1
|
Kobylińska Z, Biesiadecki M, Kuna E, Galiniak S, Mołoń M. Coffee as a Source of Antioxidants and an Elixir of Youth. Antioxidants (Basel) 2025; 14:285. [PMID: 40227264 PMCID: PMC11939571 DOI: 10.3390/antiox14030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
Coffee is more than a universally loved beverage; it is a complex matrix of bioactive compounds that contribute to its multifaceted health benefits. From its role as a potent source of antioxidants to its potential anti-aging effects, coffee has proven to be a valuable component of a balanced diet. This paper highlights the extensive scientific evidence supporting coffee's ability to combat oxidative stress, enhance cognitive function, and improve metabolic and cardiovascular health. Additionally, its role in modulating key cellular pathways underscores its potential to positively influence aging and longevity. This manuscript emphasizes coffee's broader cultural, economic, and historical significance, illustrating its enduring relevance in contemporary society. Despite minor discrepancies in research findings, the preponderance of evidence underscores coffee's potential as a functional food with profound implications for healthspan and aging. While promising, translating findings to humans requires further clinical research.
Collapse
Affiliation(s)
- Zofia Kobylińska
- Faculty of Biology and Nature Protection, Rzeszów University, Zelwerowicza 4, 35-601 Rzeszów, Poland; (Z.K.); (E.K.)
| | - Marek Biesiadecki
- Faculty of Medicine, Rzeszów University, Warzywna 1a, 35-310 Rzeszów, Poland;
| | - Ewelina Kuna
- Faculty of Biology and Nature Protection, Rzeszów University, Zelwerowicza 4, 35-601 Rzeszów, Poland; (Z.K.); (E.K.)
| | - Sabina Galiniak
- Faculty of Medicine, Rzeszów University, Warzywna 1a, 35-310 Rzeszów, Poland;
| | - Mateusz Mołoń
- Faculty of Biology and Nature Protection, Rzeszów University, Zelwerowicza 4, 35-601 Rzeszów, Poland; (Z.K.); (E.K.)
| |
Collapse
|
2
|
Breen AK, Thomas S, Beckett D, Agsalud M, Gingras G, Williams J, Wasko BM. An mTOR inhibitor discovery system using drug-sensitized yeast. GeroScience 2025:10.1007/s11357-025-01534-8. [PMID: 39885115 DOI: 10.1007/s11357-025-01534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025] Open
Abstract
Inhibition of the target of rapamycin (TOR/mTOR) protein kinase by the drug rapamycin extends lifespan and health span across diverse species. However, rapamycin has potential off-target and side effects that warrant the discovery of additional TOR inhibitors. TOR was initially discovered in Saccharomyces cerevisiae (yeast) which contains two TOR paralogs, TOR1 and TOR2. Yeast lacking functional Tor1 are viable but are hypersensitive to growth inhibition by TORC1 inhibitors, which is a property of yeast that can be exploited to identify TOR inhibitors. Additionally, yeast lacking FK506-sensitive proline rotamase (FPR1) or containing a tor1-1 allele (a mutation in the Fpr1-rapamycin binding domain of Tor1) are robustly and selectively resistant to rapamycin and analogs that allosterically inhibit TOR activity via an FPR1-dependent mechanism. To facilitate the identification of TOR inhibitors, we generated a panel of yeast strains with mutations in TOR pathway genes combined with the removal of 12 additional genes involved in drug efflux. This creates a drug-sensitive strain background that can sensitively and effectively identify TOR inhibitors. In a wild-type yeast strain background, 25 µM of Torin1 and 100 µM of GSK2126458 (omipalisib) are necessary to observe TOR1-dependent growth inhibition by these known TOR inhibitors. In contrast, 100 nM Torin1 and 500 nM GSK2126458 (omipalisib) are sufficient to identify TOR1-dependent growth inhibition in the drug-sensitized background. This represents a 200-fold and 250-fold increase in detection sensitivity for Torin1 and GSK2126458, respectively. Additionally, for the TOR inhibitor AZD8055, the drug-sensitive system resolves that the compound results in TOR1-dependent growth sensitivity at 100 µM, whereas no growth inhibition is observed in a wild-type yeast strain background. Our platform also identifies the caffeine analog aminophylline as a TOR1-dependent growth inhibitor via selective tor1 growth sensitivity. We also tested nebivolol, isoliquiritigenin, canagliflozin, withaferin A, ganoderic acid A, and taurine and found no evidence for TOR inhibition using our yeast growth-based model. Our results demonstrate that this system is highly effective at identifying compounds that inhibit the TOR pathway. It offers a rapid, cost-efficient, and sensitive tool for drug discovery, with the potential to expedite the identification of new TOR inhibitors that could serve as geroprotective and/or anti-cancer agents.
Collapse
Affiliation(s)
- Anna K Breen
- Department of Biomedical Sciences, Western University of Health Sciences, Lebanon, OR, 97355, USA
| | - Sarah Thomas
- Department of Biomedical Sciences, Western University of Health Sciences, Lebanon, OR, 97355, USA
| | - David Beckett
- Department of Biomedical Sciences, Western University of Health Sciences, Lebanon, OR, 97355, USA
| | - Matthew Agsalud
- Department of Biomedical Sciences, Western University of Health Sciences, Lebanon, OR, 97355, USA
| | - Graham Gingras
- Department of Biomedical Sciences, Western University of Health Sciences, Lebanon, OR, 97355, USA
| | - Judd Williams
- Department of Biomedical Sciences, Western University of Health Sciences, Lebanon, OR, 97355, USA
| | - Brian M Wasko
- Department of Biomedical Sciences, Western University of Health Sciences, Lebanon, OR, 97355, USA.
| |
Collapse
|
3
|
Ungvari Z, Kunutsor SK. Coffee consumption and cardiometabolic health: a comprehensive review of the evidence. GeroScience 2024; 46:6473-6510. [PMID: 38963648 PMCID: PMC11493900 DOI: 10.1007/s11357-024-01262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
This review provides a comprehensive synthesis of longitudinal observational and interventional studies on the cardiometabolic effects of coffee consumption. It explores biological mechanisms, and clinical and policy implications, and highlights gaps in the evidence while suggesting future research directions. It also reviews evidence on the causal relationships between coffee consumption and cardiometabolic outcomes from Mendelian randomization (MR) studies. Findings indicate that while coffee may cause short-term increases in blood pressure, it does not contribute to long-term hypertension risk. There is limited evidence indicating that coffee intake might reduce the risk of metabolic syndrome and non-alcoholic fatty liver disease. Furthermore, coffee consumption is consistently linked with reduced risks of type 2 diabetes (T2D) and chronic kidney disease (CKD), showing dose-response relationships. The relationship between coffee and cardiovascular disease is complex, showing potential stroke prevention benefits but ambiguous effects on coronary heart disease. Moderate coffee consumption, typically ranging from 1 to 5 cups per day, is linked to a reduced risk of heart failure, while its impact on atrial fibrillation remains inconclusive. Furthermore, coffee consumption is associated with a lower risk of all-cause mortality, following a U-shaped pattern, with the largest risk reduction observed at moderate consumption levels. Except for T2D and CKD, MR studies do not robustly support a causal link between coffee consumption and adverse cardiometabolic outcomes. The potential beneficial effects of coffee on cardiometabolic health are consistent across age, sex, geographical regions, and coffee subtypes and are multi-dimensional, involving antioxidative, anti-inflammatory, lipid-modulating, insulin-sensitizing, and thermogenic effects. Based on its beneficial effects on cardiometabolic health and fundamental biological processes involved in aging, moderate coffee consumption has the potential to contribute to extending the healthspan and increasing longevity. The findings underscore the need for future research to understand the underlying mechanisms and refine health recommendations regarding coffee consumption.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Setor K Kunutsor
- Leicester Real World Evidence Unit, Diabetes Research Centre, University of Leicester, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4WP, UK.
- Section of Cardiology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Saint Boniface Hospital, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
4
|
Rao Z, Dai K, Han R, Xu C, Cao L. Meloidogyne incognita genes involved in the repellent behavior in response to ascr#9. Sci Rep 2024; 14:25706. [PMID: 39465253 PMCID: PMC11514155 DOI: 10.1038/s41598-024-76370-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
Meloidogyne incognita is one of the globally serious plant parasitic nematodes. New control measure is urgently needed to replace the common chemical control method. Ascarosides are pheromones regulating the nematodes' aggregation, avoidance, mating, dispersal and dauer recovery and formation. Ascr#9, one of the ascarosides, exhibits the potential to repel M. incognita. However, the nematode genes involved in the perception of ascr# 9 signal are totally unknown. In this study, the transcriptome of ascr#9-treated second stage M. incognita juveniles (J2s) was analyzed, 44 pathways were significantly affected, multiple ligand-receptor and mucin type O-glycan were induced, and olfactory transduction was disturbed. A total of 11 highly differentially expressed genes involved in neuroactive ligand-receptor interaction and FMRFamide-like peptide related process were identified and knocked down by RNAi. The dispersal rates of M. incognita with three knocked-down genes (flp-14, mgl-1 and ADOR-1) significantly decreased, respectively, when ascr#9 was present. The results demonstrate that flp-14, mgl-1, and ADOR-1 are involved in the dispersal behavior of M. incognita nematodes responding to ascr#9, which promotes the interaction study between ascarosides and M. incognita, and provides new ideas for the prevention and control of M. incognita by using pheromone ascarosides.
Collapse
Affiliation(s)
- Zhongchen Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Kang Dai
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Richou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Chengti Xu
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, 810016, China.
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.
| |
Collapse
|
5
|
Ohtsuka H, Shimasaki T, Aiba H. Low-Molecular Weight Compounds that Extend the Chronological Lifespan of Yeasts, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. Adv Biol (Weinh) 2024; 8:e2400138. [PMID: 38616173 DOI: 10.1002/adbi.202400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Yeast is an excellent model organism for research for regulating aging and lifespan, and the studies have made many contributions to date, including identifying various factors and signaling pathways related to aging and lifespan. More than 20 years have passed since molecular biological perspectives are adopted in this research field, and intracellular factors and signal pathways that control aging and lifespan have evolutionarily conserved from yeast to mammals. Furthermore, these findings have been applied to control the aging and lifespan of various model organisms by adjustment of the nutritional environment, genetic manipulation, and drug treatment using low-molecular weight compounds. Among these, drug treatment is easier than the other methods, and research into drugs that regulate aging and lifespan is consequently expected to become more active. Chronological lifespan, a definition of yeast lifespan, refers to the survival period of a cell population under nondividing conditions. Herein, low-molecular weight compounds are summarized that extend the chronological lifespan of Saccharomyces cerevisiae and Schizosaccharomyces pombe, along with their intracellular functions. The low-molecular weight compounds are also discussed that extend the lifespan of other model organisms. Compounds that have so far only been studied in yeast may soon extend lifespan in other organisms.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
6
|
Rudgalvyte M, Atzei P, de Brito Francisco R, Naef R, Glauser DA. Dual-Acting Nitric Oxide Donor and Phosphodiesterase Inhibitor TOP-N53 Increases Lifespan and Health Span of Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001090. [PMID: 38660564 PMCID: PMC11040393 DOI: 10.17912/micropub.biology.001090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/28/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
The quest for extending lifespan and promoting a healthy aging has been a longstanding pursuit in the field of aging research. The control of aging and age-related diseases by nitric oxide (NO) and cGMP signaling is a broadly conserved process from worms to human. Here we show that TOP-N53, a dual-acting NO donor and PDE5 inhibitor, can increase both lifespan and health span in C. elegans .
Collapse
Affiliation(s)
- Martina Rudgalvyte
- Dept. Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Paola Atzei
- TOPADUR Pharma AG, Grabenstrasse 11A, 8952 Schlieren, Switzerland
| | | | - Reto Naef
- TOPADUR Pharma AG, Grabenstrasse 11A, 8952 Schlieren, Switzerland
| | - Dominique A. Glauser
- Dept. Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| |
Collapse
|
7
|
Calabrese EJ, Nascarella M, Pressman P, Hayes AW, Dhawan G, Kapoor R, Calabrese V, Agathokleous E. Hormesis determines lifespan. Ageing Res Rev 2024; 94:102181. [PMID: 38182079 DOI: 10.1016/j.arr.2023.102181] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
This paper addresses how long lifespan can be extended via multiple interventions, such as dietary supplements [e.g., curcumin, resveratrol, sulforaphane, complex phytochemical mixtures (e.g., Moringa, Rhodiola)], pharmaceutical agents (e.g., metformin), caloric restriction, intermittent fasting, exercise and other activities. This evaluation was framed within the context of hormesis, a biphasic dose response with specific quantitative features describing the limits of biological/phenotypic plasticity for integrative biological endpoints (e.g., cell proliferation, memory, fecundity, growth, tissue repair, stem cell population expansion/differentiation, longevity). Evaluation of several hundred lifespan extending agents using yeast, nematode (Caenorhabditis elegans), multiple insect and other invertebrate and vertebrate models (e.g., fish, rodents), revealed they responded in a manner [average (mean/median) and maximum lifespans] consistent with the quantitative features [i.e., 30-60% greater at maximum (Hormesis Rule)] of the hormetic dose response. These lifespan extension features were independent of biological model, inducing agent, endpoints measured and mechanism. These findings indicate that hormesis describes the capacity to extend life via numerous agents and activities and that the magnitude of lifespan extension is modest, in the percentage, not fold, range. These findings have important implications for human aging, genetic diseases/environmental stresses and lifespan extension, as well as public health practices and long-term societal resource planning.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences; University of Massachusetts, Morrill I - Room N344, Amherst, MA 01003, USA.
| | - Marc Nascarella
- Mass College of Pharmacy and Health Sciences University; School of Arts and Sciences, 179 Longwood Avenue, Boston, MA 02115, USA
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME 04469, USA
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management; College of Public Health; University of South Florida, Tampa, FL, USA
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD) University of Health Sciences, Amritsar, India
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology; Nanjing University of Information Science & Technology; Nanjing 210044, China
| |
Collapse
|
8
|
Osorio-Paz I, Valle-Jiménez X, Brunauer R, Alavez S. Vanillic Acid Improves Stress Resistance and Substantially Extends Life Span in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2023; 78:1100-1107. [PMID: 36941756 DOI: 10.1093/gerona/glad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 03/23/2023] Open
Abstract
Aging is the root cause of several pathologies like neurological and cardiovascular diseases. Identifying compounds that improve health span and extend life span, called geroprotectors, could be crucial to preventing or at least delaying the onset of age-related diseases. In this regard, the nematode Caenorhabditis elegans (C. elegans) is emerging as an easy, efficient, low-cost model system to screen natural products and identify novel geroprotectors. Phenolic acids can be found in a wide range of natural products that are part of the human diet. Vanillic acid (VA) is a phenolic acid that has previously been attributed with antioxidant, anti-inflammatory, and neuroprotective features. To determine whether these beneficial health effects amount to an extension of health span and life span, in this work, we thoroughly explore the effect of VA on C. elegans stress resistance and life span. We found that VA increases thermotolerance (19.4%), reduces protein aggregation (between 30% and 40%), improves motility, and extends life span by almost 50%, an extent hardly ever achieved with a natural compound. The increased thermotolerance induced by VA is independent of the insulin/insulin-like growth factor-1 signaling pathway but requires heat shock factor-1 and is associated with increased heat shock protein-4 (HSP-4) and hsp-16.2 expression. These results provide new insight into understanding the therapeutical properties of VA and warrant further investigation of VA as a novel geroprotector.
Collapse
Affiliation(s)
- Ixchel Osorio-Paz
- Health Sciences Department, Metropolitan Autonomous University, Campus Lerma, State of México, México
| | - Xareni Valle-Jiménez
- Health Sciences Department, Metropolitan Autonomous University, Campus Lerma, State of México, México
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Silvestre Alavez
- Health Sciences Department, Metropolitan Autonomous University, Campus Lerma, State of México, México
| |
Collapse
|
9
|
Compound combinations targeting longevity: Challenges and perspectives. Ageing Res Rev 2023; 85:101851. [PMID: 36642188 DOI: 10.1016/j.arr.2023.101851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/05/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Aging is one of the world's greatest concerns, requiring urgent, effective, large-scale interventions to decrease the number of late-life chronic diseases and improve human healthspan. Anti-aging drug therapy is one of the most promising strategies to combat the effects of aging. However, most geroprotective compounds are known to successfully affect only a few aging-related targets. Given this, there is a great biological rationale for the use of combinations of anti-aging interventions. In this review, we characterize the various types of compound combinations used to modulate lifespan, discuss the existing evidence on their role in life extension, and present some key points about current challenges and future prospects for the development of combination drug anti-aging therapy.
Collapse
|
10
|
da Silva TC, da Silveira TL, Dos Santos LV, Arantes LP, Martins RP, Soares FAA, Dalla Corte CL. Exogenous Adenosine Modulates Behaviors and Stress Response in Caenorhabditis elegans. Neurochem Res 2023; 48:117-130. [PMID: 36018438 DOI: 10.1007/s11064-022-03727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 01/11/2023]
Abstract
Adenosine, a purine nucleoside with neuromodulatory actions, is part of the purinergic signaling system (PSS). Caenorhabditis elegans is a free-living nematode found in soil, used in biological research for its advantages as an alternative experimental model. Since there is a lack of evidence of adenosine's direct actions and the PSS's participation in this animal, such an investigation is necessary. In this research, we aimed to test the effects of acute and chronic adenosine at 1, 5, and 10 mM on nematode's behaviors, morphology, survival after stress conditions, and on pathways related to the response to oxidative stress (DAF-16/FOXO and SKN-1) and genes products downstream these pathways (SOD-3, HSP-16.2, and GCS-1). Acute or chronic adenosine did not alter the worms' morphology analyzed by the worms' length, width, and area, nor interfered with reproductive behavior. On the other hand, acute and chronic adenosine modulated the defecation rate, pharyngeal pumping rate, and locomotion, in addition, to interacting with stress response pathways in C. elegans. Adenosine interfered in the speed and mobility of the worms analyzed. In addition, both acute and chronic adenosine presented modulatory effects on oxidative stress response signaling. Acute adenosine prevented the heat-induced-increase of DAF-16 activation and SOD-3 levels, while chronic adenosine per se induced DAF-16 activation and prevented heat-induced-increase of HSP-16.2 and SKN-1 levels. Together, these results indicate that exogenous adenosine has physiological and biochemical effects on C. elegans and describes possible purinergic signaling in worms.
Collapse
Affiliation(s)
- Thayanara Cruz da Silva
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Tássia Limana da Silveira
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Luiza Venturini Dos Santos
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Leticia Priscila Arantes
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Paraná, 85866-000, Brazil
| | - Rodrigo Pereira Martins
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Félix Alexandre Antunes Soares
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Cristiane Lenz Dalla Corte
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
11
|
AdoR-1 (Adenosine Receptor) Contributes to Protection against Paraquat-Induced Oxidative Stress in Caenorhabditis elegans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1759009. [PMID: 36589682 PMCID: PMC9800083 DOI: 10.1155/2022/1759009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
AdoR-1, the single adenosine receptor homolog in Caenorhabditis elegans, which belongs to the superfamily of G-protein coupled receptors (GPCRs), mediates most of the physiological effects of extracellular adenosine. Adenosine has been proved to improve the survival rate of C. elegans in oxidative stress conditions. However, the potential mechanism of adenosine's protective effect against oxidative stress via AdoR-1 has not been studied. In this study, C. elegans were divided into three groups: two groups with paraquat treatment, one in the presence and one in the absence of adenosine, and an untreated control group. Results indicate that many differentially expressed genes were found to be enriched significantly in neural-related signaling pathways among transcriptome data of three groups. Further gene network analysis showed that some important genes well known to be involved in promoting the acetylcholine release pathway, such as dop-1, egl-30, and unc-13, and those involved in promoting the neuropeptide release pathway, such as kin-1, were upregulated by paraquat induction but downregulated after adenosine treatment. Meanwhile, a completely opposite trend was observed for the goa-1 gene that inhibits the acetylcholine-release and neuropeptide-release pathway. Additionally, some biochemical assays including SOD, GSSG, GSH, and AChE were measured to identify the potential protection of adenosine against oxidative stress between wild-type strain N2 and ador-1 gene knockout strain EG6890. Conclusively, our study revealed series of adenosine receptor-mediated genes in C. elegans that might act as regulators of paraquat-induced oxidative stress and may indicate adenosine's promising protective effects.
Collapse
|
12
|
Chen W, Chen Z, Shan S, Wu A, Zhao C, Ye X, Zheng X, Zhu R. Cyanidin-3-O-glucoside promotes stress tolerance and lifespan extension of Caenorhabditis elegans exposed to polystyrene via DAF-16 pathway. Mech Ageing Dev 2022; 207:111723. [PMID: 35988813 DOI: 10.1016/j.mad.2022.111723] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
Abstract
Microplastic pollution has attracted growing attention due to its prevalent and persistent exposure to general population through the food chain, but few reports have focused on the toxicological prevention of polystyrene (PS). Using the wild-type and mutant strains, this study explored the impacts of PS and cyanidin-3-O-glucoside (C3G) on stress tolerance and lifespan of Caenorhabditis elegans (C. elegans). In N2 nematodes, PS exposure initiated the oxidative stress and subsequent lifespan reduction, while these adverse impacts could be positively improved by C3G treatment. Considering the pivotal role of DAF-16 pathway in stress tolerance and lifespan regulation, the expression of the daf-16 gene and its downstream antioxidant genes (clt-2, hsp-16.1, sod-3, sod-5) were examined, and found to be significantly enhanced by C3G. Since the sod-3 gene was up-regulated the most fold by C3G, the activity of SOD enzyme that encoded by the sod-3 was examined, and could be obviously enhanced upon C3G treatment. This explained the improved oxidative stress and delayed oxidation-associated aging after C3G intervention. Nevertheless, these positive effects of C3G were weakened in daf-16(-) mutant strain (with deleted DAF-16 gene), for which the beneficial effects of C3G in promoting stress resistance and lifespan extension were inhibited. These findings suggested that the DAF-16 gene and its downstream antioxidant genes, have participated in C3G's regulations on redox balance and lifespan that impacted by nano-polystyrene particles. This study highlighted the link between dietary components and environmentally driven disturbance.
Collapse
Affiliation(s)
- Wen Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Zhen Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shuo Shan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fujian 350002, China
| | - Xiang Ye
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Ruiyu Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Okoro NO, Odiba AS, Osadebe PO, Omeje EO, Liao G, Fang W, Jin C, Wang B. Bioactive Phytochemicals with Anti-Aging and Lifespan Extending Potentials in Caenorhabditis elegans. Molecules 2021; 26:molecules26237323. [PMID: 34885907 PMCID: PMC8658929 DOI: 10.3390/molecules26237323] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
In the forms of either herbs or functional foods, plants and their products have attracted medicinal, culinary, and nutraceutical applications due to their abundance in bioactive phytochemicals. Human beings and other animals have employed those bioactive phytochemicals to improve health quality based on their broad potentials as antioxidant, anti-microbial, anti-carcinogenic, anti-inflammatory, neuroprotective, and anti-aging effects, amongst others. For the past decade and half, efforts to discover bioactive phytochemicals both in pure and crude forms have been intensified using the Caenorhabditis elegans aging model, in which various metabolic pathways in humans are highly conserved. In this review, we summarized the aging and longevity pathways that are common to C. elegans and humans and collated some of the bioactive phytochemicals with health benefits and lifespan extending effects that have been studied in C. elegans. This simple animal model is not only a perfect system for discovering bioactive compounds but is also a research shortcut for elucidating the amelioration mechanisms of aging risk factors and associated diseases.
Collapse
Affiliation(s)
- Nkwachukwu Oziamara Okoro
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China; (N.O.O.); (A.S.O.); (C.J.)
- College of Life Science and Technology, Guangxi University, Nanning 530007, China;
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria; (P.O.O.); (E.O.O.)
| | - Arome Solomon Odiba
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China; (N.O.O.); (A.S.O.); (C.J.)
- College of Life Science and Technology, Guangxi University, Nanning 530007, China;
| | - Patience Ogoamaka Osadebe
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria; (P.O.O.); (E.O.O.)
| | - Edwin Ogechukwu Omeje
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria; (P.O.O.); (E.O.O.)
| | - Guiyan Liao
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China;
| | - Wenxia Fang
- College of Life Science and Technology, Guangxi University, Nanning 530007, China;
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China;
| | - Cheng Jin
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China; (N.O.O.); (A.S.O.); (C.J.)
- College of Life Science and Technology, Guangxi University, Nanning 530007, China;
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Wang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China; (N.O.O.); (A.S.O.); (C.J.)
- College of Life Science and Technology, Guangxi University, Nanning 530007, China;
- Correspondence: ; Tel.: +86-771-2503-601
| |
Collapse
|
14
|
Asbah A, Ummussaadah U, Parenden N, Putri ASW, Rosa RA, Rumata NR, Emran TB, Dhama K, Nainu F. Pharmacological Effect of Caffeine on Drosophila melanogaster: A Proof-of-Concept in vivo Study for Nootropic Investigation. ARCHIVES OF RAZI INSTITUTE 2021; 76:1645-1654. [PMID: 35546991 PMCID: PMC9083854 DOI: 10.22092/ari.2021.356628.1884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/15/2021] [Indexed: 06/15/2023]
Abstract
A comprehensive investigation into drug candidates with nootropic activity using a proper and high throughput yet economical model organism is an important issue to consider. This proof-of-concept study was carried out to determine whether Drosophila melanogaster can be used as an in vivo screening platform to assess the nootropic activity of certain candidates for the treatment of neurodegenerative diseases. To test this, caffeine was used as a nootropic compound and a Drosophila mutant line lacking PGRP-LB with hyperactivation of NF-κB leading to early death with neurodegenerative phenotype was used as a model organism. Caffeine was orally administered via food to the PGRP-LB mutant of D. melanogaster at different concentrations (0.4 mM, 0.08 mM, 0.016 mM) prior to phenotypical observations of the survival and locomotor activity, as well as gene expression analysis, to assess the expression level of sod1, sod2, and cat genes. The results pointed out that the lifespan of D. melanogaster treated with 0.016 mM caffeine was dramatically increased; nonetheless, no changes were observed in the locomotor activity. Phenotypical analysis using a T-maze vial test demonstrated a good cognitive improvement in response to caffeine administration. Molecular analysis revealed that caffeine at a concentration of 0,016 mM induced the expression of the endogenous antioxidant genes sod1 and cat, but not sod2, signifying that the increased lifespan may be associated with a marked improvement in cytoplasmic antioxidant function. In general, the findings of the present study are in line with those previously observed in the mammalian model organism. Therefore, it can be concluded that D. melanogaster can be used as a model organism in preliminary investigation and screening of nootropic candidates prior to further testing in its mammalian counterparts.
Collapse
Affiliation(s)
- A Asbah
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar, South Sulawesi, Indonesia
| | - U Ummussaadah
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar, South Sulawesi, Indonesia
| | - N Parenden
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar, South Sulawesi, Indonesia
| | - A S W Putri
- Faculty of Medicine, Universitas Hasanuddin, Makassar, South Sulawesi, Indonesia
| | - R A Rosa
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar, South Sulawesi, Indonesia
| | - N R Rumata
- Sekolah Tinggi Farmasi Makassar, Makassar, South Sulawesi, Indonesia
| | - T B Emran
- Department of Pharmacy, BGC Trust University, Chittagong-4381, Bangladesh
| | - K Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - F Nainu
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar, South Sulawesi, Indonesia
| |
Collapse
|
15
|
p21-Activated kinase 1 (PAK1) in aging and longevity: An overview. Ageing Res Rev 2021; 71:101443. [PMID: 34390849 DOI: 10.1016/j.arr.2021.101443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
The p21-activated kinases (PAKs) belong to serine/threonine kinases family, regulated by ∼21 kDa small signaling G proteins RAC1 and CDC42. The mammalian PAK family comprises six members (PAK1-6) that are classified into two groups (I and II) based on their domain architecture and regulatory mechanisms. PAKs are implicated in a wide range of cellular functions. PAK1 has recently attracted increasing attention owing to its involvement in oncogenesis, tumor progression, and metastasis as well as several life-limiting diseases and pathological conditions. In Caenorhabditis elegans, PAK1 functions limit the lifespan under basal conditions by inhibiting forkhead transcription factor DAF-16. Interestingly, PAK depletion extended longevity and attenuated the onset of age-related phenotypes in a premature-aging mouse model and delayed senescence in mammalian fibroblasts. These observations implicate PAKs as not only oncogenic but also aging kinases. Therefore, PAK-targeting genetic and/or pharmacological interventions, particularly PAK1-targeting, could be a viable strategy for developing cancer therapies with relatively no side effects and promoting healthy longevity. This review describes PAK family proteins, their biological functions, and their role in regulating aging and longevity using C. elegans. Moreover, we discuss the effect of small-molecule PAK1 inhibitors on the lifespan and healthspan of C. elegans.
Collapse
|
16
|
Di Rocco M, Galosi S, Lanza E, Tosato F, Caprini D, Folli V, Friedman J, Bocchinfuso G, Martire A, Di Schiavi E, Leuzzi V, Martinelli S. Caenorhabditis elegans provides an efficient drug screening platform for GNAO1-related disorders and highlights the potential role of caffeine in controlling dyskinesia. Hum Mol Genet 2021; 31:929-941. [PMID: 34622282 PMCID: PMC8947233 DOI: 10.1093/hmg/ddab296] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Dominant GNAO1 mutations cause an emerging group of childhood-onset neurological disorders characterized by developmental delay, intellectual disability, movement disorders, drug-resistant seizures and neurological deterioration. GNAO1 encodes the α-subunit of an inhibitory GTP/GDP-binding protein regulating ion channel activity and neurotransmitter release. The pathogenic mechanisms underlying GNAO1-related disorders remain largely elusive and there are no effective therapies. Here, we assessed the functional impact of two disease-causing variants associated with distinct clinical features, c.139A > G (p.S47G) and c.662C > A (p.A221D), using Caenorhabditis elegans as a model organism. The c.139A > G change was introduced into the orthologous position of the C. elegans gene via CRISPR/Cas9, whereas a knock-in strain carrying the p.A221D variant was already available. Like null mutants, homozygous knock-in animals showed increased egg laying and were hypersensitive to aldicarb, an inhibitor of acetylcholinesterase, suggesting excessive neurotransmitter release by different classes of motor neurons. Automated analysis of C. elegans locomotion indicated that goa-1 mutants move faster than control animals, with more frequent body bends and a higher reversal rate and display uncoordinated locomotion. Phenotypic profiling of heterozygous animals revealed a strong hypomorphic effect of both variants, with a partial dominant-negative activity for the p.A221D allele. Finally, caffeine was shown to rescue aberrant motor function in C. elegans harboring the goa-1 variants; this effect is mainly exerted through adenosine receptor antagonism. Overall, our findings establish a suitable platform for drug discovery, which may assist in accelerating the development of new therapies for this devastating condition, and highlight the potential role of caffeine in controlling GNAO1-related dyskinesia.
Collapse
Affiliation(s)
- Martina Di Rocco
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy.,Department of Human Neuroscience, "Sapienza" University of Rome, Rome 00185, Italy
| | - Serena Galosi
- Department of Human Neuroscience, "Sapienza" University of Rome, Rome 00185, Italy
| | - Enrico Lanza
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome 00161, Italy
| | - Federica Tosato
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Davide Caprini
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome 00161, Italy
| | - Viola Folli
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome 00161, Italy
| | - Jennifer Friedman
- UCSD Department of Neuroscience and Pediatrics, Rady Children's Hospital Division of Neurology; Rady Children's Institute for Genomic Medicine, San Diego, USA
| | - Gianfranco Bocchinfuso
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Alberto Martire
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council, Naples 80131, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, "Sapienza" University of Rome, Rome 00185, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| |
Collapse
|
17
|
Lee MB, Kiflezghi MG, Tsuchiya M, Wasko B, Carr DT, Uppal PA, Grayden KA, Elala YC, Nguyen TA, Wang J, Ragosti P, Nguyen S, Zhao YT, Kim D, Thon S, Sinha I, Tang TT, Tran NHB, Tran THB, Moore MD, Li MAK, Rodriguez K, Promislow DEL, Kaeberlein M. Pterocarpus marsupium extract extends replicative lifespan in budding yeast. GeroScience 2021; 43:2595-2609. [PMID: 34297314 PMCID: PMC8599564 DOI: 10.1007/s11357-021-00418-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/05/2021] [Indexed: 02/02/2023] Open
Abstract
As the molecular mechanisms of biological aging become better understood, there is growing interest in identifying interventions that target those mechanisms to promote extended health and longevity. The budding yeast Saccharomyces cerevisiae has served as a premier model organism for identifying genetic and molecular factors that modulate cellular aging and is a powerful system in which to evaluate candidate longevity interventions. Here we screened a collection of natural products and natural product mixtures for effects on the growth rate, mTOR-mediated growth inhibition, and replicative lifespan. No mTOR inhibitory activity was detected, but several of the treatments affected growth rate and lifespan. The strongest lifespan shortening effects were observed for green tea extract and berberine. The most robust lifespan extension was detected from an extract of Pterocarpus marsupium and another mixture containing Pterocarpus marsupium extract. These findings illustrate the utility of the yeast system for longevity intervention discovery and identify Pterocarpus marsupium extract as a potentially fruitful longevity intervention for testing in higher eukaryotes.
Collapse
Affiliation(s)
- Mitchell B. Lee
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Michael G. Kiflezghi
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Mitsuhiro Tsuchiya
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Brian Wasko
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA ,Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, TX USA
| | - Daniel T. Carr
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Priya A. Uppal
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Katherine A. Grayden
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Yordanos C. Elala
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Tu Anh Nguyen
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Jesse Wang
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Priya Ragosti
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Sunny Nguyen
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Yan Ting Zhao
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA ,Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA USA
| | - Deborah Kim
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Socheata Thon
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Irika Sinha
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Thao T. Tang
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Ngoc H. B. Tran
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Thu H. B. Tran
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Margarete D. Moore
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Mary Ann K. Li
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Karl Rodriguez
- Department of Cell Systems and Anatomy, University of Texas Health Sciences Center, San Antonio, TX USA ,Sam and Ann Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX USA
| | - Daniel E. L. Promislow
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA ,Department of Biology, University of Washington, Seattle, WA USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| |
Collapse
|
18
|
Long-Term Caffeine Intake Exerts Protective Effects on Intestinal Aging by Regulating Vitellogenesis and Mitochondrial Function in an Aged Caenorhabditis Elegans Model. Nutrients 2021; 13:nu13082517. [PMID: 34444677 PMCID: PMC8398797 DOI: 10.3390/nu13082517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
Caffeine, a methylxanthine derived from plants, is the most widely consumed ingredient in daily life. Therefore, it is necessary to investigate the effects of caffeine intake on essential biological activities. In this study, we attempted to determine the possible anti-aging effects of long-term caffeine intake in the intestine of an aged Caenorhabditis elegans model. We examined changes in intestinal integrity, production of vitellogenin (VIT), and mitochondrial function after caffeine intake. To evaluate intestinal aging, actin-5 (ACT-5) mislocalization, lumenal expansion, and intestinal colonization were examined after caffeine intake, and the levels of vitellogenesis as well as the mitochondrial activity were measured. We found that the long-term caffeine intake (10 mM) in the L4-stage worms at 25 °C for 3 days suppressed ACT-5 mislocalization. Furthermore, the level of autophagy, which is normally increased in aging animals, was significantly reduced in these animals, and their mitochondrial functions improved after caffeine intake. In addition, the caffeine-ingesting aging animals showed high resistance to oxidative stress and increased the expression of antioxidant proteins. Taken together, these findings reveal that caffeine may be a potential anti-aging agent that can suppress intestinal atrophy during the progression of intestinal aging.
Collapse
|
19
|
Peng Y, Dai S, Lu Y, Xiong L, Huang J, Liu Z, Gong Y. Theanine Improves High-Dose Epigallocatechin-3-Gallate-Induced Lifespan Reduction in Caenorhabditis elegans. Foods 2021; 10:foods10061404. [PMID: 34204441 PMCID: PMC8235257 DOI: 10.3390/foods10061404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/15/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea. Our previous report showed that induced hormesis was a critical determinant for the promotion of a healthy lifespan in Caenorhabditis elegans. In the present study, we investigated the anti-aging effects of the main active ingredients in green tea. We found that galloylated catechins (EGCG and epicatechin gallate) could extend the lifespan of C. elegans, while their metabolites (gallic acid, epicatechin, and epigallocatechin) could not. Interestingly, the combination with theanine, not caffeine, could alleviate the adverse effects induced by high-dose EGCG, including the promotion of lifespan and locomotor ability. This was due to the attenuation of the excess production of reactive oxygen species and the activation of DAF-16. These findings will facilitate further studies on the health benefits of tea active components and their interactions.
Collapse
Affiliation(s)
- Yuxuan Peng
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China; (Y.P.); (Y.L.); (L.X.)
- College of Physical Education, Hunan City University, Yiyang 413002, China
| | - Shen Dai
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (S.D.); (J.H.)
| | - Yan Lu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China; (Y.P.); (Y.L.); (L.X.)
| | - Ligui Xiong
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China; (Y.P.); (Y.L.); (L.X.)
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (S.D.); (J.H.)
| | - Zhonghua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China; (Y.P.); (Y.L.); (L.X.)
- Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (Z.L.); (Y.G.); Tel.: +86-158-741-84082 (Y.G.)
| | - Yushun Gong
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China; (Y.P.); (Y.L.); (L.X.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (S.D.); (J.H.)
- Correspondence: (Z.L.); (Y.G.); Tel.: +86-158-741-84082 (Y.G.)
| |
Collapse
|
20
|
Lee SH, Han YT, Cha DS. Neuroprotective effect of damaurone D in a C. elegans model of Parkinson's disease. Neurosci Lett 2021; 747:135623. [PMID: 33482307 DOI: 10.1016/j.neulet.2021.135623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 01/03/2023]
Abstract
In this study, we evaluated the protective effects of damaurone D (DaD), a dihydropyranoaurone compound, on dopaminergic (DA) neurodegeneration in Caenorhabditis elegans. The results showed that DaD treatment could successfully increase the survival rate of the worms under MPP+ exposure. Additionally, DaD protected against the MPP+-induced neurodegeneration in all eight DA neurons of the worms. Similarly, diminished DA neuronal damage was observed in the DaD-fed transgenic mutant overexpressing tyrosine hydroxylase. In addition, the corresponding behavioral impairment induced by MPP+ was strongly improved in the DaD treated worms, implying DaD has protective properties for DA neuronal function. Then, we further investigated the effect of DaD on α-synuclein aggregation, a key pathogenesis of Parkinson's disease (PD). In this study, DaD reduced the fluorescence signals of transgenic mutants that carried YFP-fused α-synuclein. A similar reduction in expressions of α-synuclein was observed by Western blot. Interestingly, our result from the dot-blot assay demonstrated that the formation of oligomers was significantly attenuated by the DaD treatment. Furthermore, DaD improved the abnormal fat storage and shortened lifespan of the animals with the same genetic background which supports the beneficial action of DaD on the α-synuclein-induced DA neurodegeneration. These results demonstrate that DaD could protect against both chemical- and genetic-induced DA neurodegeneration possibly through the modulation of oxidative stress, DA metabolism, and α-synuclein toxicity. Based on our present findings, we suggest that DaD might have a potential therapeutic role in Parkinson's disease.
Collapse
Affiliation(s)
- Seung Hyun Lee
- Department of Food Engineering, Woosuk University, Jeonbuk, 55338, Republic of Korea
| | - Young Taek Han
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dong Seok Cha
- College of Pharmacy, Woosuk University, Jeonbuk, 55338, Republic of Korea.
| |
Collapse
|
21
|
Coffee Extends Yeast Chronological Lifespan through Antioxidant Properties. Int J Mol Sci 2020; 21:ijms21249510. [PMID: 33327536 PMCID: PMC7765085 DOI: 10.3390/ijms21249510] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/26/2022] Open
Abstract
Aging is a multifactorial process accompanied by loss of cell function. Science has been looking for factors responsible for aging for many years. However, despite identifying a number of possible causes, the definite reason for aging has been elusive so far. One of the factors contributing to aging is oxygen free radicals. In this context, beneficial effects of coffee on various organisms, including humans, were investigated, although the results are far from unequivocal. In our research, we used the budding yeast-something of a workhorse in many studies, including the studies of aging. So far, the impact of coffee on the aging of cells in the budding yeast experimental setup has little known about it. Here, we provide strong evidence that coffee compounds, particularly flavonoids, are responsible for scavenging free radicals and longevity in yeast lacking Sod1, Sod2 and Rad52 proteins. In this paper, we compared Arabica and Robusta coffee types. We present an analysis of the concentration of caffeine and flavonoids measured by the High-Performance Liquid Chromatography method. We show that Robusta has a much greater antioxidant capacity than Arabica. We also conclude that coffee infusions significantly extend the chronological lifespan of the Saccharomyces cerevisiae yeast cells by protecting cells against reactive oxygen species, double DNA-strand break and decrease in metabolic activity.
Collapse
|
22
|
Manalo RVM, Medina PMB. Caffeine reduces deficits in mechanosensation and locomotion induced by L-DOPA and protects dopaminergic neurons in a transgenic Caenorhabditis elegans model of Parkinson's disease. PHARMACEUTICAL BIOLOGY 2020; 58:721-731. [PMID: 32715838 PMCID: PMC7470077 DOI: 10.1080/13880209.2020.1791192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/02/2020] [Accepted: 06/30/2020] [Indexed: 05/08/2023]
Abstract
CONTEXT L-DOPA is the first-line drug for Parkinson's disease (PD). However, chronic use can lead to dyskinesia. Caffeine, which is a known neuroprotectant, can potentially act as an adjunct to minimise adverse effects of L-DOPA. OBJECTIVES This study determined changes in terms of neurodegeneration, locomotion and mechanosensation in Caenorhabditis elegans (Rhabditidae) strain UA57 overexpressing tyrosine hydroxylase (CAT-2) when treated with caffeine, L-DOPA or their combinations. MATERIALS AND METHODS Neurodegeneration was monitored via fluorescence microscopy of GFP-tagged dopaminergic neurons in the head and tail regions of C. elegans (n = 20). Meanwhile, mechanosensation and locomotion under vehicle (0.1% DMSO), L-DOPA (60 mM), caffeine (10 mM) or 60 mM L-DOPA + 10 or 20 mM caffeine (60LC10 and 60LC20) treatments were scored for 3 days. RESULTS L-DOPA (60 mM) reduced CEP and ADE neurons by 4.3% on day 3, with a concomitant decrease in fluorescence by 44.6%. This correlated with reductions in gentle head (-35%) and nose touch (-40%) responses, but improved locomotion (20-75%) compared with vehicle alone. CEP and ADE neuron counts were preserved with caffeine (10 mM) or 60LC10 (98-100%), which correlated with improved mechanosensation (10-23%) and locomotion (18-76%). However, none of the treatments was able to preserve PDE neuron count, reducing the basal slowing response. Discussion and conclusions: Taken together, we show that caffeine can protect DAergic neurons and can reduce aberrant locomotion and loss of sensation when co-administered with L-DOPA, which can potentially impact PD treatment and warrants further investigation.
Collapse
Affiliation(s)
- Rafael Vincent M. Manalo
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Paul Mark B. Medina
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
23
|
Effects of Phosphoethanolamine Supplementation on Mitochondrial Activity and Lipogenesis in a Caffeine Ingestion Caenorhabditis elegans Model. Nutrients 2020; 12:nu12113348. [PMID: 33143181 PMCID: PMC7694071 DOI: 10.3390/nu12113348] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Caffeine intake is strongly linked to lipid metabolism. We previously reported the age-dependent physiological effects of caffeine intake in a Caenorhabditis elegans model. Since nutritional status can actively influence metabolism and overall health, in this study, we evaluated the effect of caffeine intake on lipid metabolism in adult-stage C. elegans. We found that, in C. elegans, fat storage and the level of phosphoethanolamine (PE) were significantly reduced with caffeine intake. In addition, mitochondrial activity decreased and mitochondrial morphology was disrupted, and the expression of oxidative stress response genes, hsp-6, gst-4, and daf-16, was induced by caffeine intake. Furthermore, the level of an energy metabolism sensor, phospho-AMP-activated protein kinase, was increased, whereas the expression of the sterol regulatory element binding protein gene and its target stearoyl-CoA desaturase genes, fat-5, -6, and -7, was decreased with caffeine intake. These findings suggest that caffeine intake causes mitochondrial dysfunction and reduces lipogenesis. Interestingly, these changes induced by caffeine intake were partially alleviated by PE supplementation, suggesting that the reduction in mitochondrial activity and lipogenesis is in part because of the low PE level, and proper dietary supplementation can improve organelle integrity.
Collapse
|
24
|
Ruta LL, Farcasanu IC. Saccharomyces cerevisiae and Caffeine Implications on the Eukaryotic Cell. Nutrients 2020; 12:nu12082440. [PMID: 32823708 PMCID: PMC7468979 DOI: 10.3390/nu12082440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Caffeine-a methylxanthine analogue of the purine bases adenine and guanine-is by far the most consumed neuro-stimulant, being the active principle of widely consumed beverages such as coffee, tea, hot chocolate, and cola. While the best-known action of caffeine is to prevent sleepiness by blocking the adenosine receptors, caffeine exerts a pleiotropic effect on cells, which lead to the activation or inhibition of various cell integrity pathways. The aim of this review is to present the main studies set to investigate the effects of caffeine on cells using the model eukaryotic microorganism Saccharomyces cerevisiae, highlighting the caffeine synergy with external cell stressors, such as irradiation or exposure to various chemical hazards, including cigarette smoke or chemical carcinogens. The review also focuses on the importance of caffeine-related yeast phenotypes used to resolve molecular mechanisms involved in cell signaling through conserved pathways, such as target of rapamycin (TOR) signaling, Pkc1-Mpk1 mitogen activated protein kinase (MAPK) cascade, or Ras/cAMP protein kinase A (PKA) pathway.
Collapse
|
25
|
Martel J, Wu CY, Peng HH, Ko YF, Yang HC, Young JD, Ojcius DM. Plant and fungal products that extend lifespan in Caenorhabditis elegans. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 7:255-269. [PMID: 33015140 PMCID: PMC7517010 DOI: 10.15698/mic2020.10.731] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
The nematode Caenorhabditis elegans is a useful model to study aging due to its short lifespan, ease of manipulation, and available genetic tools. Several molecules and extracts derived from plants and fungi extend the lifespan of C. elegans by modulating aging-related pathways that are conserved in more complex organisms. Modulation of aging pathways leads to activation of autophagy, mitochondrial biogenesis and expression of antioxidant and detoxifying enzymes in a manner similar to caloric restriction. Low and moderate concentrations of plant and fungal molecules usually extend lifespan, while high concentrations are detrimental, consistent with a lifespan-modulating mechanism involving hormesis. We review here molecules and extracts derived from plants and fungi that extend the lifespan of C. elegans, and explore the possibility that these natural substances may produce health benefits in humans.
Collapse
Affiliation(s)
- Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Yeu Wu
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Hsin Peng
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Laboratory Animal Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Chang Gung Biotechnology Corporation, Taipei, Taiwan
- Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - John D. Young
- Chang Gung Biotechnology Corporation, Taipei, Taiwan
| | - David M. Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA
| |
Collapse
|
26
|
Xie X, Shang L, Ye S, Chen C. The Protective Effect of Adenosine-Preconditioning on Paraquat-Induced Damage in Caenorhabditis elegans. Dose Response 2020; 18:1559325820935329. [PMID: 32636721 PMCID: PMC7323277 DOI: 10.1177/1559325820935329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/11/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022] Open
Abstract
Adenosine plays an important role in the physiological and pathological conditions of the body by combining different types of adenosine receptors widely distributed in various tissues in the body. In present study, an acute model for paraquat-poisoning in Caenorhabditis elegans was established for quantitative assessment via a time-dose-mortality (TDM) modeling technique with various paraquat doses over 8 hours. Adenosine was first used to precondition at high, medium, and low concentrations and the survival rate of C. elegans was recorded to evaluate adenosine antistress protection against paraquat damage. The results revealed that the TDM model was good for the quantitative assessment of paraquat-poisoning on C. elegans based on the Hosmer-Lemeshow test for homogeneity of modeling (P = .38). The survival rates of adenosine-preconditioned C. elegans have a dose-dependent association with adenosine concentration. At 3000 μM (high concentration) and 300 μM (medium concentration), adenosine-preconditioned C. elegans still had survival rates of 5.38% ± 1.68% and 5.0% ± 1.19% in the subsequent 8 hours observation period. On the contrary, the survival rates of those receiving 30 μM (low concentration) and the 0 μM (unpreconditioned treatment) were zero. To conclude, adenosine preconditioning had protective effects on C. elegans intoxicated with paraquat by decreasing its mortality rate.
Collapse
Affiliation(s)
- Xin Xie
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| | - Liangcheng Shang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| | - Sudan Ye
- Zhejiang Economic & Trade Polytechnic, Hangzhou, China
| | - Chun Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| |
Collapse
|
27
|
Min H, Youn E, Shim YH. Maternal Caffeine Intake Disrupts Eggshell Integrity and Retards Larval Development by Reducing Yolk Production in a Caenorhabditis elegans Model. Nutrients 2020; 12:nu12051334. [PMID: 32392893 PMCID: PMC7284833 DOI: 10.3390/nu12051334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
During pregnancy, most women are exposed to caffeine, which is a widely consumed psychoactive substance. However, the consequences of maternal caffeine intake on the child remain largely unknown. Here, we investigated the intergenerational effects of maternal caffeine intake on offspring in a Caenorhabditis elegans model. We treated a young mother (P0) with 10 mM of caffeine equivalent to 2–5 cans of commercial energy drinks and examined its reproduction and growth rate from P0 to F2 generation. The fertility decreased and embryonic lethality increased by defective oocytes and eggshell integrity in caffeine-ingested mothers, and F1 larval development severely retarded. These results were due to decreased production of vitellogenin protein (yolk) in caffeine-ingested mothers. Furthermore, effects of RNA interference of vitellogenin (vit) genes, vit-1 to vit-6, in P0 mothers can mimic those by caffeine-ingested mothers. In addition, RNA interference (RNAi) depletion of unc-62 (human Meis homeobox), a transcriptional activator for vit genes, also showed similar effects induced by caffeine intake. Taken together, maternal caffeine intake reduced yolk production mediated by the UNC-62 transcription factor, thereby disrupting oocyte and eggshell integrity and retarding larval development. Our study suggests the clinical significance of caffeine intake for prospective mothers.
Collapse
Affiliation(s)
| | | | - Yhong-Hee Shim
- Correspondence: ; Tel.: +82-2-450-4059; Fax: +82-2-455-9956
| |
Collapse
|
28
|
Machado ML, Arantes LP, da Silveira TL, Zamberlan DC, Cordeiro LM, Obetine FBB, da Silva AF, da Cruz IBM, Soares FAA, Oliveira RDP. Ilex paraguariensis extract provides increased resistance against oxidative stress and protection against Amyloid beta-induced toxicity compared to caffeine in Caenorhabditis elegans. Nutr Neurosci 2019; 24:697-709. [PMID: 31595831 DOI: 10.1080/1028415x.2019.1671694] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ilex paraguariensis is a plant from South America, used to prepare a tea-like beverage rich in caffeine and polyphenols with antioxidant proprieties. Caffeine consumption is associated with a lower risk of age-associated neuropathologies, besides several extracts that have antioxidant proprieties are known to be neuroprotective, and oxidative stress strongly correlates with Aβ-toxicity. This study aims to investigate the neuroprotective effects of the Ilex paraguariensis hydroalcoholic extract (IPHE) and to evaluate if caffeine agent present in IPHE exerts neuroprotective effects in an amyloid beta-peptide (Aβ)-induced toxicity in Caenorhabditis elegans. The wild-type and CL2006 worms were treated with IPHE (2 and 4 mg/mL) or caffeine (200 and 400 μM) since larval stage 1 (L1) until they achieved the required age for each assay. IPHE and caffeine increased the lifespan and appeared to act directly by reactive oxygen species (ROS) scavenger in both wild-type and CL2006 worms, also conferred resistance against oxidative stress in wild-type animals. Furthermore, both treatments delayed Aβ-induced paralysis and decreased AChE activity in CL2006. The protective effect of IPHE against Aβ-induced paralysis was found to be dependent on heat shock factor hsf-1 and FOXO-family transcription factor daf-16, which are respectively involved in aging-related processes and chaperone synthesis, while that of caffeine was dependent only on daf-16. Mechanistically, IPHE and caffeine decreased the levels of Aβ mRNA in the CL2006 worms; however, only IPHE induced expression of the heat shock chaperonin hsp-16.2, involved in protein homeostasis. The results were overall better when treated with IPHE than with caffeine.
Collapse
Affiliation(s)
- Marina Lopes Machado
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Leticia Priscilla Arantes
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Tássia Limana da Silveira
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Daniele Coradini Zamberlan
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Larissa Marafiga Cordeiro
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Fabiane Baptista Bicca Obetine
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Aline Franzen da Silva
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Felix Alexandre Antunes Soares
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Riva de Paula Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
29
|
Li H, Roxo M, Cheng X, Zhang S, Cheng H, Wink M. Pro-oxidant and lifespan extension effects of caffeine and related methylxanthines in Caenorhabditis elegans. Food Chem X 2019; 1:100005. [PMID: 31432005 PMCID: PMC6694850 DOI: 10.1016/j.fochx.2019.100005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/07/2019] [Indexed: 12/23/2022] Open
Abstract
Caffeine and related purine alkaloids are common ingredients of many stimulating drinks. Studies have shown that lower concentrations of caffeine have a protective role in aging-related disorders. However, the associated mode of action of caffeine and its related methylxanthines is still not clear. In this study, we demonstrated that caffeine and theophylline promote longevity in Caenorhabditis elegans. Lifespan studies with the wild type, DAF-16 and SKN-1 mutant strains indicated that the methylxanthines-mediated lifespan extension in C. elegans was independent of DAF-16/FOXO and SKN-1. All the tested methylxanthines could protect C. elegans against acute oxidative stress. At early stages of life, an increase of ROS (reactive oxygen species) induced the translocation of DAF-16 and SKN-1, resulting in upregulation of several antioxidant genes, for example, sod-3p::GFP, gst-4p::GFP, gcs-1p::GFP; and downregulation of hsp-16.2p::GFP. RT-PCR corroborates the upregulation of gst-4 and skn-1 genes. The expression of DAF-16 decreased although its nuclear translocation was induced.
Collapse
Affiliation(s)
- Hanmei Li
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Mariana Roxo
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Xinlai Cheng
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Shaoxiong Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haoran Cheng
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| |
Collapse
|
30
|
Machado ML, Arantes LP, Gubert P, Zamberlan DC, da Silva TC, da Silveira TL, Boligon A, Soares FAA. Ilex paraguariensis modulates fat metabolism in Caenorhabditis elegans through purinergic system (ADOR-1) and nuclear hormone receptor (NHR-49) pathways. PLoS One 2018; 13:e0204023. [PMID: 30252861 PMCID: PMC6155532 DOI: 10.1371/journal.pone.0204023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/01/2018] [Indexed: 11/30/2022] Open
Abstract
Ilex paraguariensis is a well-known plant that is widely consumed in South America, primarily as a drink called mate. Mate is described to have stimulant and medicinal properties. Considering the potential anti-lipid effects of I. paraguariensis infusion, we used an extract of this plant as a possible modulator of fat storage to control lipid metabolism in worms. Herein, the I. paraguariensis-dependent modulation of fat metabolism in Caenorhabditis elegans was investigated. C. elegans were treated with I. paraguariensis aqueous extract (1 mg/ml) from L1 larvae stage until adulthood, to simulate the primary form of consumption. Expression of adipocyte triglyceride lipase 1 (ATGL-1) and heat shock protein 16.2, lipid accumulation through C1-BODIPY-C12 (BODIPY) lipid staining, behavioral parameters, body length, total body energy expenditure and overall survival were analyzed. Total body energy expenditure was determined by the oxygen consumption rate in N2, nuclear hormone receptor knockout, nhr-49(nr2041), and adenosine receptor knockout, ador-1(ox489) strains. Ilex paraguariensis extract increased ATGL-1 expression 20.06% and decreased intestinal BODIPY fat staining 63.36%, compared with the respective control group, without affecting bacterial growth and energetic balance, while nhr-49(nr2041) and ador-1(ox489) strains blocked the worm fat loss. In addition, I. paraguariensis increased the oxygen consumption in N2 worms, but not in mutant strains, increased N2 worm survival following juglone exposure, and did not alter hsp-16.2 expression. We demonstrate for the first time that I. paraguariensis can decrease fat storage and increase body energy expenditure in worms. These effects depend on the purinergic system (ADOR-1) and NHR-49 pathways. Ilex paraguariensis upregulated the expression of ATGL-1 to modulate fat metabolism. Furthermore, our data corroborates with other studies that demonstrate that C. elegans is a useful tool for studies of fat metabolism and energy consumption.
Collapse
Affiliation(s)
- Marina Lopes Machado
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Leticia Priscilla Arantes
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Priscila Gubert
- Centro de Ciências Biológicas e da Saúde, Campus Reitor Edgard Santos, Universidade Federal do Oeste da Bahia, Barreiras, Bahia, Brazil
| | - Daniele Coradini Zamberlan
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Thayanara Cruz da Silva
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Tássia Limana da Silveira
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Aline Boligon
- Departamento da Farmácia Industrial, Laboratório de Pesquisa Fitoquímica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Félix Alexandre Antunes Soares
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
31
|
Du X, Guan Y, Huang Q, Lv M, He X, Yan L, Hayashi S, Fang C, Wang X, Sheng J. Low Concentrations of Caffeine and Its Analogs Extend the Lifespan of Caenorhabditis elegans by Modulating IGF-1-Like Pathway. Front Aging Neurosci 2018; 10:211. [PMID: 30061824 PMCID: PMC6054938 DOI: 10.3389/fnagi.2018.00211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/22/2018] [Indexed: 01/08/2023] Open
Abstract
Caffeine has been reported to delay aging and protect aging-associated disorders in Caenorhabditis elegans. However, the effects of low concentration of caffeine and its analogs on lifespan are currently missing. Herein, we report that at much lower concentrations (as low as 10 μg/ml), caffeine extended the lifespan of C. elegans without affecting food intake and reproduction. The effect of caffeine was dependent on IGF-1-like pathway, although the insulin receptor homolog, daf-2 allele, e1371, was dispensable. Four caffeine analogs, 1-methylxanthine, 7-methylxanthine, 1,3-dimethylxanthine, and 1,7-dimethylxanthine, also extended lifespan, whereas 3-methylxanthine and 3,7-dimethylxanthine did not exhibit lifespan-extending activity.
Collapse
Affiliation(s)
- Xiaocui Du
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Tea Research Center of Yunnan, Yunnan Academy of Agricultural Sciences, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yun Guan
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Tea Research Center of Yunnan, Yunnan Academy of Agricultural Sciences, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Qin Huang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Tea Research Center of Yunnan, Yunnan Academy of Agricultural Sciences, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ming Lv
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Tea Research Center of Yunnan, Yunnan Academy of Agricultural Sciences, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiaofang He
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Tea Research Center of Yunnan, Yunnan Academy of Agricultural Sciences, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Liang Yan
- Pu'er Institute of Pu-erh Tea, Pu'er, China
| | - Shuhei Hayashi
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, Japan.,China-Japan Joint Center for Bioresource Research and Development, Yunnan Agricultural University, Kunming, China
| | - Chongye Fang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Tea Research Center of Yunnan, Yunnan Academy of Agricultural Sciences, Kunming, China.,China-Japan Joint Center for Bioresource Research and Development, Yunnan Agricultural University, Kunming, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| | - Xuanjun Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Tea Research Center of Yunnan, Yunnan Academy of Agricultural Sciences, Kunming, China.,China-Japan Joint Center for Bioresource Research and Development, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Tea Research Center of Yunnan, Yunnan Academy of Agricultural Sciences, Kunming, China.,China-Japan Joint Center for Bioresource Research and Development, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| |
Collapse
|
32
|
Kim YS, Han YT, Jeon H, Cha DS. Antiageing properties of Damaurone D in Caenorhabditis elegans. J Pharm Pharmacol 2018; 70:1423-1429. [DOI: 10.1111/jphp.12979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/15/2018] [Indexed: 01/24/2023]
Abstract
Abstract
Objectives
This study was conducted to evaluate the longevity potential of damaurone D (DaD), a component of the damask rose, in the animal model Caenorhabditis elegans.
Methods
To investigate the effect of DaD on the longevity, lifespan assay was carried out. Fluorescence intensity of transgenic mutants was quantified to test the expression levels of stress proteins. A genetic study using single gene knockout mutants was designed to determine the target genes of DaD.
Key findings
DaD prolonged the mean lifespan of wild-type nematodes by 16.7% under normal conditions and also improved their stress endurance under thermal, osmotic, and oxidative stress conditions. This longevity-promoting effect could be attributed to in vivo antioxidant capacity and its up-regulating effects on the expressions of stress-response proteins such as SOD-3 and HSP-16.2. In addition, DaD treatment attenuated food intake, body length, lipofuscin accumulation and age-dependent decline of motor ability. Gene-specific mutant studies showed the involvement of genes such as daf-2, age-1, and daf-16.
Conclusions
These results suggest that DaD has beneficial effects on the longevity, and thus it can be a valuable plant origin lead compound for the development of nutraceutical preparations targeting ageing and ageing-related diseases.
Collapse
Affiliation(s)
- Yong Seong Kim
- College of Pharmacy, Woosuk University, Jeonbuk, South Korea
| | - Young Taek Han
- College of Pharmacy, Dankook University, Cheonan, South Korea
| | - Hoon Jeon
- College of Pharmacy, Woosuk University, Jeonbuk, South Korea
| | - Dong Seok Cha
- College of Pharmacy, Woosuk University, Jeonbuk, South Korea
| |
Collapse
|
33
|
Arantes LP, Machado ML, Zamberlan DC, da Silveira TL, da Silva TC, da Cruz IBM, Ribeiro EE, Aschner M, Soares FAA. Mechanisms involved in anti-aging effects of guarana (Paullinia cupana) in Caenorhabditis elegans. ACTA ACUST UNITED AC 2018; 51:e7552. [PMID: 29972429 PMCID: PMC6040867 DOI: 10.1590/1414-431x20187552] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/15/2018] [Indexed: 11/23/2022]
Abstract
Guarana (Paullinia cupana) is habitually ingested by people in
the Amazon region and is a key ingredient in various energy drinks consumed
worldwide. Extension in longevity and low prevalence of chronic age-related
diseases have been associated to habitual intake of guarana. Anti-aging
potential of guarana was also demonstrated in Caenorhabditis
elegans; however, the mechanisms involved in its effects are not
clear. Herein, we investigated the putative pathways that regulate the effects
of guarana ethanolic extract (GEE) on lifespan using C.
elegans. The major known longevity pathways were analyzed through
mutant worms and RT-qPCR assay (DAF-2, DAF-16, SKN-1, SIR-2.1, HSF-1). The
possible involvement of purinergic signaling was also investigated. This study
demonstrated that GEE acts through antioxidant activity, DAF-16, HSF-1, and
SKN-1 pathways, and human adenosine receptor ortholog (ADOR-1) to extend
lifespan. GEE also downregulated skn-1,
daf-16, sir-2.1 and hsp-16.2
in 9-day-old C. elegans, which might reflect less need to
activate these protective genes due to direct antioxidant effects. Our results
contribute to the comprehension of guarana effects in vivo,
which might be helpful to prevent or treat aging-associated disorders, and also
suggest purinergic signaling as a plausible therapeutic target for longevity
studies.
Collapse
Affiliation(s)
- L P Arantes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - M L Machado
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - D C Zamberlan
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - T L da Silveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - T C da Silva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - I B M da Cruz
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - E E Ribeiro
- Universidade Aberta da Terceira Idade, Universidade do Estado do Amazonas, Manaus, AM, Brasil
| | - M Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - F A A Soares
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| |
Collapse
|
34
|
Manalo RVM, Medina PMB. Caffeine Protects Dopaminergic Neurons From Dopamine-Induced Neurodegeneration via Synergistic Adenosine-Dopamine D2-Like Receptor Interactions in Transgenic Caenorhabditis elegans. Front Neurosci 2018; 12:137. [PMID: 29563862 PMCID: PMC5845907 DOI: 10.3389/fnins.2018.00137] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/20/2018] [Indexed: 12/15/2022] Open
Abstract
Previous studies have suggested that caffeine reduces the risk of L-DOPA-induced dyskinesia. However, caffeine is also known to promote dopamine signaling, which seemingly contradicts this observed effect. To this end, the study aimed to clarify the mechanism of caffeine neuroprotection in vivo when excess dopamine is present. Transgenic Caenorhabditis elegans (UA57) overproducing dopamine was exposed to caffeine for 7 days and monitored by observing GFP-tagged dopaminergic (DA) neurons via fluorescence microscopy. Caffeine (10 mM) prevented neuronal cell loss in 96% of DA neurons, with a mean GFP intensity that is 40% higher than control (0.1% DMSO). To confirm if cAMP plays a role in the observed neuroprotection by caffeine, cAMP levels were elevated via forskolin (10 μM), an adenylyl cyclase activator. Forskolin (10 μM) exposure did not confer neuroprotection and was similar to control (0.1% DMSO) at the 7th day, suggesting that cAMP is not the sole secondary messenger utilized. Rotigotine (160 μM), a dopamine D2-like receptor (DOP2R) agonist, was not able to confer significant neuroprotection to the nematodes. This suggests that DOP2R activation is necessary but insufficient to mimic neuroprotection by caffeine. Lastly, co-administration of caffeine (10 mM) with olanzapine (160 μM), a DOP2R antagonist, eliminated neuroprotection. This suggests that the protective effect must involve both adenosine receptor antagonism and activation of DOP2Rs. Taken together, we show that caffeine protects DA neurons from dopamine-induced neurodegeneration and acts by modulating adenosine receptor-DOP2R interactions in C. elegans.
Collapse
Affiliation(s)
- Rafael V M Manalo
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Paul M B Medina
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
35
|
Brunquell J, Morris S, Snyder A, Westerheide SD. Coffee extract and caffeine enhance the heat shock response and promote proteostasis in an HSF-1-dependent manner in Caenorhabditis elegans. Cell Stress Chaperones 2018; 23:65-75. [PMID: 28674941 PMCID: PMC5741582 DOI: 10.1007/s12192-017-0824-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 01/05/2023] Open
Abstract
As the population ages, there is a critical need to uncover strategies to combat diseases of aging. Studies in the soil-dwelling nematode Caenorhabditis elegans have demonstrated the protective effects of coffee extract and caffeine in promoting the induction of conserved longevity pathways including the insulin-like signaling pathway and the oxidative stress response. We were interested in determining the effects of coffee and caffeine treatment on the regulation of the heat shock response. The heat shock response is a highly conserved cellular response that functions as a cytoprotective mechanism during stress, mediated by the heat shock transcription factor HSF-1. In the worm, HSF-1 not only promotes protection against stress but is also essential for development and longevity. Induction of the heat shock response has been suggested to be beneficial for diseases of protein conformation by preventing protein misfolding and aggregation, and as such has been proposed as a therapeutic target for age-associated neurodegenerative disorders. In this study, we demonstrate that coffee is a potent, dose-dependent, inducer of the heat shock response. Treatment with a moderate dose of pure caffeine was also able to induce the heat shock response, indicating caffeine as an important component within coffee for producing this response. The effects that we observe with both coffee and pure caffeine on the heat shock response are both dependent on HSF-1. In a C. elegans Huntington's disease model, worms treated with caffeine were protected from polyglutamine aggregates and toxicity, an effect that was also HSF-1-dependent. In conclusion, these results demonstrate caffeinated coffee, and pure caffeine, as protective substances that promote proteostasis through induction of the heat shock response.
Collapse
Affiliation(s)
- Jessica Brunquell
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, 4202 E. Fowler Ave, ISA 2015, Tampa, FL, 33620, USA
| | - Stephanie Morris
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, 4202 E. Fowler Ave, ISA 2015, Tampa, FL, 33620, USA
| | - Alana Snyder
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, 4202 E. Fowler Ave, ISA 2015, Tampa, FL, 33620, USA
| | - Sandy D Westerheide
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, 4202 E. Fowler Ave, ISA 2015, Tampa, FL, 33620, USA.
| |
Collapse
|
36
|
Peixoto H, Roxo M, Röhrig T, Richling E, Wang X, Wink M. Anti-Aging and Antioxidant Potential of Paullinia cupana var. sorbilis: Findings in Caenorhabditis elegans Indicate a New Utilization for Roasted Seeds of Guarana. MEDICINES (BASEL, SWITZERLAND) 2017; 4:E61. [PMID: 28930275 PMCID: PMC5622396 DOI: 10.3390/medicines4030061] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 12/21/2022]
Abstract
Background: Roasted seeds of Amazonian guarana (Paullinia cupana var. sorbilis; Sapindaceae) are popular in South America due to their stimulant activity on the central nervous system (CNS). Rich in purine alkaloids, markedly caffeine, the seeds are extensively used in the Brazilian beverage industry for the preparation of soft drinks and as additives in energy drinks. Methods: To investigate the putative anti-aging and antioxidant activity of guarana, we used the model organism Caenorhabditis elegans. Chemical analyses were performed using high-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (ESI-MS/MS). Results: When tested in the model system Caenorhabditis elegans, the water extract from roasted guarana seeds enhanced resistance against oxidative stress, extended lifespan and attenuated aging markers such as muscle function decline and polyQ40 aggregation. Conclusions: In the current study, we demonstrate that guarana extracts can work as a powerful antioxidant in vivo; moreover, guarana extracts exhibit anti-aging properties. Our results suggest that the biological activities of guarana go beyond the extensively reported CNS stimulation.
Collapse
Affiliation(s)
- Herbenya Peixoto
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, D-69120 Heidelberg, Germany.
| | - Mariana Roxo
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, D-69120 Heidelberg, Germany.
| | - Teresa Röhrig
- Department of Food Chemistry and Toxicology, Molecular Nutrition, University of Kaiserslautern, Erwin-Schroedinger-Strasse 52, D-67663 Kaiserslautern, Germany.
| | - Elke Richling
- Department of Food Chemistry and Toxicology, Molecular Nutrition, University of Kaiserslautern, Erwin-Schroedinger-Strasse 52, D-67663 Kaiserslautern, Germany.
| | - Xiaojuan Wang
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, D-69120 Heidelberg, Germany.
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, D-69120 Heidelberg, Germany.
| |
Collapse
|
37
|
A system to identify inhibitors of mTOR signaling using high-resolution growth analysis in Saccharomyces cerevisiae. GeroScience 2017; 39:419-428. [PMID: 28707282 DOI: 10.1007/s11357-017-9988-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a central regulator of growth and proliferation and mTOR inhibition is a promising therapy for a variety of diseases and disorders. Inhibition of mTOR complex I (mTORC1) with rapamycin delays aging and increases healthy longevity in laboratory animals and is used clinically at high doses to prevent organ transplant rejection and to treat some forms of cancer. Clinical use of rapamycin is associated with several unwanted side effects, however, and several strategies are being taken to identify mTORC1 inhibitors with fewer side effects. We describe here a yeast-based growth assay that can be used to screen for novel inhibitors of mTORC1. By testing compounds using a wild-type strain and isogenic cells lacking either TOR1 or FPR1, we can resolve not only whether a compound is an inhibitor of mTORC1 but also whether the inhibitor acts through a mechanism similar to rapamycin by binding Fpr1. Using this assay, we show that rapamycin derivatives behave similarly to rapamycin, while caffeine and the ATP competitive inhibitors Torin 1 and GSK2126458 are mTORC1 inhibitors in yeast that act independently of Fpr1. Some mTOR inhibitors in mammalian cells do not inhibit mTORC1 in yeast, and several nutraceutical compounds were not found to specifically inhibit mTOR but resulted in a general inhibition of yeast growth. Our screening method holds promise as a means of effectively assaying drug libraries for mTOR-inhibitory molecules in vivo that may be adapted as novel treatments to fight diseases and extend healthy longevity.
Collapse
|