1
|
Hill PF, Ekstrom AD. A cognitive-motor framework for spatial navigation in aging and early-stage Alzheimer's disease. Cortex 2025; 185:133-150. [PMID: 40043550 DOI: 10.1016/j.cortex.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 12/19/2024] [Accepted: 02/13/2025] [Indexed: 04/13/2025]
Abstract
Spatial navigation is essential for wellbeing and independence and shows significant declines as part of age-related neurodegenerative disorders, such as Alzheimer's disease. Navigation is also one of the earliest behaviors impacted by this devastating disease. Neurobiological models of aging and spatial navigation have focused primarily on the cognitive factors that account for impaired navigation abilities during the course of healthy aging and early stages of preclinical and prodromal Alzheimer's disease. The contributions of physical factors that are essential to planning and executing movements during successful navigation, such as gait and dynamic balance, are often overlooked despite also being vulnerable to early stages of neurodegenerative disease. We review emerging evidence that spatial navigation and functional mobility each draw on highly overlapping sensory systems, cognitive processes, and brain structures that are susceptible to healthy and pathological aging processes. Based on this evidence, we provide an alternative to models that have focused primarily on spatial navigation as a higher order cognitive function dependent on brain areas such as the hippocampus and entorhinal cortex. Instead, we argue that spatial navigation may offer an ecologically valid cognitive-motor phenotype of age-related cognitive dysfunction. We propose that dual cognitive-motor deficits in spatial navigation may arise from early changes in neuromodulatory and peripheral sensory systems that precede changes in regions such as the entorhinal cortex.
Collapse
Affiliation(s)
- Paul F Hill
- Psychology Department, University of Arizona, USA.
| | - Arne D Ekstrom
- Psychology Department, University of Arizona, USA; McKnight Brain Institute, University of Arizona, USA
| |
Collapse
|
2
|
Goodroe S, Fernandez Velasco P, Gahnstrom CJ, Wiener J, Coutrot A, Hornberger M, Spiers HJ. Predicting real-world navigation performance from a virtual navigation task in older adults. PLoS One 2025; 20:e0317026. [PMID: 39869655 PMCID: PMC11771902 DOI: 10.1371/journal.pone.0317026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/19/2024] [Indexed: 01/29/2025] Open
Abstract
Virtual reality environments presented on tablets and smartphones offer a novel way of measuring navigation skill and predicting real-world navigation problems. The extent to which such virtual tests are effective at predicting navigation in older populations remains unclear. We compared the performance of 20 older participants (54-74 years old) in wayfinding tasks in a real-world environment in London, UK, and in similar tasks designed in a mobile app-based test of navigation (Sea Hero Quest). In a previous study with young participants (18-35 years old), we were able to predict navigation performance in real-world tasks in London and Paris using this mobile app. We find that for the older cohort, virtual navigation performance predicts real-world performance for medium difficulty, but not for the easy or difficult environments. Overall, our study supports the utility of using digital tests of spatial cognition in older age groups, while carefully adapting the task difficulty to the population.
Collapse
Affiliation(s)
- Sarah Goodroe
- Department of Psychology, University of Pennsylvania, Pennsylvania, United States of America
| | - Pablo Fernandez Velasco
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, United Kingdom
- Department of Philosophy, University of York, York, United Kingdom
| | - Christoffer J Gahnstrom
- Department of Psychology, University of Pennsylvania, Pennsylvania, United States of America
| | - Jan Wiener
- Department of Psychology, Ageing and Dementia Research Centre, Bournemouth University, Poole, United Kingdom
| | | | - Michael Hornberger
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Hugo J Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, United Kingdom
| |
Collapse
|
3
|
Reinoso Medina L, Thrasher CA, Harburger LL. Evidence for age-related decline in spatial memory in a novel allocentric memory task. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2025; 32:19-28. [PMID: 38643487 DOI: 10.1080/13825585.2024.2344866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
Several studies report spatial memory decline in old age. However, few studies have examined whether old adults are specifically impaired in allocentric memory tasks (testing for object-to-object spatial location memory). Thus, the present study examined the effects of age on allocentric spatial memory using a novel landmark memory task. Young (18-25 years old) and old (65 years and older) participants watched 10 short videos that displayed 180-degree viewpoints of distinct real-world locations with landmark cues. After watching each video, participants saw a snapshot from the video and were asked whether a landmark cue previously viewed in the video was to the left or right of the snapshot view. Young adults outperformed old adults on the task. This age-related decline in spatial performance was similar for men and women. These findings support that spatial ability in an allocentric task is sensitive to age-related cognitive decline in men and women.
Collapse
Affiliation(s)
| | - Christina A Thrasher
- Department of Psychology, Purchase College, State University of New York, Purchase, NY, USA
| | - Lauren L Harburger
- Department of Psychology, Purchase College, State University of New York, Purchase, NY, USA
| |
Collapse
|
4
|
Markostamou I, Coventry KR. Age effects on processing spatial relations within different reference frames: The role of executive functions. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:1279-1295. [PMID: 36121065 DOI: 10.1080/23279095.2022.2121212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mental representations of space can be generated and communicated with respect to different reference frames and perspectives. The present study investigated the effects of age and individual differences in domain-general executive functions on people's ability to process spatial relations as expressed in language within different spatial reference frames (SRFs). Healthy adults aged between 18 and 85 completed a novel task involving self-, third-person-, object-, and environment-centered judgements of spatial relations between two objects, as well as standard tests of working memory, inhibition, and mental flexibility. A psychometric evaluation confirmed the test-retest reliability and the convergent and divergent validity of the new task. Results showed that the lifespan trajectories varied depending on the SRF. Processing from a self-centered perspective or an object-centered frame remained intact throughout the adult-lifespan. By contrast, spatial processing from a third-person-centered perspective or within an environment-centered frame declined in late adulthood. Mediation regression models showed that mental flexibility accounted for a significant part of the age-related variance in spatial processing across all allocentric SRFs. The age effects on environment-centered processing were also partially mediated by age-related changes in visuospatial working memory capacity. These findings suggest that at least partially distinct systems are involved in mentally representing space under different SRFs, which are differentially affected by typical aging. Our results also highlight that people's ability to process spatial relations across different SRFs depends on their capacity to employ domain-general effortful cognitive resources.
Collapse
Affiliation(s)
- Ioanna Markostamou
- Division of Psychology, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
- School of Psychology, University of East Anglia, Norwich, UK
| | | |
Collapse
|
5
|
Pudełko-Malik N, Drulis-Fajdasz D, Pruss Ł, Mielko-Niziałek KA, Rakus D, Gizak A, Młynarz P. A single dose of glycogen phosphorylase inhibitor improves cognitive functions of aged mice and affects the concentrations of metabolites in the brain. Sci Rep 2024; 14:24123. [PMID: 39406810 PMCID: PMC11480434 DOI: 10.1038/s41598-024-74861-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Inhibition of glycogen phosphorylase (Pyg) - a regulatory enzyme of glycogen phosphorolysis - influences memory formation in rodents. We have previously shown that 2-week intraperitoneal administration of a Pyg inhibitor BAY U6751 stimulated the "rejuvenation" of the hippocampal proteome and dendritic spines morphology and improved cognitive skills of old mice. Given the tedious nature of daily intraperitoneal drug administration, in this study we investigated whether a single dose of BAY U6751 could induce enduring behavioral effects. Obtained results support the efficacy of such treatment in significantly improving the cognitive performance of 20-22-month-old mice. Metabolomic analysis of alterations observed in the hippocampus, cerebellum, and cortex reveal that the inhibition of glycogen phosphorolysis impacts not only glucose metabolism but also various other metabolic processes.
Collapse
Affiliation(s)
- Natalia Pudełko-Malik
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wroclaw, 50-370, Poland
| | - Dominika Drulis-Fajdasz
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Sienkiewicza 21, Wroclaw, 50- 335, Poland
| | - Łukasz Pruss
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wroclaw, 50-370, Poland
- Ardigen, Kraków, 30-394, Poland
| | - Karolina Anna Mielko-Niziałek
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wroclaw, 50-370, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Sienkiewicza 21, Wroclaw, 50- 335, Poland
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Sienkiewicza 21, Wroclaw, 50- 335, Poland.
| | - Piotr Młynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wroclaw, 50-370, Poland.
| |
Collapse
|
6
|
Orti R, Coello Y, Ruotolo F, Vincent M, Bartolo A, Iachini T, Ruggiero G. Cortical Correlates of Visuospatial Switching Processes Between Egocentric and Allocentric Frames of Reference: A fNIRS Study. Brain Topogr 2024; 37:712-730. [PMID: 38315347 PMCID: PMC11393019 DOI: 10.1007/s10548-023-01032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
Human beings represent spatial information according to egocentric (body-to-object) and allocentric (object-to-object) frames of reference. In everyday life, we constantly switch from one frame of reference to another in order to react effectively to the specific needs of the environment and task demands. However, to the best of our knowledge, no study to date has investigated the cortical activity of switching and non-switching processes between egocentric and allocentric spatial encodings. To this aim, a custom-designed visuo-spatial memory task was administered and the cortical activities underlying switching vs non-switching spatial processes were investigated. Changes in concentrations of oxygenated and deoxygenated haemoglobin were measured using functional near-infrared spectroscopy (fNIRS). Participants were asked to memorize triads of geometric objects and then make two consecutive judgments about the same triad. In the non-switching condition, both spatial judgments considered the same frame of reference: only egocentric or only allocentric. In the switching condition, if the first judgment was egocentric, the second one was allocentric (or vice versa). The results showed a generalized activation of the frontal regions during the switching compared to the non-switching condition. Additionally, increased cortical activity was found in the temporo-parietal junction during the switching condition compared to the non-switching condition. Overall, these results illustrate the cortical activity underlying the processing of switching between body position and environmental stimuli, showing an important role of the temporo-parietal junction and frontal regions in the preparation and switching between egocentric and allocentric reference frames.
Collapse
Affiliation(s)
- Renato Orti
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania L. Vanvitelli, Viale Ellittico, 31, 81100, Caserta, Italy
| | - Yann Coello
- UMR 9193, SCALab, Sciences Cognitives et Sciences Affectives, Université de Lille, 59000, Lille, France
| | - Francesco Ruotolo
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania L. Vanvitelli, Viale Ellittico, 31, 81100, Caserta, Italy
| | - Marion Vincent
- UMR 9193, SCALab, Sciences Cognitives et Sciences Affectives, Université de Lille, 59000, Lille, France
| | - Angela Bartolo
- UMR 9193, SCALab, Sciences Cognitives et Sciences Affectives, Université de Lille, 59000, Lille, France
| | - Tina Iachini
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania L. Vanvitelli, Viale Ellittico, 31, 81100, Caserta, Italy
| | - Gennaro Ruggiero
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania L. Vanvitelli, Viale Ellittico, 31, 81100, Caserta, Italy.
| |
Collapse
|
7
|
Gerb J, Brandt T, Dieterich M. A clinical 3D pointing test differentiates spatial memory deficits in dementia and bilateral vestibular failure. BMC Neurol 2024; 24:75. [PMID: 38395847 PMCID: PMC10885646 DOI: 10.1186/s12883-024-03569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Deficits in spatial memory, orientation, and navigation are often neglected early signs of cognitive impairment or loss of vestibular function. Real-world navigation tests require complex setups. In contrast, simple pointing at targets in a three-dimensional environment is a basic sensorimotor ability which provides an alternative measure of spatial orientation and memory at bedside. The aim of this study was to test the reliability of a previously established 3D-Real-World Pointing Test (3D-RWPT) in patients with cognitive impairment due to different neurodegenerative disorders, bilateral vestibulopathy, or a combination of both compared to healthy participants. METHODS The 3D-RWPT was performed using a static array of targets in front of the seated participant before and, as a transformation task, after a 90-degree body rotation around the yaw-axis. Three groups of patients were enrolled: (1) chronic bilateral vestibulopathy (BVP) with normal cognition (n = 32), (2) cognitive impairment with normal vestibular function (n = 28), and (3) combined BVP and cognitive impairment (n = 9). The control group consisted of age-matched participants (HP) without cognitive and vestibular deficits (n = 67). Analyses focused on paradigm-specific mean angular deviation of pointing in the azimuth (horizontal) and polar (vertical) spatial planes, of the preferred pointing strategy (egocentric or allocentric), and the resulting shape configuration of the pointing array relative to the stimulus array. Statistical analysis was performed using age-corrected ANCOVA-testing with Bonferroni correction and correlation analysis using Spearman's rho. RESULTS Patients with cognitive impairment employed more egocentric pointing strategies while patients with BVP but normal cognition and HP used more world-based solutions (pBonf 5.78 × 10-3**). Differences in pointing accuracy were only found in the azimuth plane, unveiling unique patterns where patients with cognitive impairment showed decreased accuracy in the transformation tasks of the 3D-RWPT (pBonf < 0.001***) while patients with BVP struggled in the post-rotation tasks (pBonf < 0.001***). Overall azimuth pointing performance was still adequate in some patients with BVP but significantly decreased when combined with a cognitive deficit. CONCLUSION The 3D-RWPT provides a simple and fast measure of spatial orientation and memory. Cognitive impairment often led to a shift from world-based allocentric pointing strategy to an egocentric performance with less azimuth accuracy compared to age-matched controls. This supports the view that cognitive deficits hinder the mental buildup of the stimulus pattern represented as a geometrical form. Vestibular hypofunction negatively affected spatial memory and pointing performance in the azimuth plane. The most severe spatial impairments (angular deviation, figure frame configuration) were found in patients with combined cognitive and vestibular deficits.
Collapse
Affiliation(s)
- J Gerb
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany.
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University, Munich, Germany.
| | - T Brandt
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - M Dieterich
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
8
|
Reinshagen A. Grid cells: the missing link in understanding Parkinson's disease? Front Neurosci 2024; 18:1276714. [PMID: 38389787 PMCID: PMC10881698 DOI: 10.3389/fnins.2024.1276714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The mechanisms underlying Parkinson's disease (PD) are complex and not fully understood, and the box-and-arrow model among other current models present significant challenges. This paper explores the potential role of the allocentric brain and especially its grid cells in several PD motor symptoms, including bradykinesia, kinesia paradoxa, freezing of gait, the bottleneck phenomenon, and their dependency on cueing. It is argued that central hubs, like the locus coeruleus and the pedunculopontine nucleus, often narrowly interpreted in the context of PD, play an equally important role in governing the allocentric brain as the basal ganglia. Consequently, the motor and secondary motor (e.g., spatially related) symptoms of PD linked with dopamine depletion may be more closely tied to erroneous computation by grid cells than to the basal ganglia alone. Because grid cells and their associated central hubs introduce both spatial and temporal information to the brain influencing velocity perception they may cause bradykinesia or hyperkinesia as well. In summary, PD motor symptoms may primarily be an allocentric disturbance resulting from virtual faulty computation by grid cells revealed by dopamine depletion in PD.
Collapse
|
9
|
Naraindas AM, Cooney SM. Body image disturbance, interoceptive sensibility and the body schema across female adulthood: a pre-registered study. Front Psychol 2023; 14:1285216. [PMID: 38098520 PMCID: PMC10720753 DOI: 10.3389/fpsyg.2023.1285216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Body image disturbance (BID) typically involves explicit negative attitudes toward one's shape and weight and is associated with altered interoceptive sensibility (the subjective perception of internal bodily states). This association is a known risk factor for the development and maintenance of eating disorders. However, while research has centred on younger women with eating disorders, diverse facets of BID appear in women without eating disorders across adulthood. Research shows that in the general population, young women (ages 18-25) with high BID exhibit disturbances in the body schema: an implicit sensorimotor representation of the body in space which includes mental simulation of a movement such as motor imagery. Given that body image is subject to age-related influences, it is important to investigate how age-related variation in BID can influence the body schema beyond young adulthood alone. Here, we examine the relationship between BID, interoceptive sensibility and the body schema across female adulthood. Methods Cross-sectional data was collected online from 1,214 women across four age groups: Young adults (18-24), Adults (25-39), Middle-aged adults (40-59), and Older aged adults (60-75). BID was indexed by questionnaires measuring body objectification, state, and trait body dissatisfaction. Interoceptive sensibility (IS) was measured using the MAIA-2 questionnaire. The body schema was evaluated through the Own Body Transformation task: a mental rotation task which assesses the capacity to make an embodied mental transformation. Results Analyses revealed that while body objectification and trait body dissatisfaction decreased from young to older adulthood, state body dissatisfaction showed a marked increase. A negative relationship between IS and BID across all age groups was also evidenced. Finally, age, BID and orientation of the presented body were significant predictors of the time taken to make an embodied transformation. Discussion These findings highlight the consistent relationship of BID and IS across age groups beyond young adulthood and demonstrate the varying importance of different aspects of BID as individuals age. We also evidence for the first time that disruptions in body image have the potential to impact implicit sensorimotor representations of the body even in women without eating disorders across female adulthood.
Collapse
Affiliation(s)
| | - Sarah M. Cooney
- School of Psychology, University College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Gerb J, Brandt T, Dieterich M. Shape configuration of mental targets representation as a holistic measure in a 3D real world pointing test for spatial orientation. Sci Rep 2023; 13:20449. [PMID: 37993521 PMCID: PMC10665407 DOI: 10.1038/s41598-023-47821-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023] Open
Abstract
Deficits in spatial memory are often early signs of neurological disorders. Here, we analyzed the geometrical shape configuration of 2D-projections of pointing performances to a memorized array of spatially distributed targets in order to assess the feasibility of this new holistic analysis method. The influence of gender differences and cognitive impairment was taken into account in this methodological study. 56 right-handed healthy participants (28 female, mean age 48.89 ± 19.35 years) and 22 right-handed patients with heterogeneous cognitive impairment (12 female, mean age 71.73 ± 7.41 years) underwent a previously validated 3D-real-world pointing test (3D-RWPT). Participants were shown a 9-dot target matrix and afterwards asked to point towards each target in randomized order with closed eyes in different body positions relative to the matrix. Two-dimensional projections of these pointing vectors (i.e., the shapes resulting from the individual dots) were then quantified using morphological analyses. Shape configurations in healthy volunteers largely reflected the real-world target pattern with gender-dependent differences (ANCOVA area males vs. females F(1,73) = 9.00, p 3.69 × 10-3, partial η2 = 0.10, post-hoc difference = 38,350.43, pbonf=3.69 × 10-3**, Cohen's d 0.76, t 3.00). Patients with cognitive impairment showed distorted rectangularity with more large-scale errors, resulting in decreased overall average diameters and solidity (ANCOVA diameter normal cognition/cognitive impairment F(1,71) = 9.30, p 3.22 × 10-3, partial η2 = 0.09, post-hoc difference = 31.22, pbonf=3.19 × 10-3**, Cohen's d 0.92, t 3.05; solidity normal cognition/cognitive impairment F(1,71) = 7.79, p 6.75 × 10-3, partial η2 = 0.08, post-hoc difference = 0.07, pbonf=6.76 × 10-3** Cohen's d 0.84, t 2.79). Shape configuration analysis of the 3D-RWPT target array appears to be a suitable holistic measure of spatial performance in a pointing task. The results of this methodological investigation support further testing in a clinical study for differential diagnosis of disorders with spatial memory deficits.
Collapse
Affiliation(s)
- J Gerb
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University, Munich, Germany.
| | - T Brandt
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University, Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians University, Munich, Germany
- Hertie Senior Professor for Clinical Neuroscience, Ludwig-Maximilians University, Munich, Germany
| | - M Dieterich
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University, Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians University, Munich, Germany
- Department of Neurology, Ludwig-Maximilians University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
11
|
Hill PF, Bermudez S, McAvan AS, Garren JD, Grilli MD, Barnes CA, Ekstrom AD. Age differences in spatial memory are mitigated during naturalistic navigation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525279. [PMID: 36747699 PMCID: PMC9900839 DOI: 10.1101/2023.01.23.525279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Spatial navigation deficits in older adults are well documented. These findings are often based on experimental paradigms that require using a joystick or keyboard to navigate a virtual desktop environment. In the present study, we investigated whether age differences in spatial memory are attenuated when tested in a more naturalistic and ambulatory virtual environment. In Experiment 1, cognitively normal young and older adults navigated a virtual variant of the Morris Water Maze task in each of two virtual reality (VR) conditions: a desktop VR condition which required using a mouse and keyboard to navigate and an immersive and ambulatory VR condition which permitted unrestricted locomotion. In Experiment 2, we examined whether age- and VR-related differences in spatial performance were affected by the inclusion of additional spatial cues in an independent sample of young and older adults. In both experiments, older adults navigated to target locations less precisely than did younger individuals in the desktop condition, replicating numerous prior studies. These age differences were significantly attenuated, however, when tested in the fully immersive and ambulatory environment. These findings underscore the importance of developing naturalistic and ecologically valid measures of spatial memory and navigation, especially when performing cross-sectional studies of cognitive aging.
Collapse
Affiliation(s)
- Paul F. Hill
- Psychology Department, University of Arizona, Tucson, AZ
| | | | | | | | - Matthew D. Grilli
- Psychology Department, University of Arizona, Tucson, AZ
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ
| | - Carol A. Barnes
- Psychology Department, University of Arizona, Tucson, AZ
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ
| | - Arne D. Ekstrom
- Psychology Department, University of Arizona, Tucson, AZ
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ
| |
Collapse
|
12
|
Ekstrom AD, Hill PF. Spatial navigation and memory: A review of the similarities and differences relevant to brain models and age. Neuron 2023; 111:1037-1049. [PMID: 37023709 PMCID: PMC10083890 DOI: 10.1016/j.neuron.2023.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 04/07/2023]
Abstract
Spatial navigation and memory are often seen as heavily intertwined at the cognitive and neural levels of analysis. We review models that hypothesize a central role for the medial temporal lobes, including the hippocampus, in both navigation and aspects of memory, particularly allocentric navigation and episodic memory. While these models have explanatory power in instances in which they overlap, they are limited in explaining functional and neuroanatomical differences. Focusing on human cognition, we explore the idea of navigation as a dynamically acquired skill and memory as an internally driven process, which may better account for the differences between the two. We also review network models of navigation and memory, which place a greater emphasis on connections rather than the functions of focal brain regions. These models, in turn, may have greater explanatory power for the differences between navigation and memory and the differing effects of brain lesions and age.
Collapse
Affiliation(s)
- Arne D Ekstrom
- Department of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA; Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA.
| | - Paul F Hill
- Department of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA
| |
Collapse
|
13
|
Hegarty M, He C, Boone AP, Yu S, Jacobs EG, Chrastil ER. Understanding Differences in Wayfinding Strategies. Top Cogn Sci 2023; 15:102-119. [PMID: 34973064 DOI: 10.1111/tops.12592] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 02/01/2023]
Abstract
Navigating to goal locations in a known environment (wayfinding) can be accomplished by different strategies, notably by taking habitual, well-learned routes (response strategy) or by inferring novel paths, such as shortcuts, from spatial knowledge of the environment's layout (place strategy). Human and animal neuroscience studies reveal that these strategies reflect different brain systems, with response strategies relying more on activation of the striatum and place strategies associated with activation of the hippocampus. In addition to individual differences in strategy, recent behavioral studies show sex differences such that men use place strategies more than women, and age differences such that older adults use more response strategies than younger adults. This paper takes a comprehensive multilevel approach to understanding these differences, characterizing wayfinding as a complex information processing task. This analysis reveals factors that affect navigation strategy, including availability of the relevant type of environmental knowledge, momentary access to this knowledge, trade-offs between physical and mental effort in different navigation contexts, and risk taking. We consider how strategies are influenced by the computational demands of a navigation task and by factors that affect the neural circuits underlying navigation. We also discuss limitations of laboratory studies to date and outline priorities for future research, including relating wayfinding strategies to independent measures of spatial knowledge, and studying wayfinding strategies in naturalistic environments.
Collapse
Affiliation(s)
- Mary Hegarty
- Department of Psychological & Brain Sciences, University of California
| | - Chuanxiuyue He
- Department of Psychological & Brain Sciences, University of California
| | - Alexander P Boone
- Department of Psychological & Brain Sciences, University of California
| | - Shuying Yu
- Department of Psychological & Brain Sciences, University of California
| | - Emily G Jacobs
- Department of Psychological & Brain Sciences, University of California
| | | |
Collapse
|
14
|
Gerb J, Brandt T, Dieterich M. Different strategies in pointing tasks and their impact on clinical bedside tests of spatial orientation. J Neurol 2022; 269:5738-5745. [PMID: 35258851 PMCID: PMC9553832 DOI: 10.1007/s00415-022-11015-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/27/2022] [Accepted: 02/05/2022] [Indexed: 11/24/2022]
Abstract
Deficits in spatial memory, orientation, and navigation are often early or neglected signs of degenerative and vestibular neurological disorders. A simple and reliable bedside test of these functions would be extremely relevant for diagnostic routine. Pointing at targets in the 3D environment is a basic well-trained common sensorimotor ability that provides a suitable measure. We here describe a smartphone-based pointing device using the built-in inertial sensors for analysis of pointing performance in azimuth and polar spatial coordinates. Interpretation of the vectors measured in this way is not trivial, since the individuals tested may use at least two different strategies: first, they may perform the task in an egocentric eye-based reference system by aligning the fingertip with the target retinotopically or second, by aligning the stretched arm and the index finger with the visual line of sight in allocentric world-based coordinates similar to using a rifle. The two strategies result in considerable differences of target coordinates. A pilot test with a further developed design of the device and an app for a standardized bedside utilization in five healthy volunteers revealed an overall mean deviation of less than 5° between the measured and the true coordinates. Future investigations of neurological patients comparing their performance before and after changes in body position (chair rotation) may allow differentiation of distinct orientational deficits in peripheral (vestibulopathy) or central (hippocampal or cortical) disorders.
Collapse
Affiliation(s)
- J. Gerb
- Department of Neurology, University Hospital, Ludwig-Maximilians University, Marchioninistrasse 15, 81377 Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians University, Marchioninistrasse 15, 81377 Munich, Germany
| | - T. Brandt
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians University, Marchioninistrasse 15, 81377 Munich, Germany
- Hertie Senior Professor for Clinical Neuroscience, Ludwig-Maximilians University, Munich, Germany
| | - M. Dieterich
- Department of Neurology, University Hospital, Ludwig-Maximilians University, Marchioninistrasse 15, 81377 Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians University, Marchioninistrasse 15, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
15
|
Vijayabaskaran S, Cheng S. Navigation task and action space drive the emergence of egocentric and allocentric spatial representations. PLoS Comput Biol 2022; 18:e1010320. [PMID: 36315587 PMCID: PMC9648855 DOI: 10.1371/journal.pcbi.1010320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/10/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
In general, strategies for spatial navigation could employ one of two spatial reference frames: egocentric or allocentric. Notwithstanding intuitive explanations, it remains unclear however under what circumstances one strategy is chosen over another, and how neural representations should be related to the chosen strategy. Here, we first use a deep reinforcement learning model to investigate whether a particular type of navigation strategy arises spontaneously during spatial learning without imposing a bias onto the model. We then examine the spatial representations that emerge in the network to support navigation. To this end, we study two tasks that are ethologically valid for mammals—guidance, where the agent has to navigate to a goal location fixed in allocentric space, and aiming, where the agent navigates to a visible cue. We find that when both navigation strategies are available to the agent, the solutions it develops for guidance and aiming are heavily biased towards the allocentric or the egocentric strategy, respectively, as one might expect. Nevertheless, the agent can learn both tasks using either type of strategy. Furthermore, we find that place-cell-like allocentric representations emerge preferentially in guidance when using an allocentric strategy, whereas egocentric vector representations emerge when using an egocentric strategy in aiming. We thus find that alongside the type of navigational strategy, the nature of the task plays a pivotal role in the type of spatial representations that emerge. Most species rely on navigation in space to find water, food, and mates, as well as to return home. When navigating, humans and animals can use one of two reference frames: one based on stable landmarks in the external environment, such as moving due north and then east, or one centered on oneself, such as moving forward and turning left. However, it remains unclear how these reference frames are chosen and interact in navigation tasks, as well as how they are supported by representations in the brain. We therefore modeled two navigation tasks that would each benefit from using one of these reference frames, and trained an artificial agent to learn to solve them through trial and error. Our results show that when given the choice, the agent leveraged the appropriate reference frame to solve the task, but surprisingly could also use the other reference frame when constrained to do so. We also show that the representations that emerge to enable the agent to solve the tasks exist on a spectrum, and are more complex than commonly thought. These representations reflect both the task and reference frame being used, and provide useful insights for the design of experimental tasks to study the use of navigational strategies.
Collapse
Affiliation(s)
| | - Sen Cheng
- Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
16
|
Bernaud VE, Bulen HL, Peña VL, Koebele SV, Northup-Smith SN, Manzo AA, Valenzuela Sanchez M, Opachich Z, Ruhland AM, Bimonte-Nelson HA. Task-dependent learning and memory deficits in the TgF344-AD rat model of Alzheimer's disease: three key timepoints through middle-age in females. Sci Rep 2022; 12:14596. [PMID: 36028737 PMCID: PMC9418316 DOI: 10.1038/s41598-022-18415-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022] Open
Abstract
The TgF344 rat model of Alzheimer's disease (AD) provides a comprehensive neuropathology presentation, with age-dependent development of tau tangles, amyloid-beta (A[Formula: see text]) plaques, neuronal loss, and increased gliosis. The behavioral trajectory of this model, particularly relating to spatial learning and memory, has yet to be fully characterized. The current experiment evaluated spatial working and reference memory performance, as well as several physiological markers of health, at 3 key age points in female TgF344-AD rats: 6-months, 9-months, and 12-months. At 6 months of age, indications of working and reference memory impairments were observed in transgenic (Tg) rats on the water radial-arm maze, a complex task that requires working and reference memory simultaneously; at 12 months old, Tg impairments were observed for two working memory measures on this task. Notably, no impairments were observed at the 9-month timepoint on this maze. For the Morris maze, a measure of spatial reference memory, Tg rats demonstrated significant impairment relative to wildtype (WT) controls at all 3 age-points. Frontal cortex, entorhinal cortex, and dorsal hippocampus were evaluated for A[Formula: see text]1-42 expression via western blot in Tg rats only. Analyses of A[Formula: see text]1-42 expression revealed age-dependent increases in all 3 regions critical to spatial learning and memory. Measures of physiological health, including heart, uterine, and body weights, revealed unique age-specific outcomes for female Tg rats, with the 9-month timepoint identified as critical for further research within the trajectory of AD-like behavior, physiology, and pathology.
Collapse
Affiliation(s)
- Victoria E Bernaud
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Haidyn L Bulen
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Veronica L Peña
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Stephanie V Koebele
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Steven N Northup-Smith
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Alma A Manzo
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Maria Valenzuela Sanchez
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Zorana Opachich
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Ashley M Ruhland
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Heather A Bimonte-Nelson
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA.
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA.
| |
Collapse
|
17
|
Ladyka-Wojcik N, Olsen RK, Ryan JD, Barense MD. Flexible Use of Spatial Frames of Reference for Object-Location Memory in Older Adults. Brain Sci 2021; 11:1542. [PMID: 34827541 PMCID: PMC8616079 DOI: 10.3390/brainsci11111542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
In memory, representations of spatial features are stored in different reference frames; features relative to our position are stored egocentrically and features relative to each other are stored allocentrically. Accessing these representations engages many cognitive and neural resources, and so is susceptible to age-related breakdown. Yet, recent findings on the heterogeneity of cognitive function and spatial ability in healthy older adults suggest that aging may not uniformly impact the flexible use of spatial representations. These factors have yet to be explored in a precisely controlled task that explicitly manipulates spatial frames of reference across learning and retrieval. We used a lab-based virtual reality task to investigate the relationship between object-location memory across frames of reference, cognitive status, and self-reported spatial ability. Memory error was measured using Euclidean distance from studied object locations to participants' responses at testing. Older adults recalled object locations less accurately when they switched between frames of reference from learning to testing, compared with when they remained in the same frame of reference. They also showed an allocentric learning advantage, producing less error when switching from an allocentric to an egocentric frame of reference, compared with the reverse direction of switching. Higher MoCA scores and better self-assessed spatial ability predicted less memory error, especially when learning occurred egocentrically. We suggest that egocentric learning deficits are driven by difficulty in binding multiple viewpoints into a coherent representation. Finally, we highlight the heterogeneity of spatial memory performance in healthy older adults as a potential cognitive marker for neurodegeneration, beyond normal aging.
Collapse
Affiliation(s)
- Natalia Ladyka-Wojcik
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada; (R.K.O.); (J.D.R.); (M.D.B.)
| | - Rosanna K. Olsen
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada; (R.K.O.); (J.D.R.); (M.D.B.)
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON M6A 2E1, Canada
| | - Jennifer D. Ryan
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada; (R.K.O.); (J.D.R.); (M.D.B.)
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON M6A 2E1, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Morgan D. Barense
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada; (R.K.O.); (J.D.R.); (M.D.B.)
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON M6A 2E1, Canada
| |
Collapse
|
18
|
Ruggiero G, Ruotolo F, Iachini T. How ageing and blindness affect egocentric and allocentric spatial memory. Q J Exp Psychol (Hove) 2021; 75:1628-1642. [PMID: 34670454 DOI: 10.1177/17470218211056772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Egocentric (subject-to-object) and allocentric (object-to-object) spatial reference frames are fundamental for representing the position of objects or places around us. The literature on spatial cognition in blind people has shown that lack of vision may limit the ability to represent spatial information in an allocentric rather than egocentric way. Furthermore, much research with sighted individuals has reported that ageing has a negative impact on spatial memory. However, as far as we know, no study has assessed how ageing may affect the processing of spatial reference frames in individuals with different degrees of visual experience. To fill this gap, here we report data from a cross-sectional study in which a large sample of young and elderly participants (160 participants in total) who were congenitally blind (long-term visual deprivation), adventitiously blind (late onset of blindness), blindfolded sighted (short-term visual deprivation) and sighted (full visual availability) performed a spatial memory task that required egocentric/allocentric distance judgements with regard to memorised stimuli. The results showed that egocentric judgements were better than allocentric ones and above all that the ability to process allocentric information was influenced by both age and visual status. Specifically, the allocentric judgements of congenitally blind elderly participants were worse than those of all other groups. These findings suggest that ageing and congenital blindness can contribute to the worsening of the ability to represent spatial relationships between external, non-body-centred anchor points.
Collapse
Affiliation(s)
- Gennaro Ruggiero
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania "Luigi Vanvitelli," Caserta, Italy
| | - Francesco Ruotolo
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania "Luigi Vanvitelli," Caserta, Italy
| | - Tina Iachini
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania "Luigi Vanvitelli," Caserta, Italy
| |
Collapse
|
19
|
Fricke M, Kruse A, Schwenk M, Jansen CP, Muehlbauer T, Gramann K, Wollesen B. Requirements of a cognitive-motor spatial orientation training for nursing home residents: an iterative feasibility study. GERMAN JOURNAL OF EXERCISE AND SPORT RESEARCH 2021. [PMCID: PMC8515784 DOI: 10.1007/s12662-021-00762-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A sedentary lifestyle in nursing home residents is often accompanied with reduced life space mobility and in turn affects satisfaction with life. One of the reasons for this may be limited ability to find one’s way around the care facility and its environment. However, spatial orientation exercises might reduce these problems if they are integrated into an adequate cognitive-motor training. Therefore, we integrated six novel and target group-specific spatial orientation exercises into an established multicomponent cognitive-motor group training for nursing home residents and evaluated its feasibility. Forty nursing home residents (mean age: 87.3 ± 7 years) participated in the spatial orientation cognitive motor training (45–60 min, twice a week over a period of 12 weeks). The main outcomes included the feasibility criteria (adherence, completion time, acceptance, instructions, motor performance, materials/set up, complexity) and first measurements of mobility and satisfaction with life (SPPB [Short Physical Performance Battery], SWLS [Satisfaction with Life Scale]). Adherence increased over time. The increase was associated with the adaptions and modifications of the spatial orientation exercises that were made to meet the participants’ requirements. A positive trend was discerned for mobility and life satisfaction, comparing pre- and posttraining data. In summary, the feasibility analysis revealed that future interventions should consider that (a) instructions of demanding spatial tasks should be accompanied by an example task, (b) trainers should be encouraged to adjust task complexity and materials on an individual basis, (c) acceptance of the training should be promoted among nursing staff, and (d) surroundings with as little disturbance as possible should be selected for training.
Collapse
Affiliation(s)
- Madeleine Fricke
- Department of Biological Psychology and Neuroergonomics, TU Berlin, Fasanenstr. 1, 10623 Berlin, Germany
| | - Adele Kruse
- Department of Human Movement Science, University of Hamburg, Hamburg, Germany
| | - Michael Schwenk
- Institute of Sports and Sports Sciences, Heidelberg University, Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Carl-Philipp Jansen
- Institute of Sports and Sports Sciences, Heidelberg University, Heidelberg, Germany
- Clinic for Geriatric Rehabilitation, Robert-Bosch-Krankenhaus Stuttgart, Stuttgart, Germany
| | - Thomas Muehlbauer
- Division of Movement and Training Sciences/Biomechanics of Sport, University of Duisburg-Essen, Essen, Germany
| | - Klaus Gramann
- Department of Biological Psychology and Neuroergonomics, TU Berlin, Fasanenstr. 1, 10623 Berlin, Germany
| | - Bettina Wollesen
- Department of Biological Psychology and Neuroergonomics, TU Berlin, Fasanenstr. 1, 10623 Berlin, Germany
- Department of Human Movement Science, University of Hamburg, Hamburg, Germany
| |
Collapse
|
20
|
Martolini C, Cappagli G, Saligari E, Gori M, Signorini S. Allocentric spatial perception through vision and touch in sighted and blind children. J Exp Child Psychol 2021; 210:105195. [PMID: 34098165 DOI: 10.1016/j.jecp.2021.105195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Vision and touch play a critical role in spatial development, facilitating the acquisition of allocentric and egocentric frames of reference, respectively. Previous works have shown that children's ability to adopt an allocentric frame of reference might be impaired by the absence of visual experience during growth. In the current work, we investigated whether visual deprivation also impairs the ability to shift from egocentric to allocentric frames of reference in a switching-perspective task performed in the visual and haptic domains. Children with and without visual impairments from 6 to 13 years of age were asked to visually (only sighted children) or haptically (blindfolded sighted children and blind children) explore and reproduce a spatial configuration of coins by assuming either an egocentric perspective or an allocentric perspective. Results indicated that temporary visual deprivation impaired the ability of blindfolded sighted children to switch from egocentric to allocentric perspective more in the haptic domain than in the visual domain. Moreover, results on visually impaired children indicated that blindness did not impair allocentric spatial coding in the haptic domain but rather affected the ability to rely on haptic egocentric cues in the switching-perspective task. Finally, our findings suggested that the total absence of vision might impair the development of an egocentric perspective in case of body midline-crossing targets.
Collapse
Affiliation(s)
- Chiara Martolini
- Unit for Visually Impaired People, Center for Human Technologies, Istituto Italiano di Tecnologia, 16152 Genoa, Italy.
| | - Giulia Cappagli
- Unit for Visually Impaired People, Center for Human Technologies, Istituto Italiano di Tecnologia, 16152 Genoa, Italy.
| | - Elena Saligari
- Center of Child NeuroOphthalmology, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Monica Gori
- Unit for Visually Impaired People, Center for Human Technologies, Istituto Italiano di Tecnologia, 16152 Genoa, Italy.
| | - Sabrina Signorini
- Center of Child NeuroOphthalmology, IRCCS Mondino Foundation, 27100 Pavia, Italy.
| |
Collapse
|
21
|
Yu S, Boone AP, He C, Davis RC, Hegarty M, Chrastil ER, Jacobs EG. Age-Related Changes in Spatial Navigation Are Evident by Midlife and Differ by Sex. Psychol Sci 2021; 32:692-704. [PMID: 33819436 DOI: 10.1177/0956797620979185] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Accumulating evidence suggests that distinct aspects of successful navigation-path integration, spatial-knowledge acquisition, and navigation strategies-change with advanced age. Yet few studies have established whether navigation deficits emerge early in the aging process (prior to age 65) or whether early age-related deficits vary by sex. Here, we probed healthy young adults (ages 18-28) and midlife adults (ages 43-61) on three essential aspects of navigation. We found, first, that path-integration ability shows negligible effects of sex or age. Second, robust sex differences in spatial-knowledge acquisition are observed not only in young adulthood but also, although with diminished effect, at midlife. Third, by midlife, men and women show decreased ability to acquire spatial knowledge and increased reliance on taking habitual paths. Together, our findings indicate that age-related changes in navigation ability and strategy are evident as early as midlife and that path-integration ability is spared, to some extent, in the transition from youth to middle age.
Collapse
Affiliation(s)
- Shuying Yu
- Department of Psychological and Brain Sciences, University of California, Santa Barbara
| | - Alexander P Boone
- Department of Psychological and Brain Sciences, University of California, Santa Barbara
| | - Chuanxiuyue He
- Department of Psychological and Brain Sciences, University of California, Santa Barbara
| | - Rie C Davis
- Department of Geography, University of California, Santa Barbara
| | - Mary Hegarty
- Department of Psychological and Brain Sciences, University of California, Santa Barbara
| | - Elizabeth R Chrastil
- Department of Geography, University of California, Santa Barbara.,Department of Neurobiology and Behavior, University of California, Irvine
| | - Emily G Jacobs
- Department of Psychological and Brain Sciences, University of California, Santa Barbara.,Neuroscience Research Institute, University of California, Santa Barbara
| |
Collapse
|
22
|
Chen Q, Wu S, Li X, Sun Y, Chen W, Lu J, Zhang W, Liu J, Qing Z, Nedelska Z, Hort J, Zhang X, Zhang B. Basal Forebrain Atrophy Is Associated With Allocentric Navigation Deficits in Subjective Cognitive Decline. Front Aging Neurosci 2021; 13:596025. [PMID: 33658916 PMCID: PMC7917187 DOI: 10.3389/fnagi.2021.596025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/27/2021] [Indexed: 01/21/2023] Open
Abstract
Individuals with subjective cognitive decline (SCD) are at higher risk of incipient Alzheimer's disease (AD). Spatial navigation (SN) impairments in AD dementia and mild cognitive impairment patients have been well-documented; however, studies investigating SN deficits in SCD subjects are still lacking. This study aimed to explore whether basal forebrain (BF) and entorhinal cortex (EC) atrophy contribute to spatial disorientation in the SCD stage. In total, 31 SCD subjects and 24 normal controls were enrolled and administered cognitive scales, a 2-dimensional computerized SN test, and structural magnetic resonance imaging (MRI) scanning. We computed the differences in navigation distance errors and volumes of BF subfields, EC, and hippocampus between the SCD and control groups. The correlations between MRI volumetry and navigation distance errors were also calculated. Compared with the controls, the SCD subjects performed worse in both egocentric and allocentric navigation. The SCD group showed volume reductions in the whole BF (p < 0.05, uncorrected) and the Ch4p subfield (p < 0.05, Bonferroni corrected), but comparable EC and hippocampal volumes with the controls. In the SCD cohort, the allocentric errors were negatively correlated with total BF (r = −0.625, p < 0.001), Ch4p (r = −0.625, p < 0.001), total EC (r = −0.423, p = 0.031), and left EC volumes (r = −0.442, p = 0.024), adjusting for age, gender, years of education, total intracranial volume, and hippocampal volume. This study demonstrates that SN deficits and BF atrophy may be promising indicators for the early detection of incipient AD patients. The reduced BF volume, especially in the Ch4p subfield, may serve as a structural basis for allocentric disorientation in SCD subjects independent of hippocampal atrophy. Our findings may have further implications for the preclinical diagnosis and intervention for potential AD patients.
Collapse
Affiliation(s)
- Qian Chen
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Sichu Wu
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xin Li
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yi Sun
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenqian Chen
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiaming Lu
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wen Zhang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiani Liu
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhao Qing
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Institute of Brain Science, Nanjing University, Nanjing, China
| | - Zuzana Nedelska
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Xin Zhang
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Institute of Brain Science, Nanjing University, Nanjing, China
| |
Collapse
|
23
|
Derbie AY, Chau B, Lam B, Fang YH, Ting KH, Wong CYH, Tao J, Chen LD, Chan CCH. Cortical Hemodynamic Response Associated with Spatial Coding: A Near-Infrared Spectroscopy Study. Brain Topogr 2021; 34:207-220. [PMID: 33484379 DOI: 10.1007/s10548-021-00821-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 01/11/2021] [Indexed: 01/01/2023]
Abstract
Allocentric and egocentric are two types of spatial coding. Previous studies reported the dorsal attention network's involvement in both types. To eliminate possible paradigm-specific confounds in the results, this study employed fine-grained cue-to-target paradigm to dissociate allocentric (aSC) and egocentric (eSC) spatial coding. Twenty-two participants completed a custom visuospatial task, and changes in the concentration of oxygenated hemoglobin (O2-Hb) were recorded using functional near-infrared spectroscopy (fNIRS). The least absolute shrinkage and selection operator-regularized principal component (LASSO-RPC) algorithm was used to identify cortical sites that predicted the aSC and eSC conditions' reaction times. Significant changes in O2-Hb concentration in the right inferior parietal lobule (IPL) and post-central gyrus regions were common in both aSC and eSC. Results of inter-channel correlations further substantiate cortical activities in both conditions were predominantly over the right parieto-frontal areas. Together with right superior frontal gyrus areas be the reaction time neural correlates, the results suggest top-down attention and response-mapping processes are common to both spatial coding types. Changes unique to aSC were in clusters over the right intraparietal sulcus, right temporo-parietal junction, and left IPL. With the left pre-central gyrus region, be the reaction time neural correlate, aSC is likely to involve more orienting attention, updating of spatial information, and object-based response selection and inhibition than eSC. Future studies will use other visuospatial task designs for testing the robustness of the findings on spatial coding processes.
Collapse
Affiliation(s)
- Abiot Y Derbie
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Department of Psychology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Bolton Chau
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Bess Lam
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Yun-Hua Fang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Kin-Hung Ting
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Clive Y H Wong
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Li-Dian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| |
Collapse
|
24
|
Ramanoël S, Durteste M, Bécu M, Habas C, Arleo A. Differential Brain Activity in Regions Linked to Visuospatial Processing During Landmark-Based Navigation in Young and Healthy Older Adults. Front Hum Neurosci 2020; 14:552111. [PMID: 33240060 PMCID: PMC7668216 DOI: 10.3389/fnhum.2020.552111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
Older adults have difficulties in navigating unfamiliar environments and updating their wayfinding behavior when faced with blocked routes. This decline in navigational capabilities has traditionally been ascribed to memory impairments and dysexecutive function, whereas the impact of visual aging has often been overlooked. The ability to perceive visuospatial information such as salient landmarks is essential to navigating efficiently. To date, the functional and neurobiological factors underpinning landmark processing in aging remain insufficiently characterized. To address this issue, functional magnetic resonance imaging (fMRI) was used to investigate the brain activity associated with landmark-based navigation in young and healthy older participants. The performances of 25 young adults (μ = 25.4 years, σ = 2.7; seven females) and 17 older adults (μ = 73.0 years, σ = 3.9; 10 females) were assessed in a virtual-navigation task in which they had to orient using salient landmarks. The underlying whole-brain patterns of activity as well as the functional roles of specific cerebral regions involved in landmark processing, namely the parahippocampal place area (PPA), the occipital place area (OPA), and the retrosplenial cortex (RSC), were analyzed. Older adults' navigational abilities were overall diminished compared to young adults. Also, the two age groups relied on distinct navigational strategies to solve the task. Better performances during landmark-based navigation were associated with increased neural activity in an extended neural network comprising several cortical and cerebellar regions. Direct comparisons between age groups revealed that young participants had greater anterior temporal activity. Also, only young adults showed significant activity in occipital areas corresponding to the cortical projection of the central visual field during landmark-based navigation. The region-of-interest analysis revealed an increased OPA activation in older adult participants during the landmark condition. There were no significant between-group differences in PPA and RSC activations. These preliminary results hint at the possibility that aging diminishes fine-grained information processing in occipital and temporal regions, thus hindering the capacity to use landmarks adequately for navigation. Keeping sight of its exploratory nature, this work helps towards a better comprehension of the neural dynamics subtending landmark-based navigation and it provides new insights on the impact of age-related visuospatial processing differences on navigation capabilities.
Collapse
Affiliation(s)
- Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- University of Côte d’Azur, LAMHESS, Nice, France
| | - Marion Durteste
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Marcia Bécu
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
25
|
Grison E, Jaco AA. Is the construction of spatial models multimodal? New evidences towards sensory-motor information involvement from temporary blindness study. PSYCHOLOGICAL RESEARCH 2020; 85:2636-2653. [PMID: 33033895 DOI: 10.1007/s00426-020-01427-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Using new developments of interference paradigm, this paper addresses the raising question of the involvement of sensory-motor information in the construction of elaborate spatial models (Johnson-Laird in Mental models: towards a cognitive science of language, inference, and consciousness Cambridge University Press Cambridge, 1983). In two experiments, 112 participants had to explore and memorize the spatial arrangement of 12 objects, disposed on 3 tables. Participants were either sighted or blindfolded, leading to a visual or a more sensory-motor based exploration of the room. During exploration, participants were required to perform a classical verbal, a visuo-spatial dual task or none. In the second experiment, more exploratory, we draw on interference paradigm literature and its recent development in the embodied field to develop two original dual tasks meant to interfere directly with the acquisition of sensory-motor information (haptic and action). After this learning phase, five tasks addressing spatial memory and reasoning used in the construction of spatial models were performed. Results showed classical effects for both verbal and visuo-spatial tasks for sighted participants, but not for blindfolded sighted ones, suggesting that a temporary visual deprivation led participants to use other way to build their spatial models. Our second experiment confirmed this point by showing effect of both sensory-motor dual tasks, especially for blindfolded sighted participants. Taking together, our results support a multimodal view of spatial models, and that exploration modality will influence the information used to construct them. Moreover, this challenges the Baddeley's dualist view of working memory as a reference to theorize the construction of spatial models and provide new experimental evidences towards an embodied view of spatial models.
Collapse
Affiliation(s)
- Elise Grison
- IFSTTAR, Laboratoire de Psychologie des Comportements et des mobilités, 78000, Versailles, France.
| | - Amandine Afonso Jaco
- Université de Paris, Laboratoire Mémoire, Cerveau et Cognition, 92100, Boulogne Billancourt, France.,Université Lumière Lyon 2, Laboratoire Développement, Individu, Processus, Handicap, Éducation, 69676, Bron Cedex, France
| |
Collapse
|
26
|
van Petersen E, Altgassen M, van Lier R, van Leeuwen TM. Enhanced spatial navigation skills in sequence-space synesthetes. Cortex 2020; 130:49-63. [PMID: 32640374 DOI: 10.1016/j.cortex.2020.04.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/14/2019] [Accepted: 04/08/2020] [Indexed: 11/20/2022]
Abstract
Individuals with sequence-space synesthesia (SSS) perceive sequences like months, days and numbers in certain spatial arrangements. Several cognitive benefits have been associated with SSS, such as enhanced mental rotation, more vivid visual imagery and an advantage in spatial processing. The current study aimed to further investigate these cognitive benefits, focusing on spatial navigation skills, to explore if their enhanced sensitivity to spatial relations is reflected in enhanced navigational performance. Synesthetes were distinguished from controls by means of a questionnaire, a consistency test and drawings. A virtual Morris Water Maze (MWM) task with two allocentric and two egocentric navigation conditions was used to assess spatial navigation abilities. For the allocentric tasks, participants had to use object cues to find a hidden platform and for the egocentric tasks, they had to use their own position as a reference. Results showed that synesthetes performed significantly better compared to controls on the allocentric and egocentric tasks that reflected real life situations more accurately. However, this significant result was only found for the time taken to find the platform and not for the length of the path that was taken. In exploratory analyses, no significant relations were found between task performance and the specific features of the manifestation of each individual's synesthesia. Our hypothesis that synesthetes with the ability to mentally rotate their spatial arrangements would perform better on the allocentric task was not confirmed. Results add to the growing body of literature concerning the cognitive benefits of SSS and are consistent with the possibility that enhanced spatial navigation skills emerge from generally enhanced visuospatial abilities in SSS.
Collapse
Affiliation(s)
- Eline van Petersen
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.
| | - Mareike Altgassen
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands; Department of Psychology, Johannes Gutenberg University of Mainz, Germany
| | - Rob van Lier
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Tessa M van Leeuwen
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| |
Collapse
|
27
|
Martolini C, Cappagli G, Luparia A, Signorini S, Gori M. The Impact of Vision Loss on Allocentric Spatial Coding. Front Neurosci 2020; 14:565. [PMID: 32612500 PMCID: PMC7308590 DOI: 10.3389/fnins.2020.00565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/07/2020] [Indexed: 11/13/2022] Open
Abstract
Several works have demonstrated that visual experience plays a critical role in the development of allocentric spatial coding. Indeed, while children with a typical development start to code space by relying on allocentric landmarks from the first year of life, blind children remain anchored to an egocentric perspective until late adolescence. Nonetheless, little is known about when and how visually impaired children acquire the ability to switch from an egocentric to an allocentric frame of reference across childhood. This work aims to investigate whether visual experience is necessary to shift from bodily to external frames of reference. Children with visual impairment and normally sighted controls between 4 and 9 years of age were asked to solve a visual switching-perspective task requiring them to assume an egocentric or an allocentric perspective depending on the task condition. We hypothesize that, if visual experience is necessary for allocentric spatial coding, then visually impaired children would have been impaired to switch from egocentric to allocentric perspectives. Results support this hypothesis, confirming a developmental delay in the ability to update spatial coordinates in visually impaired children. It suggests a pivotal role of vision in shaping allocentric spatial coding across development.
Collapse
Affiliation(s)
- Chiara Martolini
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Giulia Cappagli
- Center of Child Neuro-Ophthalmology, IRCCS Mondino Foundation, Pavia, Italy
| | - Antonella Luparia
- Center of Child Neuro-Ophthalmology, IRCCS Mondino Foundation, Pavia, Italy
| | - Sabrina Signorini
- Center of Child Neuro-Ophthalmology, IRCCS Mondino Foundation, Pavia, Italy
| | - Monica Gori
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
28
|
Wei EX, Anson ER, Resnick SM, Agrawal Y. Psychometric Tests and Spatial Navigation: Data From the Baltimore Longitudinal Study of Aging. Front Neurol 2020; 11:484. [PMID: 32595588 PMCID: PMC7300262 DOI: 10.3389/fneur.2020.00484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/04/2020] [Indexed: 12/02/2022] Open
Abstract
Spatial cognition is the process by which individuals interact with their spatial environment. Spatial cognition encompasses the specific skills of spatial memory, spatial orientation, and spatial navigation. Prior studies have shown an association between psychometric tests of spatial ability and self-reported or virtual measures of spatial navigation. In this study, we examined whether psychometric spatial cognitive tests predict performance on a dynamic spatial navigation task that involves movement through an environment. We recruited 151 community-dwelling adult participants [mean (SD) age 69.7 (13.6), range 24.6–93.2] from the Baltimore Longitudinal Study of Aging (BLSA). Spatial navigation ability was assessed using the triangle completion task (TCT), and two quantities, the angle and distance of deviation, were computed. Visuospatial cognitive ability was assessed primarily using the Card Rotations Test. Additional tests of executive function, memory, and attention were also administered. In multiple linear regression analyses adjusting for age, sex, race, and education, cognitive tests of visuospatial ability, executive function, and perceptual motor speed and integration were significantly associated with spatial navigation, as determined by performance on the TCT. These findings suggest that dynamic spatial navigation ability is related to spatial memory, executive function, and motor processing speed.
Collapse
Affiliation(s)
- Eric X Wei
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Eric R Anson
- Department of Otolaryngology, University of Rochester Medical Center School of Medicine and Dentistry, Rochester, NY, United States
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, United States
| | - Yuri Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
29
|
Gardner RS, Newman LA, Mohler EG, Tunur T, Gold PE, Korol DL. Aging is not equal across memory systems. Neurobiol Learn Mem 2020; 172:107232. [PMID: 32315762 DOI: 10.1016/j.nlm.2020.107232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/10/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
The present experiments compared the effects of aging on learning several hippocampus- and striatum-sensitive tasks in young (3-4 month) and old (24-28 month) male Fischer-344 rats. Across three sets of tasks, aging was accompanied not only by deficits on hippocampal tasks but also by maintained or even enhanced abilities on striatal tasks. On two novel object recognition tasks, rats showed impaired performance on a hippocampal object location task but enhanced performance on a striatal object replacement task. On a dual solution task, young rats predominately used hippocampal solutions and old rats used striatal solutions. In addition, on two maze tasks optimally solved using either hippocampus-sensitive place or striatum-sensitive response strategies, relative to young rats, old rats had impaired learning on the place version but equivalent learning on the response version. Because glucose treatments can reverse deficits in learning and memory across many tasks and contexts, levels of available glucose in the brain may have particular importance in cognitive aging observed across tasks and memory systems. During place learning, training-related rises in extracellular glucose levels were attenuated in the hippocampus of old rats compared to young rats. In contrast, glucose levels in the striatum increased comparably in young and old rats trained on either the place or response task. These extracellular brain glucose responses to training paralleled the impairment in hippocampus-sensitive learning and the sparing of striatum-sensitive learning seen as rats age, suggesting a link between age-related changes in learning and metabolic substrate availability in these brain regions.
Collapse
Affiliation(s)
- R S Gardner
- Department of Biology, Syracuse University, Syracuse, NY 13244, United States.
| | - L A Newman
- Department of Psychological Science, Vassar College, Poughkeepsie, NY 12604, United States
| | - E G Mohler
- Research and Development, AbbVie, North Chicago, IL 60064, United States
| | - T Tunur
- Department of Kinesiology, California State University San Marcos, San Marcos, CA 92096, United States
| | - P E Gold
- Department of Biology, Syracuse University, Syracuse, NY 13244, United States
| | - D L Korol
- Department of Biology, Syracuse University, Syracuse, NY 13244, United States.
| |
Collapse
|
30
|
Janzen G, van Roij CJM, Oosterman JM, Kessels RPC. Egocentric and Allocentric Spatial Memory in Korsakoff's Amnesia. Front Hum Neurosci 2020; 14:121. [PMID: 32296321 PMCID: PMC7136515 DOI: 10.3389/fnhum.2020.00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/16/2020] [Indexed: 11/27/2022] Open
Abstract
The goal of the present study was to investigate spatial memory in a group of patients with amnesia due to Korsakoff’s syndrome (KS). We used a virtual spatial memory task that allowed us to separate the use of egocentric and allocentric spatial reference frames to determine object locations. Research investigating the ability of patients with Korsakoff’s amnesia to use different reference frames is scarce and it remains unclear whether these patients are impaired in using ego- and allocentric reference frames to the same extent. Twenty Korsakoff patients and 24 matched controls watched an animation of a bird flying in one of three trees standing in a virtual environment. After the bird disappeared, the camera turned around, by which the trees were briefly out of sight and then turned back to the center of the environment. Participants were asked in which tree the bird was hiding. In half of the trials, a landmark was shown. Half of the trials required an immediate response whereas in the other half a delay of 10 s was present. Patients performed significantly worse than controls. For all participants trials with a landmark were easier than without a landmark and trials without a delay were easier than with a delay. While controls were above chance on all trials patients were at chance in allocentric trials without a landmark present and with a memory delay. Patients showed no difference in the ego- and the allocentric condition. Together the findings suggest that despite the amnesia, spatial memory and especially the use of ego- and allocentric reference frames in Korsakoff patients are spared.
Collapse
Affiliation(s)
- Gabriele Janzen
- Behavioral Science Institute, Radboud University Nijmegen, Nijmegen, Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Claudette J M van Roij
- Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, Netherlands
| | - Joukje M Oosterman
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Roy P C Kessels
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, Netherlands.,Centre of Excellence for Korsakoff and Alcohol-Related Cognitive Disorders, Vincent van Gogh Institute for Psychiatry, Venray, Netherlands.,Department of Medical Psychology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
31
|
van der Ham IJ, Claessen MH. How age relates to spatial navigation performance: Functional and methodological considerations. Ageing Res Rev 2020; 58:101020. [PMID: 31954190 DOI: 10.1016/j.arr.2020.101020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/13/2019] [Accepted: 01/13/2020] [Indexed: 01/11/2023]
Abstract
Aging effects have often been reported for spatial navigation performance. Moreover, navigation performance is thought to be an early marker of pathological aging. Yet, the cognitive complexity of navigation and large individual variation in healthy population make it difficult to pinpoint the precise aging mechanisms involved. We performed a systematic literature review with specific attention to functional dissociation between the tasks used and methodological characteristics. The literature search resulted in 39 articles in which age comparisons were made for large-scale navigation measures. Outcomes were categorized into the domains of landmark, location (egocentric and allocentric), and path knowledge (route and survey). Results indicate that clear functional dissociation exists between these navigation knowledge domains. Aging effects are found for path knowledge most convincingly, while landmark and egocentric location knowledge are frequently omitted in assessment. The participant samples reported often neglect adult, middle aged participants, while this group could be highly informative to the aging process as well. Moreover, having a clear image of age-related performance across the lifespan could be a valuable addition towards the early detection of pathological aging through navigation performance.
Collapse
|
32
|
Tenbrink T, Taylor HA, Brunyé TT, Gagnon SA, Gardony AL. Cognitive focus affects spatial decisions under conditions of uncertainty. Cogn Process 2020; 21:287-302. [PMID: 31974762 PMCID: PMC7203091 DOI: 10.1007/s10339-020-00952-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/10/2020] [Indexed: 11/30/2022]
Abstract
Finding one’s way to a destination is a common, everyday task that often relies on spatial information provided by humans and/or automatic devices. However, the information can be inaccurate. How we decide which route to take will depend on our thoughts about the available route information, including who or what provided it, and how these sources may be associated with differential accuracy and fallibility. In three experiments (previously reported in Brunyé et al. (Q J Exper Psychol 68(3):585–607, 2015)), we found that when route directions conflicted with the perceived environment, people trusted the landmark information other humans provided, but relied on the turn direction information from an automatic device. But what guides these behavioral results? Here we present a systematic linguistic analysis of retrospective reports that sheds some light on how information about the direction source affects cognitive focus. A focus on direction sources in the instruction triggered a cognitive focus on the direction source throughout. Participants who systematically switched strategies focused more on features of the scenario than those who did not. Non-switching strategies were associated with a higher focus on the participants’ own reasoning processes, in particular when relying on turn information. These results highlight how cognitive focus is guided by scenario factors and individual preferences, triggering inferences that influence decisions.
Collapse
Affiliation(s)
- Thora Tenbrink
- School of Languages, Literatures and Linguistics, Bangor University, Bangor, UK.
| | - Holly A Taylor
- Department of Psychology, Tufts University, Medford, MA, USA.,Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, USA
| | - Tad T Brunyé
- Department of Psychology, Tufts University, Medford, MA, USA.,Cognitive Science, U.S. Army CCDC Soldier Center, Natick, MA, USA.,Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, USA
| | - Stephanie A Gagnon
- Department of Psychology, Tufts University, Medford, MA, USA.,Department of Psychology, Stanford University, Stanford, CA, USA.,Cognitive Science, U.S. Army CCDC Soldier Center, Natick, MA, USA
| | - Aaron L Gardony
- Department of Psychology, Tufts University, Medford, MA, USA.,Cognitive Science, U.S. Army CCDC Soldier Center, Natick, MA, USA.,Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, USA
| |
Collapse
|
33
|
Kimura K, Reichert JF, Kelly DM, Moussavi Z. Older Adults Show Less Flexible Spatial Cue Use When Navigating in a Virtual Reality Environment Compared With Younger Adults. Neurosci Insights 2019; 14:2633105519896803. [PMID: 32363348 PMCID: PMC7176399 DOI: 10.1177/2633105519896803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/02/2019] [Indexed: 11/17/2022] Open
Abstract
Daily life requires accurate navigation, and thus better understanding of aging on navigational abilities is critical. Importantly, the use of spatial properties by older and younger adults remains unclear. During this study, younger and older human adults were presented with a virtual environment in which they had to navigate a series of hallways. The hallways provided 2 general types of spatial information: geometric, which included distance and directional turns along a learned route, and featural, which included landmarks situated along the route. To investigate how participants used these different cue types, geometric and/or landmark information was manipulated during testing trials. Data from 40 younger (20 women) and 40 older (20 women) adults were analyzed. Our findings suggest that (1) both younger and older adults relied mostly on landmarks to find their way, and (2) younger adults were better able to adapt to spatial changes to the environment compared with older adults.
Collapse
Affiliation(s)
- Kazushige Kimura
- Graduate Program in Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - James F Reichert
- Department of Psychology, University of Manitoba, Winnipeg, MB, Canada
| | - Debbie M Kelly
- Department of Psychology, University of Manitoba, Winnipeg, MB, Canada
| | - Zahra Moussavi
- Graduate Program in Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
34
|
Ramanoël S, York E, Le Petit M, Lagrené K, Habas C, Arleo A. Age-Related Differences in Functional and Structural Connectivity in the Spatial Navigation Brain Network. Front Neural Circuits 2019; 13:69. [PMID: 31736716 PMCID: PMC6828843 DOI: 10.3389/fncir.2019.00069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Spatial navigation involves multiple cognitive processes including multisensory integration, visuospatial coding, memory, and decision-making. These functions are mediated by the interplay of cerebral structures that can be broadly separated into a posterior network (subserving visual and spatial processing) and an anterior network (dedicated to memory and navigation planning). Within these networks, areas such as the hippocampus (HC) are known to be affected by aging and to be associated with cognitive decline and navigation impairments. However, age-related changes in brain connectivity within the spatial navigation network remain to be investigated. For this purpose, we performed a neuroimaging study combining functional and structural connectivity analyses between cerebral regions involved in spatial navigation. Nineteen young (μ = 27 years, σ = 4.3; 10 F) and 22 older (μ = 73 years, σ = 4.1; 10 F) participants were examined in this study. Our analyses focused on the parahippocampal place area (PPA), the retrosplenial cortex (RSC), the occipital place area (OPA), and the projections into the visual cortex of central and peripheral visual fields, delineated from independent functional localizers. In addition, we segmented the HC and the medial prefrontal cortex (mPFC) from anatomical images. Our results show an age-related decrease in functional connectivity between low-visual areas and the HC, associated with an increase in functional connectivity between OPA and PPA in older participants compared to young subjects. Concerning the structural connectivity, we found age-related differences in white matter integrity within the navigation brain network, with the exception of the OPA. The OPA is known to be involved in egocentric navigation, as opposed to allocentric strategies which are more related to the hippocampal region. The increase in functional connectivity between the OPA and PPA may thus reflect a compensatory mechanism for the age-related alterations around the HC, favoring the use of the preserved structural network mediating egocentric navigation. Overall, these findings on age-related differences of functional and structural connectivity may help to elucidate the cerebral bases of spatial navigation deficits in healthy and pathological aging.
Collapse
Affiliation(s)
- Stephen Ramanoël
- Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Elizabeth York
- Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, France.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Marine Le Petit
- Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, France.,Normandie Université, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Karine Lagrené
- Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Angelo Arleo
- Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
35
|
Age-related preference for geometric spatial cues during real-world navigation. Nat Hum Behav 2019; 4:88-99. [PMID: 31548677 DOI: 10.1038/s41562-019-0718-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
Ageing effects on spatial navigation are characterized mainly in terms of impaired allocentric strategies. However, an alternative hypothesis is that navigation difficulties in aged people are associated with deficits in processing and encoding spatial cues. We tested this hypothesis by studying how geometry and landmark cues control navigation in young and older adults in a real, ecological environment. Recordings of body and gaze dynamics revealed a preference for geometry-based navigation in older adults, and for landmark-based navigation in younger ones. While cue processing was associated with specific fixation patterns, advanced age manifested itself in a longer reorientation time, reflecting an unbalanced exploration-exploitation trade-off in scanning policies. Moreover, a battery of tests revealed a specific cognitive deficit in older adults with geometric preference. These results suggest that allocentric strategy deficits in ageing can result from difficulties related to landmark coding, and predict recovery of allocentric strategies in geometrically polarized environments.
Collapse
|
36
|
Li AWY, King J. Spatial memory and navigation in ageing: A systematic review of MRI and fMRI studies in healthy participants. Neurosci Biobehav Rev 2019; 103:33-49. [PMID: 31129234 DOI: 10.1016/j.neubiorev.2019.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 01/04/2023]
Abstract
AIM Spatial deficits are widely observed in normal ageing and early Alzheimer's disease. This review systematically examined neuroimaging evidence for structural and functional differences in the hippocampus (HC) associated with non-pathological age-related changes in allocentric spatial abilities. METHODS Databases were searched to identify peer-reviewed studies on allocentric spatial processing in normal ageing including MRI or fMRI data. 15 eligible studies were reviewed after applying exclusion criteria and quality assessment. RESULTS There was a marked deficit in allocentric spatial processing and trend towards egocentric strategies in older adults when compared to young controls or across the lifespan, associated in the majority of studies with HC volumetric changes, metabolic or microstructural indicators, and underactivity. A few studies reported no significant correlations. CONCLUSION Findings confirm literature supporting an age-related allocentric spatial processing deficit and a shift towards egocentric strategies. A majority of studies implicated HC atrophy, microstructural/metabolic alterations or functional changes in age-related allocentric spatial impairment. More sensitive imaging techniques and ecologically valid spatial tasks are needed to detect subtle changes in the HC and brain's navigational network.
Collapse
Affiliation(s)
- Adrienne W Y Li
- Department of Clinical, Educational and Health Psychology, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| | - John King
- Department of Clinical, Educational and Health Psychology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
37
|
Yamamoto N, Fox MJ, Boys E, Ord J. Effects of orientation change during environmental learning on age-related difference in spatial memory. Behav Brain Res 2019; 365:125-132. [PMID: 30851314 DOI: 10.1016/j.bbr.2019.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/15/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
It has been suggested that older adults suffer a greater degree of decline in environmental learning when navigating in an environment than when reading a map of the environment. However, the two types of spatial learning differ not only in perspectives (i.e., navigation is done with a ground-level perspective; a map is read from an aerial perspective) but also in orientations (i.e., orientations vary during navigation; spatial information is drawn from a single orientation in a map), making it unclear which factor critically affects older adults' spatial learning. The present study addressed this issue by having younger and older participants learn the layout of a large-scale environment through an aerial movie that contained changes in orientations from which the environment was depicted. Results showed that older participants' memories for the environmental layout were as distorted as those created through a ground-level movie (which involved the same orientation changes), whereas they formed more accurate memories through another aerial movie in which an orientation was fixed. By contrast, younger participants learned the environment equally well from the three movies. Taken together, these findings suggest that there is age-related alteration specifically in the ability to process multiple orientations of an environment while encoding its layout in memory. It is inferred that this alteration stems from functional deterioration of the medial temporal lobe, and possibly that of posterior cingulate areas as well (e.g., the retrosplenial cortex), in late adulthood.
Collapse
Affiliation(s)
- Naohide Yamamoto
- School of Psychology and Counselling, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; Department of Psychology, Cleveland State University, Cleveland, OH 44115, USA.
| | - Michael J Fox
- Department of Psychology, Cleveland State University, Cleveland, OH 44115, USA
| | - Ellen Boys
- School of Psychology and Counselling, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Jodi Ord
- School of Psychology and Counselling, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| |
Collapse
|
38
|
Diersch N, Wolbers T. The potential of virtual reality for spatial navigation research across the adult lifespan. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb187252. [PMID: 30728232 DOI: 10.1242/jeb.187252] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Older adults often experience serious problems in spatial navigation, and alterations in underlying brain structures are among the first indicators for a progression to neurodegenerative diseases. Studies investigating the neural mechanisms of spatial navigation and its changes across the adult lifespan are increasingly using virtual reality (VR) paradigms. VR offers major benefits in terms of ecological validity, experimental control and options to track behavioral responses. However, navigation in the real world differs from navigation in VR in several aspects. In addition, the importance of body-based or visual cues for navigation varies between animal species. Incongruences between sensory and motor input in VR might consequently affect their performance to a different degree. After discussing the specifics of using VR in spatial navigation research across species, we outline several challenges when investigating age-related deficits in spatial navigation with the help of VR. In addition, we discuss ways to reduce their impact, together with the possibilities VR offers for improving navigational abilities in older adults.
Collapse
Affiliation(s)
- Nadine Diersch
- Aging & Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Thomas Wolbers
- Aging & Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany.,Center for Behavioural Brain Sciences (CBBS), Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.,Medical Faculty, University Hospital Magdeburg, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
39
|
Ulrich S, Grill E, Flanagin VL. Who gets lost and why: A representative cross-sectional survey on sociodemographic and vestibular determinants of wayfinding strategies. PLoS One 2019; 14:e0204781. [PMID: 30699119 PMCID: PMC6353538 DOI: 10.1371/journal.pone.0204781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/07/2018] [Indexed: 12/02/2022] Open
Abstract
When we think of our family and friends, we probably know someone who is good at finding their way and someone else that easily gets lost. We still know little about the biological and environmental factors that influence our navigational ability. Here, we investigated the frequency and sociodemographic determinants of wayfinding and their association with vestibular function in a representative cross-sectional sample (N = 783) of the adult German-speaking population. Wayfinding was assessed using the Wayfinding Strategy Scale, a self-report scale that produces two scores for each participant representing to what degree they rely on route-based or orientation (map-based) strategies. We were interested in the following research questions: (1) the frequency and determinants of wayfinding strategies in a population-based representative sample, (2) the relationship between vestibular function and strategy choice and (3) how sociodemographic factors influence general wayfinding ability as measured using a combined score from both strategy scores. Our linear regression models showed that being male, having a higher education, higher age and lower regional urbanization increased orientation strategy scores. Vertigo/dizziness reduced the scores of both the orientation and the route strategies. Using a novel approach, we grouped participants by their combined strategy scores in a multinomial regression model, to see whether individuals prefer one strategy over the other. The majority of individuals reported using either both or no strategy, instead of preferring one strategy over the other. Young age and reduced vestibular function were indicative of using no strategy. In summary, wayfinding ability depends on both biological and environmental factors; all sociodemographic factors except income. Over a third of the population, predominantly under the age of 35, does not successfully use either strategy. This represents a change in our wayfinding skills, which may result from the technological advances in navigational aids over the last few decades.
Collapse
Affiliation(s)
- Susanne Ulrich
- Institute for Medical Information Processing, Biometrics and Epidemiology, LMU Munich, Munich, Germany
| | - Eva Grill
- Institute for Medical Information Processing, Biometrics and Epidemiology, LMU Munich, Munich, Germany
- German Center for Vertigo and Balance Disorders, LMU Munich, Munich, Germany
| | - Virginia L. Flanagin
- German Center for Vertigo and Balance Disorders, LMU Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
40
|
Descloux V, Maurer R. Perspective taking to assess topographical disorientation: Group study and preliminary normative data. APPLIED NEUROPSYCHOLOGY-ADULT 2019; 27:199-218. [DOI: 10.1080/23279095.2018.1528262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Virginie Descloux
- Faculty of Psychology and Educational Sciences, University of Geneva, Genève, Switzerland
| | - Roland Maurer
- Faculty of Psychology and Educational Sciences, University of Geneva, Genève, Switzerland
| |
Collapse
|
41
|
Richmond LL, Sargent JQ, Flores S, Zacks JM. Age differences in spatial memory for mediated environments. Psychol Aging 2018; 33:892-903. [PMID: 30124308 PMCID: PMC8718108 DOI: 10.1037/pag0000286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Compared with younger adults, older adults have more difficulty with navigation and spatial memory in both familiar and unfamiliar domains. However, the cognitive mechanisms underlying these effects have been little explored. We examined three potential factors: (a) use of and coordination across spatial reference frames, (b) nonspatial cognitive abilities, and (c) the ability to segment a route into effective chunks. In two experiments, healthy young and older adults watched videos of navigation in a novel environment and had to remember the placement of landmarks along the route. Participants completed three spatial memory tasks-a virtual pointing task, a distance estimation task, and sketch map drawing-for each route. The pointing task depends on updating and accessing the updated egocentric reference frame relative to other frames. Map drawing may rely more on environment-centered processing. The distance estimation task could be solved using either frame of reference. Last, participants segmented each route. In a separate session, working memory, processing speed, and verbal memory were assessed. Older adults performed less well on all spatial tasks compared with younger adults; aging had a stronger negative effect on pointing performance. This may point to impairments in older adults' ability to update and coordinate information across reference frames. Performance on all spatial tasks was predicted by nonspatial task performance. Segmentation did not predict spatial memory. These results underline the importance of situating age differences in navigation in the context of basic transformations of spatial reference frames, and also in the context of nonspatial cognitive abilities. (PsycINFO Database Record
Collapse
Affiliation(s)
- Lauren L. Richmond
- Department of Psychological and Brain Sciences, Washington University in St Louis
| | | | - Shaney Flores
- Department of Psychological and Brain Sciences, Washington University in St Louis
| | - Jeffrey M. Zacks
- Department of Psychological and Brain Sciences, Washington University in St Louis
| |
Collapse
|
42
|
A novel real-space navigation paradigm reveals age- and gender-dependent changes of navigational strategies and hippocampal activation. J Neurol 2018; 265:113-126. [PMID: 30073501 DOI: 10.1007/s00415-018-8987-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To establish a novel multimodal real-space navigation paradigm and define age- and gender-related normative values for navigation performance and visual exploration strategies in space. METHODS A group of 30 healthy subjects (mean age 45.9 ± 16.5 years, 16 men) performed a real-space navigation paradigm, requiring allo- and egocentric spatial orientation abilities. Visual exploration behaviour and navigation strategy were documented by a gaze-controlled, head-fixed camera. Allo- and egocentric spatial orientation performance were compared in younger and older subjects (age threshold 50 years) as well as men and women. Navigation-induced changes of regional cerebral glucose metabolism (rCGM) were measured by [18F]-fluorodeoxyglucose-positron emission tomography in a subgroup of 15 subjects (8 men) and compared across age and gender. RESULTS The majority of healthy subjects (73.3%) completed the navigation task without errors. There was no gender difference in navigation performance. Normalized total error rates increased slightly, but significantly with age (r = 0.36, p = 0.05). Analysis of navigation path indicated a significantly reduced use of short cuts in older age (r = 0.44, p = 0.015). Visual exploration analysis revealed that older subjects made significantly more total saccades (r = 0.49, p = 0.006) and search saccades (r = 0.54, p = 0.002) during navigation. All visual exploration parameters were similar in men and women. Navigation-induced rCGM decreased with age in the hippocampus and precuneus and increased in the frontal cortex, basal ganglia and cerebellum. Women showed an increase of rCGM in the left hippocampus and right middle temporal gyrus, men in the superior vermis. CONCLUSION Real-space navigation testing was a feasible and sensitive method to depict age-related changes in navigation performance and strategy. Normalized error rates, total mean durations per item and total number of saccades were the most sensitive and practical parameters to indicate deterioration of allocentric navigation strategies and right hippocampal function in age irrespective of gender.
Collapse
|
43
|
Zhong JY, Moffat SD. Extrahippocampal Contributions to Age-Related Changes in Spatial Navigation Ability. Front Hum Neurosci 2018; 12:272. [PMID: 30042665 PMCID: PMC6048192 DOI: 10.3389/fnhum.2018.00272] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
Age-related decline in spatial navigation is well-known and the extant literature emphasizes the important contributions of a hippocampus-dependent spatial navigation system in mediating this decline. However, navigation is a multifaceted cognitive domain and some aspects of age-related navigational decline may be mediated by extrahippocampal brain regions and/or systems. The current review presents an overview of some key cognitive domains that contribute to the age-related changes in spatial navigation ability, and elucidates such domains in the context of an increased engagement of navigationally relevant extrahippocampal brain regions with advancing age. Specifically, this review focuses on age-related declines in three main areas: (i) allocentric strategy use and switching between egocentric and allocentric strategies, (ii) associative learning of landmarks/locations and heading directions, and (iii) executive functioning and attention. Thus far, there is accumulating neuroimaging evidence supporting the functional relevance of the striatum for egocentric/response strategy use in older adults, and of the prefrontal cortex for mediating executive functions that contribute to successful navigational performance. Notably, the functional role of the prefrontal cortex was particularly emphasized via the proposed relevance of the fronto-locus coeruleus noradrenergic system for strategy switching and of the fronto-hippocampal circuit for landmark-direction associative learning. In view of these putative prefrontal contributions to navigation-related functions, we recommend future spatial navigation studies to adopt a systems-oriented approach that investigates age-related alterations in the interaction between the prefrontal cortex, the hippocampus, and extrahippocampal regions, as well as an individual differences approach that clarifies the differential engagement of prefrontal executive processes among older adults.
Collapse
Affiliation(s)
| | - Scott D. Moffat
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
44
|
Zhong JY, Magnusson KR, Swarts ME, Clendinen CA, Reynolds NC, Moffat SD. The application of a rodent-based Morris water maze (MWM) protocol to an investigation of age-related differences in human spatial learning. Behav Neurosci 2018; 131:470-482. [PMID: 29189018 DOI: 10.1037/bne0000219] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The current study applied a rodent-based Morris water maze (MWM) protocol to an investigation of search performance differences between young and older adult humans. To investigate whether similar age-related decline in search performance could be seen in humans based on the rodent-based protocol, we implemented a virtual MWM (vMWM) that has characteristics similar to those of the MWM used in previous studies of spatial learning in mice. Through the use of a proximity to platform measure, robust differences were found between healthy young and older adults in search performance. After dividing older adults into good and poor performers based on a median split of their corrected cumulative proximity values, the age effects in place learning were found to be largely related to search performance differences between the young and poor-performing older adults. When compared with the young, poor-performing older adults exhibited significantly higher proximity values in 83% of 24 place trials and overall in the probe trials that assessed spatial learning in the absence of the hidden platform. In contrast, good-performing older adults exhibited patterns of search performance that were comparable with that of the younger adults in most place and probe trials. Taken together, our findings suggest that the low search accuracy in poor-performing older adults stemmed from potential differences in strategy selection, differences in assumptions or expectations of task demands, as well as possible underlying functional and/or structural changes in the brain regions involved in vMWM search performance. (PsycINFO Database Record
Collapse
Affiliation(s)
- Jimmy Y Zhong
- School of Psychology, College of Sciences, Georgia Institute of Technology
| | - Kathy R Magnusson
- Department of Biomedical Sciences, College of Veterinary Medicine & Linus Pauling Institute, Oregon State University
| | - Matthew E Swarts
- School of Architecture, College of Design, Georgia Institute of Technology
| | | | - Nadjalisse C Reynolds
- Department of Biomedical Sciences, College of Veterinary Medicine & Linus Pauling Institute, Oregon State University
| | - Scott D Moffat
- School of Psychology, College of Sciences, Georgia Institute of Technology
| |
Collapse
|
45
|
Muffato V, Meneghetti C, De Beni R. Spatial mental representations: the influence of age on route learning from maps and navigation. PSYCHOLOGICAL RESEARCH 2018; 83:1836-1850. [PMID: 29846784 DOI: 10.1007/s00426-018-1033-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/27/2018] [Indexed: 10/16/2022]
Abstract
Experiencing an environment by navigating in it or reading a map (route and survey views, respectively) is a typical activity of everyday life. Previous research has demonstrated that aging coincides with a decline in spatial learning, but it is unclear whether this depends to some degree on how the learning conditions relate to the method used to assess the recall. The present study aims to shed light on this issue. Forty-six young, 43 young-old and 38 old-old adults learned outdoor environments from a map and a video, then performed sketch map and route repetition tasks. Participants were assessed on their visuo-spatial working memory (VSWM), and reported their self-assessed visuo-spatial inclinations. The results showed that young adults completed the sketch maps more accurately after learning from a map rather than a video. The same was true of the young-old participants (but not of the old-old), though their performance was not as good as the younger group's. The learning condition had no effect on the route repetition task, however, and only age-related differences emerged, with both older groups performing less well than the young adults. After controlling for learning condition and age group, VSWM and participants' reported propensity to explore places predicted their accuracy in both types of spatial task. The overall results, discussed in the light of spatial cognitive and aging models, show that learning condition (combined with recall tasks) and visuo-spatial factors influence spatial representations, even in aging.
Collapse
Affiliation(s)
- Veronica Muffato
- Department of General Psychology, University of Padova, Via Venezia, 8, 35131, Padua, Italy. .,Department of Psychological, Health and Territorial Sciences, University of Chieti, Chieti, Italy.
| | - Chiara Meneghetti
- Department of General Psychology, University of Padova, Via Venezia, 8, 35131, Padua, Italy
| | - Rossana De Beni
- Department of General Psychology, University of Padova, Via Venezia, 8, 35131, Padua, Italy
| |
Collapse
|
46
|
Raiesdana S. Modeling the interaction of navigational systems in a reward-based virtual navigation task. J Integr Neurosci 2018. [DOI: 10.3233/jin-170036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Somayeh Raiesdana
- Faculty of Electrical, Biomedical and Mechatronics Engineering, Qazvin Brach, Islamic Azad University, Qazvin, Iran. E-mail:
| |
Collapse
|
47
|
Ring M, Gaigg SB, de Condappa O, Wiener JM, Bowler DM. Spatial navigation from same and different directions: The role of executive functions, memory and attention in adults with autism spectrum disorder. Autism Res 2018; 11:798-810. [DOI: 10.1002/aur.1924] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/22/2017] [Accepted: 12/27/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Melanie Ring
- Autism Research Group, Department of Psychology, School of Social Sciences; Rhind Building, City, University of London; London EC1V 0HB UK
| | - Sebastian B. Gaigg
- Autism Research Group, Department of Psychology, School of Social Sciences; Rhind Building, City, University of London; London EC1V 0HB UK
| | - Olivier de Condappa
- Wayfinding Lab, Psychology Research Centre; Bournemouth University; Poole BH12 5BB UK
| | - Jan M. Wiener
- Wayfinding Lab, Psychology Research Centre; Bournemouth University; Poole BH12 5BB UK
| | - Dermot M. Bowler
- Autism Research Group, Department of Psychology, School of Social Sciences; Rhind Building, City, University of London; London EC1V 0HB UK
| |
Collapse
|
48
|
Spriggs MJ, Kirk IJ, Skelton RW. Hex Maze: A new virtual maze able to track acquisition and usage of three navigation strategies. Behav Brain Res 2018; 339:195-206. [DOI: 10.1016/j.bbr.2017.11.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/17/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
|
49
|
Congenital blindness limits allocentric to egocentric switching ability. Exp Brain Res 2018; 236:813-820. [PMID: 29340716 DOI: 10.1007/s00221-018-5176-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
Abstract
Many everyday spatial activities require the cooperation or switching between egocentric (subject-to-object) and allocentric (object-to-object) spatial representations. The literature on blind people has reported that the lack of vision (congenital blindness) may limit the capacity to represent allocentric spatial information. However, research has mainly focused on the selective involvement of egocentric or allocentric representations, not the switching between them. Here we investigated the effect of visual deprivation on the ability to switch between spatial frames of reference. To this aim, congenitally blind (long-term visual deprivation), blindfolded sighted (temporary visual deprivation) and sighted (full visual availability) participants were compared on the Ego-Allo switching task. This task assessed the capacity to verbally judge the relative distances between memorized stimuli in switching (from egocentric-to-allocentric: Ego-Allo; from allocentric-to-egocentric: Allo-Ego) and non-switching (only-egocentric: Ego-Ego; only-allocentric: Allo-Allo) conditions. Results showed a difficulty in congenitally blind participants when switching from allocentric to egocentric representations, not when the first anchor point was egocentric. In line with previous results, a deficit in processing allocentric representations in non-switching conditions also emerged. These findings suggest that the allocentric deficit in congenital blindness may determine a difficulty in simultaneously maintaining and combining different spatial representations. This deficit alters the capacity to switch between reference frames specifically when the first anchor point is external and not body-centered.
Collapse
|
50
|
Colombo D, Serino S, Tuena C, Pedroli E, Dakanalis A, Cipresso P, Riva G. Egocentric and allocentric spatial reference frames in aging: A systematic review. Neurosci Biobehav Rev 2017; 80:605-621. [DOI: 10.1016/j.neubiorev.2017.07.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/29/2017] [Accepted: 07/27/2017] [Indexed: 01/07/2023]
|