1
|
Fratz-Berilla EJ, Azer N, Bush X, Kim J, Kohnhorst C. Process development for production of non-originator NISTmAb from CHO and NS0 cell lines. MAbs 2025; 17:2505088. [PMID: 40405416 DOI: 10.1080/19420862.2025.2505088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/24/2025] Open
Abstract
Cell lines that produce non-originator versions of the National Institute of Standards and Technology (NIST) monoclonal antibody reference material 8671 (NISTmAb) are invaluable to the biopharmaceutical industry because, unlike typical commercial cell lines, they can be used on a collaborative and noncompetitive basis for bioprocess development. NIST has generated NS0 clones, NISTCHO research-grade test material 10197 and reference material 8675 NISTCHO to fill this need. We set out to optimize seed train procedures, media and feeding strategies, and stirred tank and rocking bioreactor processes to facilitate our studies on the effects of cell substrate and bioreactor process parameters on non-originator NISTmAb quality attributes. For two NS0 clones and NISTCHO, we improved the baseline methods for seed train culture and demonstrated the critical roles of agitation and gassing strategies for stirred-tank bioreactor operations. For NISTCHO we also tested fed-batch and perfusion processes in rocking bioreactors, identifying several critical process parameters and in-process controls. In this work, for the NIST NS0-59 and NS0-66 clones, we demonstrated that shake flask geometry was critical for culturing a highly viable seed train with a high growth rate and exhibited impacts of feeds, agitation, and gassing during initial bioreactor process development. We identified agitation rates and gassing strategy as critical process parameters for NISTCHO stirred-tank bioreactor operations and established processes for fed-batch and perfusion rocking bioreactor operations. We anticipate this work to benefit the growing number of researchers employing non-originator NISTmAb-expressing cell lines to support precompetitive innovation in biomanufacturing.
Collapse
Affiliation(s)
| | - Nicole Azer
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, Silver Spring, MD, USA
| | - Xin Bush
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, Silver Spring, MD, USA
| | - JungHyun Kim
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, Silver Spring, MD, USA
| | - Casey Kohnhorst
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, Silver Spring, MD, USA
| |
Collapse
|
2
|
Roberts DS, Loo JA, Tsybin YO, Liu X, Wu S, Chamot-Rooke J, Agar JN, Paša-Tolić L, Smith LM, Ge Y. Top-down proteomics. NATURE REVIEWS. METHODS PRIMERS 2024; 4:38. [PMID: 39006170 PMCID: PMC11242913 DOI: 10.1038/s43586-024-00318-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 07/16/2024]
Abstract
Proteoforms, which arise from post-translational modifications, genetic polymorphisms and RNA splice variants, play a pivotal role as drivers in biology. Understanding proteoforms is essential to unravel the intricacies of biological systems and bridge the gap between genotypes and phenotypes. By analysing whole proteins without digestion, top-down proteomics (TDP) provides a holistic view of the proteome and can decipher protein function, uncover disease mechanisms and advance precision medicine. This Primer explores TDP, including the underlying principles, recent advances and an outlook on the future. The experimental section discusses instrumentation, sample preparation, intact protein separation, tandem mass spectrometry techniques and data collection. The results section looks at how to decipher raw data, visualize intact protein spectra and unravel data analysis. Additionally, proteoform identification, characterization and quantification are summarized, alongside approaches for statistical analysis. Various applications are described, including the human proteoform project and biomedical, biopharmaceutical and clinical sciences. These are complemented by discussions on measurement reproducibility, limitations and a forward-looking perspective that outlines areas where the field can advance, including potential future applications.
Collapse
Affiliation(s)
- David S Roberts
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California - Los Angeles, Los Angeles, CA, USA
| | | | - Xiaowen Liu
- Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, USA
| | | | - Jeffrey N Agar
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Ljiljana Paša-Tolić
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
- Department of Cell and Regenerative Biology, Human Proteomics Program, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
3
|
Tank P, Vora S, Tripathi S, D'Souza F. Qualification of a LC-HRMS platform method for biosimilar development using NISTmab as a model. Anal Biochem 2024; 688:115475. [PMID: 38336012 DOI: 10.1016/j.ab.2024.115475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/27/2023] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Biosimilars are a cost-effective alternative to biopharmaceuticals, necessitating rigorous analytical methods for consistency and compliance. Liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) is a versatile tool for assessing key attributes, encompassing molecular mass, primary structure, and post-translational modifications (PTMs). Adhering to ICH Q2R1, we validated an LC-HRMS based peptide mapping method using NISTmab as a reference. The method validation parameters, covering system suitability, specificity, accuracy, precision, robustness, and carryover, were comprehensively assessed. The method effectively differentiated the NISTmab from similar counterparts as well as from artificially introduced spiked conditions. Notably, the accuracy of mass error for NISTmab specific complementarity determining region peptides was within a maximum of 2.42 parts per million (ppm) from theoretical and the highest percent relative standard deviation (%RSD) observed for precision was 0.000219 %. It demonstrates precision in sequence coverage and PTM detection, with a visual inspection of total ion chromatogram approach for variability assessment. The method maintains robustness when subjected to diverse storage conditions, encompassing variations in column temperature and mobile phase composition. Negligible carryover was noted during the carryover analysis. In summary, this method serves as a versatile platform for multiple biosimilar development by effectively characterizing and identifying monoclonal antibodies, ultimately ensuring product quality.
Collapse
Affiliation(s)
- Paresh Tank
- Analytical Chemistry Division of Zelle Biotechnology Research and Analytical Services, Zelle Biotechnology Pvt. Ltd., A-7 M.I.D.C., Mira Industrial Area, Western Express Highway, Mira Road, Thane, 401 104, India.
| | - Shruti Vora
- Analytical Chemistry Division of Zelle Biotechnology Research and Analytical Services, Zelle Biotechnology Pvt. Ltd., A-7 M.I.D.C., Mira Industrial Area, Western Express Highway, Mira Road, Thane, 401 104, India.
| | - Sarita Tripathi
- Analytical Chemistry Division of Zelle Biotechnology Research and Analytical Services, Zelle Biotechnology Pvt. Ltd., A-7 M.I.D.C., Mira Industrial Area, Western Express Highway, Mira Road, Thane, 401 104, India.
| | - Fatima D'Souza
- Analytical Chemistry Division of Zelle Biotechnology Research and Analytical Services, Zelle Biotechnology Pvt. Ltd., A-7 M.I.D.C., Mira Industrial Area, Western Express Highway, Mira Road, Thane, 401 104, India.
| |
Collapse
|
4
|
Remoroza CA, Burke MC, Mak TD, Sheetlin SL, Mirokhin YA, Cooper BT, Goecker ZC, Lowenthal MS, Yang X, Wang G, Tchekhovskoi DV, Stein SE. Comparison of N-Glycopeptide to Released N-Glycan Abundances and the Influence of Glycopeptide Mass and Charge States on N-Linked Glycosylation of IgG Antibodies. J Proteome Res 2024; 23:1443-1457. [PMID: 38450643 PMCID: PMC10997438 DOI: 10.1021/acs.jproteome.3c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
We report the comparison of mass-spectral-based abundances of tryptic glycopeptides to fluorescence abundances of released labeled glycans and the effects of mass and charge state and in-source fragmentation on glycopeptide abundances. The primary glycoforms derived from Rituximab, NISTmAb, Evolocumab, and Infliximab were high-mannose and biantennary complex galactosylated and fucosylated N-glycans. Except for Evolocumab, in-source ions derived from the loss of HexNAc or HexNAc-Hex sugars are prominent for other therapeutic IgGs. After excluding in-source fragmentation of glycopeptide ions from the results, a linear correlation was observed between fluorescently labeled N-glycan and glycopeptide abundances over a dynamic range of 500. Different charge states of human IgG-derived glycopeptides containing a wider variety of abundant attached glycans were also investigated to examine the effects of the charge state on ion abundances. These revealed a linear dependence of glycopeptide abundance on the mass of the glycan with higher charge states favoring higher-mass glycans. Findings indicate that the mass spectrometry-based bottom-up approach can provide results as accurate as those of glycan release studies while revealing the origin of each attached glycan. These site-specific relative abundances are conveniently displayed and compared using previously described glycopeptide abundance distribution spectra "GADS" representations. Mass spectrometry data are available from the MAssIVE repository (MSV000093562).
Collapse
Affiliation(s)
| | | | | | | | | | - Brian T. Cooper
- Mass Spectrometry Data Center
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | | | - Mark S. Lowenthal
- Bioanalytical Science Group, Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive Gaithersburg, MD 20899, US
| | | | | | | | | |
Collapse
|
5
|
Millán-Martín S, Jakes C, Carillo S, Rogers R, Ren D, Bones J. Comprehensive multi-attribute method workflow for biotherapeutic characterization and current good manufacturing practices testing. Nat Protoc 2023; 18:1056-1089. [PMID: 36526726 DOI: 10.1038/s41596-022-00785-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/04/2022] [Indexed: 12/23/2022]
Abstract
The multi-attribute method (MAM) is a liquid chromatography-mass spectrometry (LC-MS)-based method that is used to directly characterize and monitor numerous product quality attributes (PQAs) at the amino acid level of a biopharmaceutical product. MAM enables identity testing based on primary sequence verification, detection and quantitation of post-translational modifications and impurities. This ability to simultaneously and directly determine PQAs of therapeutic proteins makes MAM a more informative, streamlined and productive workflow than conventional chromatographic and electrophoretic assays. MAM relies on proteolytic digestion of the sample followed by reversed-phase chromatographic separation and high-resolution LC-MS analysis in two phases. First, a discovery study to determine quality attributes for monitoring is followed by the creation of a targeted library based on high-resolution retention time plus accurate mass analysis. The second aspect of MAM is the monitoring phase based on the target peptide library and new peak detection using differential analysis of the data to determine the presence, absence or change of any species that might affect the activity or stability of the biotherapeutic. The sample preparation process takes between 90 and 120 min, whereas the time spent on instrumental and data analyses might vary from one to several days for different sample sizes, depending on the complexity of the molecule, the number of attributes to be monitored and the information to be detailed in the final report. MAM is developed to be used throughout the product life cycle, from process development through upstream and downstream processes to quality control release or under current good manufacturing practices regulations enforced by regulatory agencies.
Collapse
Affiliation(s)
| | - Craig Jakes
- National Institute for Bioprocessing Research and Training, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
| | - Sara Carillo
- National Institute for Bioprocessing Research and Training, Dublin, Ireland
| | | | - Da Ren
- Amgen Inc., Process Development, Thousand Oaks, CA, USA
| | - Jonathan Bones
- National Institute for Bioprocessing Research and Training, Dublin, Ireland.
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
2D NMR Analysis as a Sensitive Tool for Evaluating the Higher-Order Structural Integrity of Monoclonal Antibody against COVID-19. Pharmaceutics 2022; 14:pharmaceutics14101981. [PMID: 36297417 PMCID: PMC9607506 DOI: 10.3390/pharmaceutics14101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
The higher-order structure (HOS) of protein therapeutics has been confirmed as a critical quality parameter. In this study, we compared 2D 1H-13C ALSOFAST-HMQC NMR spectra with immunochemical ELISA-based analysis to evaluate their sensitivity in assessing the HOS of a potent human monoclonal antibody (mAb) for the treatment of coronavirus disease 2019 (COVID-19). The study confirmed that the methyl region of the 2D 1H-13C NMR spectrum is sensitive to changes in the secondary and tertiary structure of the mAb, more than ELISA immunoassay. Because of its highly detailed level of characterization (i.e., many 1H-13C cross-peaks are used for statistical comparability), the NMR technique also provided a more informative outcome for the product characterization of biopharmaceuticals. This NMR approach represents a powerful tool in assessing the overall higher-order structural integrity of mAb as an alternative to conventional immunoassays.
Collapse
|