1
|
McMackin R, Bede P, Ingre C, Malaspina A, Hardiman O. Biomarkers in amyotrophic lateral sclerosis: current status and future prospects. Nat Rev Neurol 2023; 19:754-768. [PMID: 37949994 DOI: 10.1038/s41582-023-00891-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
Disease heterogeneity in amyotrophic lateral sclerosis poses a substantial challenge in drug development. Categorization based on clinical features alone can help us predict the disease course and survival, but quantitative measures are also needed that can enhance the sensitivity of the clinical categorization. In this Review, we describe the emerging landscape of diagnostic, categorical and pharmacodynamic biomarkers in amyotrophic lateral sclerosis and their place in the rapidly evolving landscape of new therapeutics. Fluid-based markers from cerebrospinal fluid, blood and urine are emerging as useful diagnostic, pharmacodynamic and predictive biomarkers. Combinations of imaging measures have the potential to provide important diagnostic and prognostic information, and neurophysiological methods, including various electromyography-based measures and quantitative EEG-magnetoencephalography-evoked responses and corticomuscular coherence, are generating useful diagnostic, categorical and prognostic markers. Although none of these biomarker technologies has been fully incorporated into clinical practice or clinical trials as a primary outcome measure, strong evidence is accumulating to support their clinical utility.
Collapse
Affiliation(s)
- Roisin McMackin
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Peter Bede
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Caroline Ingre
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Malaspina
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Orla Hardiman
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland.
- Department of Neurology, Beaumont Hospital, Dublin, Ireland.
| |
Collapse
|
2
|
Impact of Chronic Stress on Attention Control: Evidence from Behavioral and Event-Related Potential Analyses. Neurosci Bull 2020; 36:1395-1410. [PMID: 32929635 DOI: 10.1007/s12264-020-00549-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/08/2020] [Indexed: 01/01/2023] Open
Abstract
Chronic stress affects brain function, so assessing its hazards is important for mental health. To overcome the limitations of behavioral data, we combined behavioral and event-related potentials (ERPs) in an attention network task. This task allowed us to differentiate between three specific aspects of attention: alerting, orienting, and execution. Forty-one participants under chronic stress and 31 non-stressed participants were enrolled. On the performance level, the chronically stressed group showed a significantly slower task response and lower accuracy. Concerning ERP measures, smaller cue-N1, cue-N2, and larger cue-P3 amplitudes were found in the stressed group, indicating that this group was less able to assign attention to effective information, i.e., they made inefficient use of cues and had difficulty in maintaining alerting. In addition, the stressed group showed larger target-N2 amplitudes, indicating that this group needed to allocate more cognitive resources to deal with the conflict targets task. Subgroup analysis revealed lower target-P3 amplitudes in the stressed than in the non-stressed group. Group differences associated with the attention networks were found at the ERP level. In the stressed group, excessive depletion of resources led to changes in attention control. In this study, we examined the effects of chronic stress on individual executive function from a neurological perspective. The results may benefit the development of interventions to improve executive function in chronically stressed individuals.
Collapse
|
3
|
Neural correlates of performance monitoring in adult patients with Gilles de la Tourette syndrome: A study of event-related potentials. Clin Neurophysiol 2020; 131:597-608. [DOI: 10.1016/j.clinph.2019.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/24/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022]
|
4
|
Simmatis L, Atallah G, Scott SH, Taylor S. The feasibility of using robotic technology to quantify sensory, motor, and cognitive impairments associated with ALS. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:43-52. [PMID: 30688092 DOI: 10.1080/21678421.2018.1550515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE We used the KINARM robot to quantify impairments in cognitive and upper-limb sensorimotor performance in a cohort of people with amyotrophic lateral sclerosis (ALS). We sought to study the feasibility of using this technology for ALS research, to quantify patterns of impairments in individuals living with ALS, and elucidate correlations between robotic and traditional clinical behavioral measures. METHODS Participants completed robot-based behavioral tasks testing sensorimotor, cognitive, and proprioceptive performance. Performance on robotic tasks was normalized to a large healthy control cohort (no neurological impairments), adjusted for age. Task impairment was defined as performance outside the 95% range of controls. Traditional clinical tests included: Frontal Assessment Battery (FAB), ALS Functional Rating Scale-Revised (ALSFRS-R), and Montreal Cognitive Assessment (MoCA). RESULTS Seventeen people with ALS were assessed. Two participants reported pain or discomfort from the robot's seat and 2 others reported discomfort from arm position during the assessment (both rectified and did not affect exam completion). Participants were able to perform the majority of the robotic tasks, although 9 participants were unable to complete 1 or more tasks. Between 20 and 69% of participants displayed sensorimotor impairments; 19 and 69% displayed cognitive task impairments; 25% displayed proprioceptive impairments. MoCA was impaired in 9/17 participants; 10/17 had impaired performance on FAB. MoCA and FAB correlated well with robot-based measures of cognition. CONCLUSION Use of robotic assessment is generally feasible for people with ALS. Individuals with ALS have sensorimotor impairments as expected, and some demonstrate substantial cognitive impairments.
Collapse
Affiliation(s)
- Leif Simmatis
- a Centre for Neuroscience Studies, Queen's University , Kingston , Canada
| | - Ghada Atallah
- a Centre for Neuroscience Studies, Queen's University , Kingston , Canada
| | - Stephen H Scott
- a Centre for Neuroscience Studies, Queen's University , Kingston , Canada.,b Department of Medicine , Queen's University , Kingston , Canada and.,c Department of Biomedical and Molecular Sciences , Queen's University , Kingston , Canada
| | - Sean Taylor
- a Centre for Neuroscience Studies, Queen's University , Kingston , Canada.,b Department of Medicine , Queen's University , Kingston , Canada and
| |
Collapse
|
5
|
Proudfoot M, Bede P, Turner MR. Imaging Cerebral Activity in Amyotrophic Lateral Sclerosis. Front Neurol 2019; 9:1148. [PMID: 30671016 PMCID: PMC6332509 DOI: 10.3389/fneur.2018.01148] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/11/2018] [Indexed: 01/30/2023] Open
Abstract
Advances in neuroimaging, complementing histopathological insights, have established a multi-system involvement of cerebral networks beyond the traditional neuromuscular pathological view of amyotrophic lateral sclerosis (ALS). The development of effective disease-modifying therapy remains a priority and this will be facilitated by improved biomarkers of motor system integrity against which to assess the efficacy of candidate drugs. Functional MRI (FMRI) is an established measure of both cerebral activity and connectivity, but there is an increasing recognition of neuronal oscillations in facilitating long-distance communication across the cortical surface. Such dynamic synchronization vastly expands the connectivity foundations defined by traditional neuronal architecture. This review considers the unique pathogenic insights afforded by the capture of cerebral disease activity in ALS using FMRI and encephalography.
Collapse
Affiliation(s)
- Malcolm Proudfoot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Peter Bede
- Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Poletti B, Carelli L, Faini A, Solca F, Meriggi P, Lafronza A, Ciringione L, Pedroli E, Ticozzi N, Ciammola A, Cipresso P, Riva G, Silani V. The Arrows and Colors Cognitive Test (ACCT): A new verbal-motor free cognitive measure for executive functions in ALS. PLoS One 2018; 13:e0200953. [PMID: 30091987 PMCID: PMC6084851 DOI: 10.1371/journal.pone.0200953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/04/2018] [Indexed: 11/18/2022] Open
Abstract
Background and objective The presence of executive deficits in patients with Amyotrophic Lateral Sclerosis is well established, even if standardized measures are difficult to obtain due to progressive physical disability of the patients. We present clinical data concerning a newly developed measure of cognitive flexibility, administered by means of Eye-Tracking (ET) technology in order to bypass verbal-motor limitations. Methods 21 ALS patients and 21 age-and education-matched healthy subjects participated in an ET-based cognitive assessment, including a newly developed test of cognitive flexibility (Arrows and Colors Cognitive Test–ACCT) and other oculomotor-driven measures of cognitive functions. A standard screening of frontal and working memory abilities and global cognitive efficiency was administered to all subjects, in addition to a psychological self-rated assessment. For ALS patients, a clinical examination was also performed. Results ACCT successfully discriminated between patients and healthy controls, mainly concerning execution times obtained at different subtests. A qualitative analysis performed on error distributions in patients highlighted a lower prevalence of perseverative errors, with respect to other type of errors. Correlations between ACCT and other ET-based frontal-executive measures were significant and involved different frontal sub-domains. Limited correlations were observed between ACCT and standard ‘paper and pencil’ cognitive tests. Conclusions The newly developed ET-based measure of cognitive flexibility could be a useful tool to detect slight frontal impairments in non-demented ALS patients by bypassing verbal-motor limitations through the oculomotor-driven administration. The findings reported in the present study represent the first contribution towards the development of a full verbal-motor free executive test for ALS patients.
Collapse
Affiliation(s)
- Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience—IRCCS Istituto Auxologico Italiano, Milan, Italy
- * E-mail:
| | - Laura Carelli
- Department of Neurology and Laboratory of Neuroscience—IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Andrea Faini
- Department of Cardiovascular, Neural and Metabolic Sciences—IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Federica Solca
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Paolo Meriggi
- ICT & Biomedical Technology Integration Unit, Centre for Innovation and Technology Transfer (CITT), Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - Annalisa Lafronza
- Department of Neurology and Laboratory of Neuroscience—IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luciana Ciringione
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Elisa Pedroli
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience—IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Andrea Ciammola
- Department of Neurology and Laboratory of Neuroscience—IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Pietro Cipresso
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience—IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
7
|
Pallebage-Gamarallage M, Foxley S, Menke RAL, Huszar IN, Jenkinson M, Tendler BC, Wang C, Jbabdi S, Turner MR, Miller KL, Ansorge O. Dissecting the pathobiology of altered MRI signal in amyotrophic lateral sclerosis: A post mortem whole brain sampling strategy for the integration of ultra-high-field MRI and quantitative neuropathology. BMC Neurosci 2018; 19:11. [PMID: 29529995 PMCID: PMC5848544 DOI: 10.1186/s12868-018-0416-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/02/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a clinically and histopathologically heterogeneous neurodegenerative disorder, in which therapy is hindered by the rapid progression of disease and lack of biomarkers. Magnetic resonance imaging (MRI) has demonstrated its potential for detecting the pathological signature and tracking disease progression in ALS. However, the microstructural and molecular pathological substrate is poorly understood and generally defined histologically. One route to understanding and validating the pathophysiological correlates of MRI signal changes in ALS is to directly compare MRI to histology in post mortem human brains. RESULTS The article delineates a universal whole brain sampling strategy of pathologically relevant grey matter (cortical and subcortical) and white matter tracts of interest suitable for histological evaluation and direct correlation with MRI. A standardised systematic sampling strategy that was compatible with co-registration of images across modalities was established for regions representing phosphorylated 43-kDa TAR DNA-binding protein (pTDP-43) patterns that were topographically recognisable with defined neuroanatomical landmarks. Moreover, tractography-guided sampling facilitated accurate delineation of white matter tracts of interest. A digital photography pipeline at various stages of sampling and histological processing was established to account for structural deformations that might impact alignment and registration of histological images to MRI volumes. Combined with quantitative digital histology image analysis, the proposed sampling strategy is suitable for routine implementation in a high-throughput manner for acquisition of large-scale histology datasets. Proof of concept was determined in the spinal cord of an ALS patient where multiple MRI modalities (T1, T2, FA and MD) demonstrated sensitivity to axonal degeneration and associated heightened inflammatory changes in the lateral corticospinal tract. Furthermore, qualitative comparison of R2* and susceptibility maps in the motor cortex of 2 ALS patients demonstrated varying degrees of hyperintense signal changes compared to a control. Upon histological evaluation of the same region, intensity of signal changes in both modalities appeared to correspond primarily to the degree of microglial activation. CONCLUSION The proposed post mortem whole brain sampling methodology enables the accurate intraindividual study of pathological propagation and comparison with quantitative MRI data, to more fully understand the relationship of imaging signal changes with underlying pathophysiology in ALS.
Collapse
Affiliation(s)
| | - Sean Foxley
- 0000 0004 1936 8948grid.4991.5Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- 0000 0004 1936 7822grid.170205.1Department of Radiology, University of Chicago, Chicago, IL USA
| | - Ricarda A. L. Menke
- 0000 0004 1936 8948grid.4991.5Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Istvan N. Huszar
- 0000 0004 1936 8948grid.4991.5Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mark Jenkinson
- 0000 0004 1936 8948grid.4991.5Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Benjamin C. Tendler
- 0000 0004 1936 8948grid.4991.5Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Chaoyue Wang
- 0000 0004 1936 8948grid.4991.5Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Saad Jbabdi
- 0000 0004 1936 8948grid.4991.5Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Martin R. Turner
- 0000 0004 1936 8948grid.4991.5Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Karla L. Miller
- 0000 0004 1936 8948grid.4991.5Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Olaf Ansorge
- 0000 0004 1936 8948grid.4991.5Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Ebel L, Petri S, Krauss JK, Dengler R, de Zwaan M. Lack of an association between attention-deficit/hyperactivity disorder (ADHD) and amyotrophic lateral sclerosis (ALS). J Neurol Sci 2018; 385:7-11. [PMID: 29406917 DOI: 10.1016/j.jns.2017.11.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/01/2017] [Accepted: 11/30/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Lulé, Ludolph, and Ludolph (2008) hypothesized that there may be a pathophysiological link between attention-deficit/hyperactivity disorder (ADHD) and amyotrophic lateral sclerosis (ALS). They summarized common clinical features, specifically enhanced physical and psychological activity, which have been described typically for ADHD patients and also as common personality traits before disease onset in patients with ALS. METHODS We assessed the lifetime prevalence rate of ADHD in 104 patients with ALS using valid self-report instruments for ADHD symptoms in childhood (WURS-k) and adulthood (ADHD-SB). Results were compared with a population-based sample (n=2069) and with patients with Parkinson's disease (PD, n=52) using regression analyses and adjusting for sociodemographic differences. Physical activity was assessed by the 21-item exercise dependency scale (EDS-21). RESULTS ALS patients reported a lower prevalence of childhood ADHD compared to the general population. Both clinical groups reported significantly lower scores on the WURS-k scale and the attention deficit subscale of the ADHD-SB. The EDS-21 showed significantly longer exercise times in ALS and PD patients. CONCLUSIONS We could not show that ADHD is more common in ALS patients. However, our results revealed shared personality traits in ALS and PD with lower rates of premorbid attention deficit symptoms and increased physical activity.
Collapse
Affiliation(s)
- Leonie Ebel
- Department of Psychosomatic Medicine and Psychotherapy, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany; Department of Neurology, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany.
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany.
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany.
| | - Reinhard Dengler
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany.
| | - Martina de Zwaan
- Department of Psychosomatic Medicine and Psychotherapy, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany.
| |
Collapse
|
9
|
Brain computer interface with the P300 speller: Usability for disabled people with amyotrophic lateral sclerosis. Ann Phys Rehabil Med 2017; 61:5-11. [PMID: 29024794 DOI: 10.1016/j.rehab.2017.09.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease, restricts patients' communication capacity a few years after onset. A proof-of-concept of brain-computer interface (BCI) has shown promise in ALS and "locked-in" patients, mostly in pre-clinical studies or with only a few patients, but performance was estimated not high enough to support adoption by people with physical limitation of speech. Here, we evaluated a visual BCI device in a clinical study to determine whether disabled people with multiple deficiencies related to ALS would be able to use BCI to communicate in a daily environment. METHODS After clinical evaluation of physical, cognitive and language capacities, 20 patients with ALS were included. The P300 speller BCI system consisted of electroencephalography acquisition connected to real-time processing software and separate keyboard-display control software. It was equipped with original features such as optimal stopping of flashes and word prediction. The study consisted of two 3-block sessions (copy spelling, free spelling and free use) with the system in several modes of operation to evaluate its usability in terms of effectiveness, efficiency and satisfaction. RESULTS The system was effective in that all participants successfully achieved all spelling tasks and was efficient in that 65% of participants selected more than 95% of the correct symbols. The mean number of correct symbols selected per minute ranged from 3.6 (without word prediction) to 5.04 (with word prediction). Participants expressed satisfaction: the mean score was 8.7 on a 10-point visual analog scale assessing comfort, ease of use and utility. Patients quickly learned how to operate the system, which did not require much learning effort. CONCLUSION With its word prediction and optimal stopping of flashes, which improves information transfer rate, the BCI system may be competitive with alternative communication systems such as eye-trackers. Remaining requirements to improve the device for suitable ergonomic use are in progress.
Collapse
|
10
|
Lange F, Seer C, Kopp B. Cognitive flexibility in neurological disorders: Cognitive components and event-related potentials. Neurosci Biobehav Rev 2017; 83:496-507. [PMID: 28903059 DOI: 10.1016/j.neubiorev.2017.09.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/29/2017] [Accepted: 09/08/2017] [Indexed: 12/12/2022]
Abstract
Performance deficits on the Wisconsin Card Sorting Test (WCST) in patients with prefrontal cortex (PFC) lesions are traditionally interpreted as evidence for a role of the PFC in cognitive flexibility. However, WCST deficits do not occur exclusively after PFC lesions, but also in various neurological and psychiatric disorders. We propose a multi-component approach that can accommodate this pattern of omnipresent WCST deficits: the WCST is not a pure test of cognitive flexibility, but relies on the effective functioning of multiple dissociable cognitive components. Our review of recent efforts to decompose WCST performance deficits supports this view by revealing that WCST deficits in different neurological disorders can be attributed to alterations in different components. Frontoparietal changes underlying impaired set shifting seem to give rise to WCST deficits in patients with amyotrophic lateral sclerosis, whereas the WCST deficits associated with primary dystonia and Parkinson's disease are rather related to frontostriatal changes underlying deficient rule inference. Clinical implications of these findings and of a multi-component view of WCST performance are discussed.
Collapse
Affiliation(s)
- Florian Lange
- Department of Neurology, Hannover Medical School, Hannover, Germany; Behavioral Engineering Research Group, KU Leuven, Leuven, Belgium.
| | - Caroline Seer
- Department of Neurology, Hannover Medical School, Hannover, Germany; Movement Control & Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Bruno Kopp
- Department of Neurology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Clark CN, Nicholas JM, Agustus JL, Hardy CJD, Russell LL, Brotherhood EV, Dick KM, Marshall CR, Mummery CJ, Rohrer JD, Warren JD. Auditory conflict and congruence in frontotemporal dementia. Neuropsychologia 2017; 104:144-156. [PMID: 28811257 PMCID: PMC5637159 DOI: 10.1016/j.neuropsychologia.2017.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/31/2017] [Accepted: 08/05/2017] [Indexed: 12/14/2022]
Abstract
Impaired analysis of signal conflict and congruence may contribute to diverse socio-emotional symptoms in frontotemporal dementias, however the underlying mechanisms have not been defined. Here we addressed this issue in patients with behavioural variant frontotemporal dementia (bvFTD; n = 19) and semantic dementia (SD; n = 10) relative to healthy older individuals (n = 20). We created auditory scenes in which semantic and emotional congruity of constituent sounds were independently probed; associated tasks controlled for auditory perceptual similarity, scene parsing and semantic competence. Neuroanatomical correlates of auditory congruity processing were assessed using voxel-based morphometry. Relative to healthy controls, both the bvFTD and SD groups had impaired semantic and emotional congruity processing (after taking auditory control task performance into account) and reduced affective integration of sounds into scenes. Grey matter correlates of auditory semantic congruity processing were identified in distributed regions encompassing prefrontal, parieto-temporal and insular areas and correlates of auditory emotional congruity in partly overlapping temporal, insular and striatal regions. Our findings suggest that decoding of auditory signal relatedness may probe a generic cognitive mechanism and neural architecture underpinning frontotemporal dementia syndromes.
Collapse
Affiliation(s)
- Camilla N Clark
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Jennifer M Nicholas
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom; London School of Hygiene and Tropical Medicine, University of London, London, United Kingdomt
| | - Jennifer L Agustus
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Christopher J D Hardy
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Lucy L Russell
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Emilie V Brotherhood
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Katrina M Dick
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Charles R Marshall
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Catherine J Mummery
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Jason D Warren
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
12
|
Brain-Computer Interface for Clinical Purposes: Cognitive Assessment and Rehabilitation. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1695290. [PMID: 28913349 PMCID: PMC5587953 DOI: 10.1155/2017/1695290] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/13/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022]
Abstract
Alongside the best-known applications of brain-computer interface (BCI) technology for restoring communication abilities and controlling external devices, we present the state of the art of BCI use for cognitive assessment and training purposes. We first describe some preliminary attempts to develop verbal-motor free BCI-based tests for evaluating specific or multiple cognitive domains in patients with Amyotrophic Lateral Sclerosis, disorders of consciousness, and other neurological diseases. Then we present the more heterogeneous and advanced field of BCI-based cognitive training, which has its roots in the context of neurofeedback therapy and addresses patients with neurological developmental disorders (autism spectrum disorder and attention-deficit/hyperactivity disorder), stroke patients, and elderly subjects. We discuss some advantages of BCI for both assessment and training purposes, the former concerning the possibility of longitudinally and reliably evaluating cognitive functions in patients with severe motor disabilities, the latter regarding the possibility of enhancing patients' motivation and engagement for improving neural plasticity. Finally, we discuss some present and future challenges in the BCI use for the described purposes.
Collapse
|
13
|
Attenuated error-related potentials in amyotrophic lateral sclerosis with executive dysfunctions. Clin Neurophysiol 2017. [DOI: 10.1016/j.clinph.2017.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Dopaminergic modulation of performance monitoring in Parkinson's disease: An event-related potential study. Sci Rep 2017; 7:41222. [PMID: 28117420 PMCID: PMC5259704 DOI: 10.1038/srep41222] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
Monitoring one’s actions is essential for goal-directed performance. In the event-related potential (ERP), errors are followed by fronto-centrally distributed negativities. These error(-related) negativity (Ne/ERN) amplitudes are often found to be attenuated in patients with Parkinson’s disease (PD) compared to healthy controls (HC). Although Ne/ERN has been proposed to be related to dopaminergic neuronal activity, previous research did not find evidence for effects of dopaminergic medication on Ne/ERN amplitudes in PD. We examined 13 PD patients “on” and “off” dopaminergic medication. Their response-locked ERP amplitudes (obtained on correct [Nc/CRN] and error [Ne/ERN] trials of a flanker task) were compared to those of 13 HC who were tested twice as well, without receiving dopaminergic medication. While PD patients committed more errors than HC, error rates were not significantly modulated by dopaminergic medication. PD patients showed reduced Ne/ERN amplitudes relative to HC; however, this attenuation of response-locked ERP amplitudes was not specific to errors in this study. PD-related attenuation of response-locked ERP amplitudes was most pronounced when PD patients were on medication. These results suggest overdosing of dopaminergic pathways that are relatively spared in PD, but that are related to the generation of the Ne/ERN, notably pathways targeted on the medial prefrontal cortex.
Collapse
|
15
|
Neural correlates of cognitive set shifting in amyotrophic lateral sclerosis. Clin Neurophysiol 2016; 127:3537-3545. [DOI: 10.1016/j.clinph.2016.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/30/2016] [Accepted: 09/26/2016] [Indexed: 12/11/2022]
|
16
|
Event-related potentials and cognition in Parkinson’s disease: An integrative review. Neurosci Biobehav Rev 2016; 71:691-714. [DOI: 10.1016/j.neubiorev.2016.08.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/30/2016] [Accepted: 08/02/2016] [Indexed: 12/14/2022]
|