue type and identified tsRNAs conserved in different adipose tissues of pigs and mice. These datasets will be a valuable resource for elucidating the epigenetic mechanisms of fat deposition.
Collapse
Affiliation(s)
- Tianci Liao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuhang Lei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
12
|
Svanes C, Holloway JW, Krauss-Etschmann S. Preconception origins of asthma, allergies and lung function: The influence of previous generations on the respiratory health of our children. J Intern Med 2023; 293:531-549. [PMID: 36861185 DOI: 10.1111/joim.13611] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Emerging research suggests that exposures occurring years before conception are important determinants of the health of future offspring and subsequent generations. Environmental exposures of both the father and mother, or exposure to disease processes such as obesity or infections, may influence germline cells and thereby cause a cascade of health outcomes in multiple subsequent generations. There is now increasing evidence that respiratory health is influenced by parental exposures that occur long before conception. The strongest evidence relates adolescent tobacco smoking and overweight in future fathers to increased asthma and lower lung function in their offspring, supported by evidence on parental preconception occupational exposures and air pollution. Although this literature is still sparse, the epidemiological analyses reveal strong effects that are consistent across studies with different designs and methodologies. The results are strengthened by mechanistic research from animal models and (scarce) human studies that have identified molecular mechanisms that can explain the epidemiological findings, suggesting transfer of epigenetic signals through germline cells, with susceptibility windows in utero (both male and female line) and prepuberty (male line). The concept that our lifestyles and behaviours may influence the health of our future children represents a new paradigm. This raises concerns for future health in decades to come with respect to harmful exposures but may also open for radical rethinking of preventive strategies that may improve health in multiple generations, reverse the imprint of our parents and forefathers, and underpin strategies that can break the vicious circle of propagation of health inequalities across generations.
Collapse
Affiliation(s)
- Cecilie Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Susanne Krauss-Etschmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
13
|
Liu J, Shi J, Hernandez R, Li X, Konchadi P, Miyake Y, Chen Q, Zhou T, Zhou C. Paternal phthalate exposure-elicited offspring metabolic disorders are associated with altered sperm small RNAs in mice. ENVIRONMENT INTERNATIONAL 2023; 172:107769. [PMID: 36709676 DOI: 10.1016/j.envint.2023.107769] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 05/10/2023]
Abstract
Exposure to ubiquitous plastic-associated endocrine disrupting chemicals (EDCs) is associated with the increased risk of many chronic diseases. For example, phthalate exposure is associated with cardiometabolic mortality in humans, with societal costs ∼ $39 billion/year or more. We recently demonstrated that several widely used plastic-associated EDCs increase cardiometabolic disease in appropriate mouse models. In addition to affecting adult health, parental exposure to EDCs has also been shown to cause metabolic disorders, including obesity and diabetes, in the offspring. While most studies have focused on the impact of maternal EDC exposure on the offspring's health, little is known about the effects of paternal EDC exposure. In the current study, we investigated the adverse impact of paternal exposure to a ubiquitous but understudied phthalate, dicyclohexyl phthalate (DCHP) on the metabolic health of F1 and F2 offspring in mice. Paternal DCHP exposure led to exacerbated insulin resistance and impaired insulin signaling in F1 offspring without affecting diet-induced obesity. We previously showed that sperm small non-coding RNAs including tRNA-derived small RNAs (tsRNAs) and rRNA-derived small RNAs (rsRNAs) contribute to the intergenerational transmission of paternally acquired metabolic disorders. Using a novel PANDORA-seq, we revealed that DCHP exposure can lead to sperm tsRNA/rsRNA landscape changes that were undetected by traditional RNA-seq, which may contribute to DCHP-elicited adverse effects. Lastly, we found that paternal DCHP can also cause sex-specific transgenerational adverse effects in F2 offspring and elicited glucose intolerance in female F2 descendants. Our results suggest that exposure to endocrine disrupting phthalates may have intergenerational and transgenerational adverse effects on the metabolic health of their offspring. These findings increase our understanding of the etiology of chronic human diseases originating from chemical-elicited intergenerational and transgenerational effects.
Collapse
Affiliation(s)
- Jingwei Liu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Xiuchun Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Pranav Konchadi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Yuma Miyake
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, NV 89557, United States
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
14
|
Differential Expression Analysis of tRNA-Derived Small RNAs from Subcutaneous Adipose Tissue of Obese and Lean Pigs. Animals (Basel) 2022; 12:ani12243561. [PMID: 36552481 PMCID: PMC9774726 DOI: 10.3390/ani12243561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Epigenetic factors, including non-coding RNA regulation, play a vital role in the development of obesity and have been well researched. Transfer RNA-derived small RNA (tsRNA) is a class of non-coding RNA proven to be involved in various aspects of mammalian biology. Here we take pigs as a model for obesity research and use tsRNA-seq to investigate the difference in tsRNA expression in the subcutaneous adipose tissue of obese and lean pigs to elucidate the role of tsRNA in obesity development. A total of 482 tsRNAs were identified in pig adipose tissue, of which 123 were significantly differentially accumulated tsRNAs compared with the control group. The tRF-5c was the main type of these tsRNAs. The largest number of tsRNAs produced was the Gly-carrying tRNA, which produced 81 tsRNAs. Functional enrichment analysis revealed that differential tsRNAs indirectly participated in MAPK, AMPK, insulin resistance, the TNF signaling pathway, adipocytokine signaling pathway, and other signaling pathways by interacting with target genes. These are involved in bioenergetic metabolic regulatory processes, suggesting that tsRNAs may influence these pathways to mediate the regulation of energy metabolism in porcine adipocytes to promote lipid deposition, thus contributing to obesity. Our findings suggest a potential function of tsRNA in regulating obesity development.
Collapse
|
15
|
Small Noncoding RNAs Contribute to Sperm Oxidative Stress-Induced Programming of Behavioral and Metabolic Phenotypes in Offspring. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6877283. [PMID: 35707281 PMCID: PMC9192199 DOI: 10.1155/2022/6877283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022]
Abstract
There is growing evidence that paternal environmental information alters small noncoding RNAs (sncRNAs) in sperm and in turn can induce alterations of metabolic and behavioral phenotypes of the next generation. However, the potential mediators of the effects remain to be elucidated. A great diversity of environmental insults and stresses can convergently induce the elevation of reactive oxygen species (ROS) in sperm; nonetheless, it remains unclear whether ROS mediates the biogenesis of sncRNAs in sperm and participates in the reprogramming of offspring phenotypes. Here, we show that ROS could induce the alteration of sncRNA profiles in sperm, especially for transfer RNA-derived small RNAs (tsRNAs) and ribosomal RNA-derived small RNAs (rsRNAs). Zygotic injection of 29-34 nt RNA fractions (predominantly tsRNAs and rsRNAs) from oxidative stress (OS) sperm could induce depressive-like and anxiety-like behaviors in male offspring. Moreover, zygotic injection with synthetic RNAs partially resembled OS sperm-induced depressive-like and anxiety-like behaviors in offspring. Male offspring maintained on a chow diet was found to develop impaired glucose tolerance and hyperactive hepatic gluconeogenesis, accompanied by the upregulation of hepatic gluconeogenic and lipolytic genes. Together, our results have shown that ROS-induced alteration of sncRNA profiles in sperm contributes to the alterations of behavioral and metabolic phenotypes of the offspring.
Collapse
|